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ABSTRACT
This paper provides an extensive experimental evaluation for differ-
ent spatial-keyword index structures on streaming data. We extend
existing snapshot spatial-keyword queries with the temporal di-
mension to effectively serve streaming data applications. Then,
the major index structures are equipped with efficient query pro-
cessing techniques and evaluated to process the extended queries.
The evaluation is oriented towards a system building perspective to
provide system builders with insights on supporting scalable spatial-
keyword queries on fast data streams, e.g., social media streams
and news streams. In particular, we have taken existing spatial-
keyword index structures apart into four major building blocks
that are commonly supported at a system-level. Ten different index
structures are then composed as combinations of these four build-
ing blocks. The ten indexes are wholly residents in main-memory,
and they are evaluated on real datasets and query locations. The
index performance is measured in terms of data digestion rate in
real time, main-memory footprint, and query latency. The results
show the relative performance gains of both basic and hybrid index
structures with abundant insights from a system point of view.
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1 INTRODUCTION
Spatial-keyword queries have drawn tremendous attention by
the research community over the past years [9, 10, 12–14, 16–
18, 28, 30, 32, 48, 49, 51]. Such queries find objects that satisfy
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predicates on both spatial and keyword attributes. They are widely
applicable in different applications such as points of interests (POIs)
search [18], news search [43], route planning [7], and several ap-
plications of social media search [5, 24, 25, 47]. As a result to their
wide popularity, spatial-keyword queries have recently made it to
the system-level support [19, 37, 41] to allow application developers
to build applications on top of them.

Spatial-keyword queries have been extensively studied in two
settings: snapshot queries on relatively-stable datasets that do not
encounter extensive updates, e.g., POIs, and continuous queries on
streaming data (as detailed in Section 2). However, several appli-
cations still post traditional snapshot queries on streaming data,
such as using social media in rescue [15, 24, 27], finding real-time
local news [4], and real-time recommendations [46]. In fact, several
work on snapshot queries actually use Twitter data in their eval-
uation [13, 21, 28, 42] ignoring its streaming nature. In addition,
Twitter’s Advanced Search allows snapshot spatial-keyword queries
on streaming data due to its importance, yet, with pre-defined list of
cities with no support for arbitrary regions, e.g., Downtown Boston.
Generally, all top-notch big data systems [1, 20, 45] optimize their
performance for snapshot querying of fast data in real time, includ-
ing systems that support spatial-keyword queries [19, 41]. However,
none of existing work has extensively studied the performance of
different spatial-keyword indexing techniques on streaming data,
which is an essential step towards efficient processing and opti-
mization for such queries at a system-level.

In this paper, we provide an extensive experimental study for
different spatial-keyword index structures on streaming data that
come with high arrival rates. The study has two main objectives:

(1) Understanding the relative benefits of separate versus hybrid
index structures on spatial-keyword queries. From a system per-
spective, it is preferred to support two separate index structures,
one for spatial attributes and one for keyword attributes, as pro-
vided in existing systems [19, 34]. This gives the system flexibility
to support a variety of queries using a limited number of assets.
Moreover, it optimizes system resources such as disk storage re-
quirements and main-memory utilization. However, this comes
with performance penalties that affect the scalability of certain
query families. This study reveals the performance gains and losses
of supporting spatial-keyword queries using separate versus hybrid
index structures.

(2) Understanding the relative benefits of spatial-keyword index
structures on temporally-extended queries in real-time environ-
ments. Snapshot queries on streaming data always incorporate the
time aspect in query definitions [6, 50] for two reasons. First, the
time-sensitivity of streaming data so recent data is more important
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than old data. Second, the plethora of data objects, so it is over-
whelming to return all objects that satisfy the query predicates.
Thus, we extend spatial-keyword queries on streaming data with
the temporal dimension and provide query processing techniques
for the extended queries. Recent work has considered the temporal
aspect on relatively static datasets [11, 23]. On the contrary, our
study reveals the performance trade-offs in real-time environments.

Our study is performed based on two popular types of spa-
tial keyword queries: Boolean range query [16] and Boolean kNN
query [10]. We extend both queries with temporal ranking to fit
streaming data applications. The two queries are chosen based
on appropriateness to streaming environments compared to other
queries that add significant overhead as discussed in Section 7. The
following examples illustrate the two evaluated queries:

• Example 1: Temporal Boolean Range Query (TBRQ):
“Find the most recent k tweets, k=20, that mention save or
help, and spatially located within Jacksonville, Florida”. The
query includes both textual and spatial parts of the predicate
as Boolean filters while the temporal part is used in ranking
to find the most recent objects relative to the query time.

• Example 2: Temporal Boolean kNN Query (TBKQ):
“Find recent k tweets, k=3, that mention Boston marathon
or explosion, and spatially near to 500 Boylston Street”. This
query includes the textual part of the predicate as a Boolean
filter while spatial and temporal parts are used to rank the
objects relative to the query location and time, respectively.

We evaluate ten different index structures, composed of four
building blocks of spatial and textual index structures that are used
in the literature. All index structures are wholly residents in main-
memory to scale for digesting streaming data and provide low
query latency. For spatial indexing, three building blocks are used:
spatial grid, quadtree, and R-tree index structures. In addition, the
inverted index structure is used for textual indexing as the fourth
building block. The ten evaluated index structures are classified
into two categories: pure spatial and textual indexes that index a
single-dimension and hybrid indexes that index two dimensions.
Each index structure is evaluated with respect to data digestion
rate, main-memory consumption, and query latency. We adjust
tightly-coupled hybrid indexes ([13]) to be loosely-coupled as they
put less overhead on system resources and hence more preferable
from a system perspective. Evaluation data and queries are based
on real query locations and a real Twitter dataset, a prime example
of spatial-keyword streaming data that is widely used in different
applications.

