
GeoTrend: Spatial Trending Queries on Real-time
Microblogs

Amr Magdy⋆ Ahmed M. Aly† Mohamed F. Mokbel⋆ Sameh Elnikety‡

Yuxiong He‡ Suman Nath‡ Walid G. Aref§

⋆Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
†Google Inc., Mountain View, CA ‡Microsoft Research, Redmond, WA

§Department of Computer Science, Purdue University, West Lafayette, IN

⋆{amr, mokbel}@cs.umn.edu, †aaly@google.com,
‡{samehe, yuxhe, sumann}@microsoft.com, §aref@cs.purdue.edu

ABSTRACT

This paper presents GeoTrend; a system for scalable support of spa-
tial trend discovery on recent microblogs, e.g., tweets and online
reviews, that come in real time. GeoTrend is distinguished from
existing techniques in three aspects: (1) It discovers trends in ar-
bitrary spatial regions, e.g., city blocks. (2) It supports trending
measures that effectively capture trending items under a variety of
definitions that suit different applications. (3) It promotes recent
microblogs as first-class citizens and optimizes its system compo-
nents to digest a continuous flow of fast data in main-memory while
removing old data efficiently. GeoTrend queries are top-k queries
that discover the most trending k keywords that are posted within
an arbitrary spatial region and during the last T time units. To sup-
port its queries efficiently, GeoTrend employs an in-memory spa-
tial index that is able to efficiently digest incoming data and expire
data that is beyond the last T time units. The index also materi-
alizes top-k keywords in different spatial regions so that incoming
queries can be processed with low latency. In case of peak times,
a main-memory optimization technique is employed to shed less
important data, so that the system still sustains high query accu-
racy with limited memory resources. Experimental results based
on real Twitter feed and Bing Mobile spatial search queries show
the scalability of GeoTrend to support arrival rates of up to 50,000
microblog/second, average query latency of 3 milli-seconds, and at
least 90+% query accuracy even under limited memory resources.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

Keywords

Microblogs, Trend, Spatial, Real-time, Indexing, Query Processing

This work has been supported by National Science Foundation
grants, Mohamed F. Mokbel’s research under Grant Numbers IIS-
0952977, IIS-1218168, IIS-1525953, CNS-1512877, and Walid G.
Aref’s research under Grant Number III-1117766. The work has
started while the first two authors are interns at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996986

1. INTRODUCTION
Timely discovering and understanding localized trending events

from online microblogs, e.g., tweets, comments, and check-ins,
have become a reality. In fact, news agencies and people have re-
ferred to Twitter (a prime microblogging service) to get to know
timely news about various events, e.g., Michael Jackson death [35],
Boston explosions [5], tracking health issues [18], and China
floods [10]. This is so popular that it outstrips TV as a news source
for young people [4]. As a result, Twitter has released its own
feature of localized trending hashtags [39], which shows current
trending hashtags in a country or a city. Following the needs and
importance of such a feature, various research efforts were dedi-
cated to online local event discovery from microblogs [1, 7, 14,
27, 36]. Unfortunately, current efforts are tailored to finding events
in pre-defined areas, where one needs to first specify the areas of
interest, e.g., Minneapolis, then start to detect the events in these
areas. In order to have worldwide high resolution coverage of such
feature, there is a real need for an event detection technique that:
(a) covers arbitrary ad-hoc areas that are not pre-specified to the
system, and (b) covers high resolution areas, e.g., finding events
within part of the city, or events at the street level.

Up to our knowledge, there are two main attempts to support
localized trend discovery with arbitrary spatial regions [22, 36].
However, one of these techniques ([36]) is built on two simplistic
assumptions: (1) It assumes a very simplistic definition of "trend-