The evaluation yielded abundant results. Clearly, pure indexes
outperform hybrid indexes in terms of data digestion rates and
memory consumption. On another hand, pure indexes suffer from
relatively high query latency compared to hybrid indexes. More
importantly, the administrative configuration settings play an es-
sential role in the overall index performance. Configuring the right
index cell size, query weighting parameters, and number of Boolean
filters changes the performance drastically. Such insights are im-
portant for system administrators for tuning query performance
based on the underlying index(es). Our contributions in this paper
can be summarized as follows:

• Our work is the first to evaluate different spatial-keyword
index structures on streaming data.

• Our work is the first to temporally extended and address
snapshot spatial-keyword queries in real-time environments.

• Our study reveals the relative benefits of separate versus
hybrid index structures on spatial-keyword queries to give
insights for system builders and administrators on efficient
processing and optimization of these queries.

The rest of this paper is organized as follows. Section 2 high-
lights the related work. Section 3 presents the problem definition.
Sections 4 and 5 present overview about the evaluated indexing and
query processing techniques. Section 6 gives an extensive experi-
mental evaluation and Section 7 highlights the result implications
on the system level. Finally, Section 8 concludes the paper.

2 RELATEDWORK
Querying geo-textual data is studied under different categories of
spatial-keyword queries. The major such categories are: (1) Snap-
shot queries [9, 10, 12–14, 16–18, 28, 30, 32, 49] that are posted and
get their answers one-time from the current snapshot of the data.
These queries evaluate each data object separately to check whether
or not it satisfies the spatial and keyword predicates. (2) Continu-
ous queries [12, 17, 29, 38, 49], e.g., in publish/subscribe systems,
that register in the system and notify users with incremental an-
swers on receiving new data objects that satisfy the query predi-
cates. (3) Group queries [8, 9, 21, 31, 39] are another type of snap-
shot queries that evaluate the answer as a group of objects rather
than individual objects, so the group of objects collectively sat-
isfy the query predicates. An existing experimental study [13] has
evaluated different techniques for the first category on traditional
non-streaming datasets where disk-based storage and indexing
techniques are used. Our work studies existing techniques for the
first category of queries as well, yet, with two major differences
compared to [13]. First, our study focuses on streaming data in
real-time applications. This implies temporal extensions for queries
definitions, main-memory storage and indexing, and hence query
processing techniques are adjusted for the new environment. Al-
though main-memory has been used in the literature to speed
up snapshot spatial-keyword queries [28], streaming data envi-
ronments have not been considered, where several fundamental
differences apply including the query signatures and processing op-
timizations. Second, our study provides a system-oriented perspec-
tive to draw conclusions on supporting scalable spatial-keyword
queries in big data systems that optimize their performance for fast
data, e.g., [19, 37, 40, 41]. This study is complementary to our prior
work [32, 41] on providing holistic real-time data management
environments for spatial data.

Recently, time-awareness is studied in the context of spatial-
keyword queries in both snapshot [11, 23] and continu-
ous [14] queries. However, both temporal techniques on snapshot
queries [11, 23] consider non-streaming data where storage, index-
ing, and query processing are not optimized for fast data. Conse-
quently, they encounter significant overhead in real-time environ-
ments.
3 PROBLEM DEFINITION
Spatial-keyword queries are evaluated on a geo-textual streaming
dataset D that consists of a set of geo-textual objects. Each object
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ID Keywords Timestamp
o1 FIFA, Final, Ceremony 06-12-2018 20:18:30
o2 World, Cup, Openning 06-12-2018 20:18:27
o3 NBA, Lakers, Final 06-12-2018 20:18:23
o4 French, Open, R.Nadal, D.Thiem 06-12-2018 20:18:19
o5 Russia, Moscow, Ceremony 06-12-2018 20:18:17
o6 FIFA, Russia 06-12-2018 20:18:14
o7 Brazil, FIFA, Argentina, Game 06-12-2018 20:18:09
o8 NBA, LeBron, Injury 06-12-2018 20:18:06

Table 1: Content of Objects in Figure 1a

o ∈ D is represented with a triple (loc ,kw , time), where loc is a point
location (latitude/longitude coordinates), kw is a set of keywords,
and time is a timestamp. Dt1 is a snapshot of the dataset D at time
t1, so every object o ∈ Dt1 has o.time ≤ t1. Table 1 gives an example
of a dataset that consists of eight objects, o1 to o8, each is associated
with a set of keywords, a timestamp, and located in the 2D space
as shown in Figure 1a.

We evaluate two spatial keyword queries that are common in
the literature [13] extended with the temporal dimension, so they
are appropriate for applications on streaming data that is sensitive
to time. A third major query in the literature is omitted due to its
high-cost in streaming systems as discussed in Section 7. We give
the query definitions followed by an illustration of their extensions
compared to existing queries in the literature.

Temporal Boolean Range Query (TBRQ): Given a TBRQ
q = (w , r , k , t ), where q.w is a set of keywords, q.r is a spatial
region, q.k is an integer, and q.t is a timestamp, q finds k objects
oi ∈ Dt , 1 ≤ i ≤ k , such that: (1) oi .kw ∩ q.w , ϕ, (2) oi .loc ∈ q.r ,
and (3) oi s are the most recent k objects in Dt . So, q retrieves k
objects from the dataset snapshot Dt that corresponds to the query
timestamp t . Each object lies in the query spatial range and contains
one or more of the query keywords. In addition, the k objects are
ranked based on time to retrieve the most recent objects in Dt .

Temporal Boolean kNN Query (TBKQ): Given a TBKQ
q = (w , p, k , t ), where q.w is a set of keywords, q.p is a spatial
point location, q.k is an integer, and q.t is a timestamp, q finds k
objects oi ∈ Dt , 1 ≤ i ≤ k , such that: (1) oi .kw ∩ q.w , ϕ, and
(2) oi s are the closest k objects in Dt according to a spatio-temporal
distance Fα :

Fα (o,q) = α × SpatialScore(o,q) + (1 − α) ×TemporalScore(o,q)
Where α is a weighting parameter, 0 ≤ α ≤ 1, that weights the
relative importance of spatial and temporal scores in the object
proximity. SpatialScore and TemporalScore are defined as follows:

SpatialScore(o,q) = distance(o.loc,q.p)
RMax

TemporalScore(o,q) = q.t − o.time

TMax

Where RMax and TMax are the maximum allowed spatial and tem-
poral ranges for any object, and distance is the spatial distance
between object and query locations in the Euclidean space.

Both queries are extended in their temporal and top-k parts com-
pared to the existing spatial keyword queries in the literature [13].
Time is essential in streaming data as recent data is significantly

more important than older data. In addition, streaming data comes
with an excessive number of objects. Thus, limiting answer size to
k objects prevents overwhelming end users with excessive answer
that is hard to interpret and render. This approach is accommodated
by all major web services such web search engines, e.g., Google, and
social media providers, e.g., Twitter, where their search by default
show the most important 10 results to maximize the user utility,
then users can choose to retrieve more pages of results. Twitter,
in specific, uses pure temporal recency as one of its major rank-
ing functions as social media posts represent a prime example of
streaming data where latest posts have prime importance.

4 MAIN-MEMORY INDEXING
This section presents the different index structures that are evalu-
ated to index and query streaming geo-textual objects efficiently.
All indexes are wholly residents in main-memory for scalable data
digestion and high-throughput query processing. We decompose
the existing indexes in the literature [13] into four major building
blocks. Different combinations of these building blocks are used
to compose different indexes. Only loosely-coupled combinations
are used as tightly-coupled indexes put much overhead on system
resources. Each building block is equipped with efficient inser-
tion and query processing techniques to scale for streaming data.
Data expiration (deletion) is performed with existing techniques as
in [33].

We choose to use indexing building blocks to gear the evaluation
to a system-oriented perspective. Big datamanagement systems pro-
vide common utilities that are used to support a variety of queries
with minimal system overhead. Thus, they support building blocks
in both indexing and querying to compose different combinations
in different scenarios. Our goal is to understand the relative benefits
of different building blocks as well as their combinations.

4.1 Indexing Building Blocks
Spatial-keyword indexes consists of two indexing components: a
spatial component and a keyword component [13]. Thus, our build-
ing blocks are the major spatial and keyword indexing components
in the literature that are appropriate for real-time data indexing. For
spatial indexing, we use the three major building blocks: spatial grid,
quadtree, and R-tree. For keyword indexing, we use one building
block, the inverted index. The literature presents another keyword
component, bitmaps, that uses bit flags to indicate presence or ab-
sence of each keyword in the index cell. We omit evaluating bitmaps
indexes as they are not appropriate for streaming data. In specific,
bitmaps assume representing all keywords in all index cells with
bit flags. This puts significant overhead on real-time index updates
and main-memory storage with the excessive amount (hundreds of
millions of data objects) and dynamic distributions of data cross dif-
ferent index cells. The rest of this section presents the four building
blocks, illustrating adapting them for real-time data indexing.

As streaming data comes with high-arrival rates, scalable data
digestion is one of the crucial requirements for efficient indexing.
So, our indexes are equipped with a batch insertion module that
buffers incoming data objects and group them based on the indexed
attribute. Typically a data batch include thousands of data objects
that correspond to streaming data that arrive in few seconds. For
the inverted keyword index, buffered data is grouped based on
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(a) Pure grid index (PG) (b) Grid-inverted index (GI) (c) Inverted-grid index (IG)

Figure 1: Structure of grid-based indexes

keywords. For spatial indexes, buffered data is grouped based on the
underlying index structure, typically with an minimum bounding
rectangle (MBR) that represents spatial boundaries of the buffered
data. Then, the index is navigated efficiently using batch data groups
instead of individual objects as follows.

(1) Spatial grid. We use a single-level spatial grid index [48]
similar to the one depicted in Figure 1a. The index divides the space
into fixed number of equal-area disjoint cells. In real time, newly
arriving data are buffered to be inserted in batches. The buffered
data are grouped using a buffer grid that has the same cell size as the
underlying grid, yet it is much lighter due to small size of buffered
data compared to actual indexed data. Then, the buffer is merged
with the underlying grid index through one-to-one cell merging,
where all data in a buffer cell is appended to the corresponding cell
in the index cell. This enables the grid to digest higher rates of data.

(2) Quadtree. We use a partial quadtree index [2] adapted for
scalable batch insertions as in [35] to provide low-cost index struc-
turing under highly-skewed data in real time. The quadtree starts
with a single root node where data is inserted in batches. Once the
node reaches a maximum capacity, it is split into four quadrants and
data is distributed over children nodes, and so recursively. Thus,
the index is being shaped dynamically and handles highly-skewed
data adaptively.

(3) R-tree. We use a regular R-tree as a representative for the
R-tree family variations, e.g., R+ [44] and R* [3] trees, due to its
low indexing overhead. Incoming data batches are inserted in the
corresponding leaf nodes. When a leaf node reaches its maximum
capacity, it is split into two nodes and its objects are distributed
over the children nodes. Several heuristics exist to split R-tree
nodes [3, 22, 26]. As our work adjusts the index for scalable real-
time data digestion, we adapt Guttman’s QuadraticSplit [22] due to
its low cost especially with point locations.

(4) Inverted index. We realize an in-memory version of the
inverted file index [52], that maps a keyword w to a list of data
objects that containw , using a hashtable structure. As illustrated
above, the buffered data batch are grouped based on keywords in a
buffer hashtable. Then, data of each buffer hash entry is appended
to the corresponding index hash entry, which enables scalable data
digestion in real time.

It is noteworthy that index nodes of grid, quadtree, and inverted
index store data objects ordered by their arrival timestamp. Such
ordering does not add any overhead on real-time indexing as it
is a natural order for streaming data that arrives in append-only
fashion. This is exploited by the query processing (Section 5) to
provide efficient query response. Only R-tree is not guaranteed to

Index Name 1st-level 2nd-level
Grid-inverted (GI) [48] Spatial grid Inverted index
Inverted-grid (IG) [48] Inverted index Spatial grid
Quadtree-inverted (QI) Quadtree Inverted index
Inverted-quadtree (IQ) Inverted index Quadtree
Rtree-inverted (RI) [51] R-tree Inverted index

Inverted-Rtree (IR) [42, 51] Inverted index R-tree
Table 2: Structure of hybrid indexes with two-level indexing

preserve this temporal order due to node split algorithm that might
reorder data based on spatial proximity rather than timestamp.

4.2 Real-time Spatial-Keyword Index
Structures

Using the indexing building blocks presented in Section 4.1, we
compose ten different index structures, most of them correspond to
existing indexes in the literature [13]. The ten indexes fall in two
categories: four pure indexes and six hybrid indexes. The four pure
indexes organize data based on a single dimension, either spatial
or keyword, and they correspond to the four building blocks (Sec-
tion 4.1). Thus, our four pure indexes are Pure Grid index (PG), Pure
Quadtree (PQ), Pure R-tree (PR), and Pure Inverted index (PI) and
they correspond to the spatial grid, quadtree, R-tree, and inverted
index, respectively. The six hybrid indexes organize data based on
both spatial and keyword dimensions simultaneously, so each of
them uses exactly two building blocks, one spatial index and one
keyword index. The structure and data insertion of each hybrid
index is briefly outlined below.

Table 2 shows structures of the six hybrid indexes with their
correspondence in the literature. Each hybrid index uses two levels
of indexing, spatial then textual or vice versa. Each index node
of the first-level index stores an second-level index for its data
objects instead of a simple list of objects. Incoming data batches
are first inserted in the first-level index, then data of each first-
level index node is considered a data batch for the second-level
index and inserted accordingly. All insertions are done as described
in Section 4.1. All hybrid indexes are loosely-coupled as tightly-
coupled indexes ([13]) significantly increase the system overhead
of index storage and maintenance in real time. Thus, the spatial
component does not store keyword pruning information and vice
versa. The following example gives further illustration.

Example. Figure 1 shows the structure of both pure and hybrid
grid-based indexes, PG, GI, and IG. Figure 1a shows a pure grid
index that divides the space into four equal-area cells. The index
organizes eight objects, o1 to o8, based on their spatial locations.
Each cell stores its objects in a list ordered by arrival time. Figure 1b
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shows the same spatial grid equipped with an inverted index in
each cell to form a grid-inverted index (GI) for the eight objects.
Instead of storing a list of objects, the cell organizes objects based
on keywords. Figure 1c shows a reciprocal structure of the inverted-
grid index (IG). The index organizes the eight objects based on
keywords in an inverted index. Each keyword entry stores a spatial
grid that stores only the objects that correspond to this keyword.

5 QUERY PROCESSING
This section presents processing TBRQ and TBKQ queries, that
are defined in Section 3, using the ten indexes that are presented
in Section 4. Both queries are temporally extended versions to
common ones in the literature, so their processing is extended with
the temporal dimension. Section 5.1 presents processing TBRQ
query and Section 5.2 presents processing TBKQ query.

5.1 TBRQ Query
A key ingredient in processing TBRQ query on most indexes is
using temporal pruning to speed up traversal of individual index
nodes. We first introduce traversing an index node with temporal
pruning. Then, we present processing TBRQ query in all indexes.

Temporal pruning. Traversal with temporal pruning assumes:
(1) Index node N that stores a list of objects ordered by timestamp
from most to least recent, which is the case in grid, quadtree, and
inverted indexes. (2) A listAns of k objects that represents an initial
query answer. The goal of this traversal is to refine Ans to include
objects in N that outperform the current k objects. To this end, we
calculate a temporal upper bound Tu that equals the timestamp of
the kth , i.e., worst, object in Ans . Then, we traverse objects oi ∈ N ,
one by one in time order. If oi .time > Tu , i.e., oi is more recent
than the oldest object in Ans , we compute oi ranking score, check
if it outperforms the worst Ans’s object, update Tu , and move to
the next object. If oi .time ≤ Tu , we terminate processing this cell
as all following objects are worse than all Ans objects. This enables
pruning a lot of objects and provides efficient query processing.

Processing TBRQ. PG, PQ, and PI indexes share a similar TBRQ
query processor that consists of three steps. First, index nodes that
intersect with the query range (or correspond to query keywords)
are enqueued. Second, nodes are traversed, in queuing order, to get
an initial answer listAns that has k objects contain query keywords
and within the spatial range. Finally, rest of nodes are traversed
with temporal pruning to refine Ans and get the final result. PR
index shares the first two steps, however, the second step continues
to scan all nodes without temporal pruning to get the final answer.
The reason that R-tree maintains objects unordered on time because
its node split algorithm does not preserve the temporal order.

The hybrid indexes GI, QI, and RI use the same three-step frame-
work as PG, PQ, and PR, respectively, with a modification to the
first step. In particular, instead of enqueuing all content of the index
node, we use the node inverted index to filter out data that corre-
spond to the query keywords. Then, lists of objects are enqueued
to be processed by the second and third steps.

The hybrid indexes IG, IQ, and IR share a three-step query pro-
cessor that works as follows. First, inverted index nodes that cor-
respond to query keywords are enqueued. Second, for each node
in IG, IQ, and IR, the spatial index is queried the same as PG, PQ,
and PR, respectively, to get top-k objects in each node. Finally, in

case of multiple keywords, top-k objects from different nodes are
merged to get the final top-k objects.

5.2 TBKQ Query
TBKQ query uses a spatio-temporal ranking function that scores
objects based on both spatial and temporal proximities. Thus, the
query processor prunes search space on both spatial and tempo-
ral dimensions. We first introduce spatial and temporal pruning
procedures. Then, we present processing TBKQ query in all index
structures.

Spatial pruning. Traversal with spatial pruning assumes: (1) A
set S of index nodes ordered by spatial distance from a query point
location q.p. (2) A list Ans of k objects that represents an initial
query answer. The goal of this traversal is to refine Ans to include
objects in S that outperform the current k objects. To this end,
we calculate a spatial range upper bound Ru based on the spatio-
temporal ranking function Fα assuming zero temporal score. Thus,
Ru =

Fα ,k
α ×Rmax based on notations used in Section 3, where Fα,k

is the value of Fα for the kth object inAns . Then, we traverse nodes
N ∈ S , one by one in distance order. If distance(N ,q.p) < Ru , we
process N to refine Ans list, update Ru , and move to the next node.
If distance(N ,q.p) ≥ Ru , we terminate processing all remaining S
nodes as all following nodes do not outperform any object in Ans .

Temporal pruning. Temporal pruning for TBKQ is the same as
the one presented in Section 5.1 with the exception of calculating
the temporal upper bound Tu . Instead of using only timestamp,
Tu is calculated based on the spatio-temporal ranking function Fα

assuming zero spatial score. Thus, Tu = q.t −
Fα ,k
1−α ×Tmax , where

Fα,k is the value of Fα for the kth object in Ans , q.t is query time.
Processing TBKQ. PG and PQ indexes share a similar TBKQ

query processor of three steps. First, we compute an initial list Ans
of k objects that contain query keywords and are retrieved from
the query point index node, and its neighbor nodes if it contains
less than k objects. Second, we compose a set S of index nodes
that intersect with the spatial range R = Fα ,k

α × Rmax ordered by
distance from the query point. Finally, nodes in S are traversed
with spatial and temporal pruning to get the final Ans list. PR index
shares the exact first two steps. However, its third step uses only
spatial pruning to get the final Ans list. PI index has a three-step
query processor that works as follows. First, it retrieves index nodes
that correspond to query keywords. Second, it gets initial k objects
calculating their Fα scores. Finally, index nodes are traversed with
temporal pruning to get the final top-k objects.

The hybrid indexes GI, QI, and RI use the same three-step frame-
work as PG, PQ, and PR, respectively, with a modification to the
third step. Instead of traversing all content of S nodes, the inverted
index in each node is used to filter out data that correspond to
the query keywords. Then, lists of objects are traversed with the
pruning procedures.

The hybrid indexes IG, IQ, and IR process the query on three steps.
First, inverted index nodes that correspond to query keywords are
enqueued. Second, the nodes are traversed, in queuing order, and
the spatial index of each node in IG, IQ, and IR is queried the same
as PG, PQ, and PR, respectively, to get top-k objects in each node.
Finally, in case of multiple keywords, top-k objects from different
nodes are merged to get the final top-k objects.
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6 EXPERIMENTAL EVALUATION
This section provides experimental evaluation of the different in-
dexing and query processing techniques that are discussed in the
previous sections. Section 6.1 presents the experimental setup. Sec-
tions 6.2-6.4 present index digestion scalability, memory consump-
tion, and query processing scalability, respectively.

6.1 Experimental Setup
We evaluate ten indexes that are illustrated in Section 4. Indexes
are denoted as PG for pure grid, PQ for pure quadtree, PR for pure
R-tree, and PI for pure inverted index. Hybrid indexes that com-
bine both spatial and keyword components are denoted by two
corresponding letters in order, IG for inverted-grid, GI for grid-
inverted, IQ for inverted-quadtree, QI for quadtree-inverted, IR for
inverted-Rtree, and RI for Rtree-inverted. Our parameters include
index node size, dataset size, query answer size k, query range,
number of keywords in a query, and the space-time weighting pa-
rameter α . Unless mentioned otherwise, we use a default node size
of 400 for both quadtree and R-tree, grid is divided into 30x30 cells,
dataset of 60 millions objects, k value of 20, 2 keywords per query,
50 km query range, and α value of 0.2. Our performance measures
include index data digestion rate (the average number of indexed
objects per second), index memory footprint, and query latency.

All experiments are based on Java 8 implementations for the
evaluated indexes and their query processing and using an Intel
Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM
running Ubuntu 16.04 (64 bit). The evaluation datasets and query
workloads are described below.

Datasets. We have collected 6+ billions geotagged tweets from
public Twitter Streaming APIs over the course of four years. All
tweets are geotagged with either a precise latitude/longitude co-
ordinates or a coarser granularity place, e.g., a city or a landmark.
All non-point locations are represented with their centroid points.
A random word/hashtag from the tweet text is associated as a
keyword. Then, four datasets are composed with 30, 60, 90, and
120 millions tweets, which fit in the available main-memory and
used to evaluate the scalability with growing data sizes. Each dataset
is used to simulate a fast stream of data objects.

Query workloads. Each of our queries has one point location
and 1-6 keywords. Thus, we use six query workloads; each set
consists of a hundred queries and has the same number of keywords
from 1 to 6. All query point locations are sampled from real location
queries of BingMobile users, that are used in our prior work [35, 36].
In order to generate non-empty keyword queries, we use each query
location and run a range query to retrieve objects within 50 km
radius. Then, we filter out keywords that are associated with 15 or
more objects to be used in our query workloads.

6.2 Index Scalability
This section evaluates the scalability of different indexes in terms
of real-time data digestion rate. Figure 2 shows the digestion rate
with different index node sizes for all indexes. Figure 2a shows
the digestion rates of PG, IG, GI, and PI with different numbers of
grid cells, where the larger number of cells in the grid indicates a
finer granularity of each cell (as the whole covered region is fixed).
Hybrid indexes, IG and GI, have relatively stable digestion rates
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Figure 2: Digestion rate with varying node size

for different number of cells. IG has the smallest digestion rate
with 1.65 million objects/second, while GI has a slightly higher
rate with 2 million objects/second. PI digestion rate is higher than
both with 2.6 millions object/second, fixed for all number of cells,
which is self-explanatory as PI has no grid component. PG digestion
is significantly higher than all other alternatives, even though it
encounters a decreasing digestion with increasing number of grid
cells. PG’s digestion rate starts at 10.3 millions objects/second at
10x10 grid and degrades to 5.5 millions objects/second at 100x100
grid. The four alternatives in this figure show that spatial grid index
is always digesting more data compared to inverted index due to
the small number of hash entries in the underlying hashtable which
makes it cheaply accessible. When both grid and inverted index
are coupled together, in IG and GI, the grid-first option (GI) still
digests more data. However, the digestion of spatial grid is sensitive
to the number of index cells as shown by the decreasing rate of
PG. With the increasing number of cells, accessing the underlying
hashtable becomes more expensive due to larger number of hash
entires. Although the inverted index is also realizedwith a hashtable,
its number of entries is much higher than grid, order of millions
keywords, which makes it less sensitive. So, tuning the grid size
parameter is crucial when using a pure spatial grid for streaming
data. On the other hand, hybrid indexes, IG and GI, still show a
stable digestion, which suggests that the inverted index component
always stabilizes the digestion rate performance.

Figures 2b, 2c, and 2d show the quadtree-based and Rtree-based
indexes with different node sizes. Figure 2b shows all the six al-
ternatives. Obviously, all alternatives has significantly lower rate
compared to PI and grid indexes, and all quadtree-based indexes
outperform all Rtree-based indexes. PI and grid, as hash-based, are
cheaply accessible compared to navigating multiple levels in hi-
erarchical trees. Figures 2c and 2d focus on quadtree-based and
Rtree-based alternatives, respectively. In Figure 2c, IQ has signifi-
cantly better digestion rate, 1-1.4 million objects/second, compared
to PQ and QI. This is interpreted by the inverted-first component as
the inverted index has higher digestion than quadtrees. In addition,
quadtree size in each inverted index entry of IQ is much smaller
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Figure 3: Digestion rate with varying dataset size

than PQ and QI, which makes its insertion more efficient. Insertion
in such small trees is also improved with increasing node size, due
to less number of tree levels, which improves IQ digestion in turn.
Both PQ and QI have relatively stable digestion with different node
size. In fact, with 60 millions of indexed objects, changing the node
size from 100 to 800 does not significantly affect the number of
tree levels, and thus the insertion efficiency remains stable. Unlike
quadtree, all Rtree-based indexes in Figure 2d encounter decreasing
digestion rates with increasing node size due to the overhead en-
countered in restructuring the R-tree nodes as a data-partitioning
index. This overhead significantly affects the real-time digestion
and favors quadtrees over Rtrees. Still the inverted-first index IR
has the best real-time digestion among the Rtree-based family.

Figure 3 shows the digestion rates of all indexes with varying
dataset sizes. PG still significantly outperforms all other alterna-
tives, as shown in Figure 3a, for the same reasons discussed in
Figure 2. Figure 3b focuses on PI, GI, IG, and IQ, which digest more
than 1 million objects/second. All of them encounter decreasing
digestion rates with increasing data size. This is interpreted with
the inverted index component that is common in all of them. With
more objects indexed, the number of hash entries in the inverted
index increase and makes insertion more expensive. Even though,
it is noticeable that both PI and IQ are more sensitive to this change
than the grid-based indexes GI and IG. In fact, the number of hash
entries in a spatial grid is relatively stable, while insertion is done
in append-only fashion, so increasing data size slightly affect the
insertion performance. Figure 3c focuses on PQ, QI, IR, PR, and
RI. Still all alternatives encounter decreasing digestion rates with
increasing the dataset size due to the increasing tree hight which
induces slower insertion. Yet, quadtree-based indexes PQ and QI
encounter a higher relative degradation than Rtree-based indexes
due to their better digestion performance. In all experiment, Rtree-
based indexes have shown to 2-20 times lower digestion rates than
other alternatives, which is a significant degradation. This is mainly
caused by the high restructuring cost of the R-tree nodes in real
time, which makes it less efficient to digest streaming data.
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Figure 4: Memory consumption

6.3 Memory Consumption
Figure 4 shows the memory consumption of different indexes with
varying number of grid cells (Figure 4a), index node size (Figure 4b),
and dataset size (Figure 4c). Varying both number of grid cells and
node size do not significantly affect the memory consumption while
increasing dataset size linearly increase the memory consumption
of all indexes. This shows theminimal effect of increasing number of
index cells on memory consumption compared to the huge amount
of data objects that are kept in main-memory. With millions of
streaming data objects managed in main-memory, multiplying the
number of index cells by an order of magnitude does not really add
much overhead to the system.

The pure indexes, PG, PQ, PR, and PI, consume less memory
compared to all hybrid indexes. This is self-explanatory by the ad-
ditional data structures in the hybrid indexes. The worthy note is
the relatively slight increase in the memory consumption of hybrid
indexes compared to the pure indexes. The increase falls in the
range 1-8 GB which represents ∼15% increase on the average for
60 millions data objects for all indexes except RI that consumes the
largest memory of ∼41 GB because different R-tree nodes replicate
inverted index entries for the same keyword. Such repetition sig-
nificantly increases memory storage due to excessive number of
keywords. So, the major memory consumption still come from data
objects storage even in hybrid indexes that use additional indexing
data structures.

6.4 Query Evaluation
This section evaluates the performance of different indexes on the
two queries that are defined in Section 3: Temporal Boolean Range
Query (TBRQ) in Section 6.4.1 and Temporal Boolean kNN Query
(TBKQ) in Section 6.4.2.

6.4.1 TBRQQuery. This section evaluates Temporal Boolean
Range Query (TBRQ), abbreviated as range query. We first discuss
the effect of index parameters on the query performance. Then, we
discuss the effect of different query parameters and dataset size.

Effect of index parameters. Figure 5 shows the effect of index
node size on range query latency. Figure 5a shows grid-based and
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Figure 5: Range query latency with varying index node size

inverted indexes. Obviously, PG dominates all other alternatives
with ∼0.9 sec latency for 10x10 grid, which decreases with increas-
ing number of grid cells to reach 69 milli-sec for 100x100 grid. Such
decrease is caused by dividing the same amount of data into smaller
chunks with increasing number of grid cells in the query range.
As a result, the temporal pruning eliminates much more objects,
which leads to significant improvement in query latency. This is
also the pattern with hybrid grid-based indexes IG and GI as shown
in Figure 5b. In this figure, both IG and GI start with 10 milli-sec and
drop to below 2 milli-sec. PI has a constant latency of 10 milli-sec as
it does not depend on spatial grid cells. Figure 5c shows quadtree-
based and Rtree-based indexes. Pure indexes PQ and PR has the
highest consistent latency while hybrid indexes cut the latency at
least to half. PQ has consistently the highest latency of 92 milli-
seconds as it does not provide any keyword pruning, while IQ has
consistently the lowest latency of 1 milli-second as it prunes by
keyword, then spatial, then time, respectively. Although QI uses the
same three pruning stages, however, their different order, spatial
then keyword then time, adds significant overhead for the query
processing which shows the power of keyword pruning at the first
stage. Rtree-based indexes, PR, RI, and IR, do not employ temporal
pruning at all which leads to considerable latency that ranges from
53 milli-seconds to 27 milli-seconds for different node sizes. Yet, PR
still has better latency compared to PQ due to its balanced structure.

Effect of query parameters and dataset size. Figure 6 shows
the range query latency with query range varied from 10 to 300 km.
Figure 6a shows that PG still has the highest latency, ∼0.3 sec,
however, it slowly decreases with increasing query range, which is a
pattern for all grid-based and inverted indexes. Figure 6b shows this
pattern. PI starts at 13 milli-sec while IG and GI start at 3 milli-sec
and all of them decreases to 1 milli-sec with increasing range. This
decrease is counter-intuitive as more data comes with wider ranges.
However, the decrease is a result of fixing the answer size k and
the low overhead of index nodes retrieval. With increasing range,
getting the most recent k objects from more cells takes less time
while the rest of objects are actually pruned by the temporal pruning
procedure. In addition, the cost of retrieving more cells from grid
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Figure 6: Range query latency with varying query range
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Figure 7: Range query latency with different parameters

and inverted indexes is low enough not to suppress this pruning
power. So, combining both of them, the query latency decreases.
Even though, this does not happen in quadtree-based and Rtree-
based indexes as shown in Figure 6c. In these structures, retrieving
more nodes adds an overhead, which is roughly equivalent to the
temporal pruning savings so IQ and QI has a stable performance
with increasing query range. Rtree-based indexes, PR, IR, RI, do
not employ temporal pruning and so they encounter significant
increase in latency with increasing range. Yet, this still of lower
latency compared to PQ due to their balanced structures.

Figure 7 shows range query latency with varying number of key-
words (Figure 7a), value of k (Figure 7b), and dataset size (Figures 7c
and 7d). Different indexes have stable performance with varying
number of keywords and k , while query latency increases with in-
creasing data size. PG dominates other indexes with latency grows
from 135 milli-sec with 30 millions objects dataset to 538 milli-sec
with 120 millions objects. This is almost linear increase compared to
a slow sub-linear increase for other indexes as shown in Figure 7d.
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Figure 8: kNN query latency with varying index node size
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Figure 9: kNN query latency with different parameters

6.4.2 TBKQ Query. This section evaluates Temporal Boolean
kNN Query (TBKQ), abbreviated as kNN query, versus index pa-
rameters, query parameters, and dataset size.

Effect of index parameters. Figure 8 shows kNN query latency
with different index node sizes. Figure 8a shows constant latency for
PI at 122 milli-sec and decreasing latency with increasing number
of cells for grid-based indexes, PG from 1.7 to 0.15 sec, IG from 7.5
to 2.7 milli-sec, and GI from 5.5 to 1.8 mill-sec. The decreasing la-
tency of grid-based indexes has the same interpretation as discussed
for range query, while kNN query adds the power of spatial pruning
to temporal pruning as well. However, it is noticeable that PI has
significantly worse latency for kNN query compared to range query.
This reflects the effect of the more complex spatio-temporal ranking
function in kNN compared to pure temporal ranking in range query.
Such additional ranking term, along with weighting parameter α ,
leads to processing much more objects to get the final top-k answer
and increases the query latency significantly. Figure 8b shows su-
perior performance for quadtree-based indexes over Rtree-based
indexes. PR has the highest latency followed by RI then PQ. This
is unlike range query where PQ had the highest latency due to
its skewed structure. In kNN query, the spatio-temporal ranking,
with potential spatial and temporal pruning, gives an advantage
for quadtrees even in its pure spatial structure PQ compared to the
hybrid structure RI. However, RI outperforms PQ when node size
increases beyond 400 objects/node. The lowest latency is encoun-
tered by IQ at 3 milli-sec where the full powers of all pruning stages,
keyword, spatial, and temporal, are exploited.

Effect of query parameters and dataset size. Figure 9 shows
the effect of number of keywords (Figure 9a), value of k (Figure 9b),
value of α (Figure 9c), and dataset size (Figure 9d) on kNN query
latency. Figure 9a shows an increasing latency with increasing num-
ber of keywords for all indexes. This pattern is more observable in
PG due to its high latency. However, changing number of keywords
from one to six leads to ∼50% increase in latency, which is a reason-
able increase given that real applications mostly have less than six
keywords. Figure 9b shows an increasing latency with increasing
value of k . Yet, the relative increase is highly variable for different
indexes. For example, PI has 15% increase, PG has 50% increase,
while PR and PQ have up to 300% increase. Such increase is highly
affected by the temporal pruning, which is more effective with the
inverted index. However, in kNN query, hybrid indexes provide
much lower latency due to its superior pruning and complexity of
ranking objects in pure indexes.

Figure 9c shows a relatively high latency for smaller values of α
for all indexes. Increasing α leads to decreasing latency with almost
stable performance beyond α=0.2. At small values of α , spatial dis-
tance is dominating the temporal distance in the ranking function,
and hence the spatial pruning is more important. High latency in
such cases shows that spatial pruning is less effective than temporal
pruning that leads to lower latency at higher α values. Unlike other
indexes, PG maintains a relatively stable performance which shows
that gird cells is more sensitive to spatial pruning compared to
quadtree and R-tree. PI still has the best latency among all pure
indexes. Figure 9d shows an increasing latency with increasing
dataset size for all indexes, where more data naturally puts an over-
head on query processing. However, PG and PR has much more
increase compared to PQ, PI, and hybrid indexes.

7 DISCUSSION
Based on our evaluation, we provide system builders with insights
and suggestions to support scalable spatial-keyword queries on
streaming data. We first discuss query signatures to be supported
in the system. Then, we discuss system index structures.

Query signatures. The evaluated queries, TBRQ and TBKQ, are
temporal extensions for the two Boolean spatial-keyword queries
as defined in the literature [13]. We choose to omit extending the
third common spatial-keyword query, named Topk kNN query [13].
This query ranks result objects based on both spatial and textual
similarity. Extending this with time means the ranking function
would employ three ranking terms, spatial, temporal, and keyword.
This is expected to significantly slow down the query latency. It is
actually shown in our evaluation that TBKQ, that uses two-terms
ranking function is significantly slower than TBRQ that uses only
one term. Given that, keywords should be kept as Boolean filters
on streaming data queries rather than incorporating them in the
ranking for better system scalability.

Index structures. The evaluation shows the relative perfor-
mance gains of different pure and hybrid indexes. Intuitively, pure
indexes encounter higher query latency compared to hybrid in-
dexes. However, from a system builder perspective, pure indexes
have better scalability in terms of digestion rate, consume less mem-
ory resources, and have better flexibility in supporting a variety of
query signatures, e.g., pure spatial queries. Given that, the evalu-
ation shows that quadtree outperforms R-tree in TBKQ while the
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opposite is true for TBRQ. Spatial grid has higher latency than both
of them in both queries. In fact, the inverted index outperforms
all pure spatial indexes on both queries. This shows the power of
keyword pruning and the benefit of limiting keywords to remain
Boolean filters rather than a ranking term. For hybrid indexes, their
performance gains increase with more complex ranking functions,
such as in TBKQ. Inverted-quadtree index has shown superior per-
formance in terms of digestion rate and query latency compared
to other tree indexes. Nevertheless, grid-inverted index performs
better and more consistent in terms of query latency and slightly
better in digestion rate compared to tree indexes.

8 CONCLUSION
This paper provided an experimental evaluation for spatial-keyword
queries on streaming data. We extended the common queries in
the literature with the temporal dimension to effectively serve
streaming applications. Existing query processing techniques are
consequently extended with temporal pruning to effectively prune
old objects. Ten major in-memory index structures, that are combi-
nations of four indexing building blocks, are evaluated to process
the extended queries. The evaluation provides system builders with
insights on supporting scalable spatial-keyword queries with dif-
ferent trade-offs between system resources and query efficiency.
The results have shown the superiority of keyword pruning and
inverted index as a basic structure that is favorable at a system-level.
For hybrid indexes, inverted-quadtree index has shown superior
performance in terms of system resources while grid-inverted index
has shown consistently low query latency.
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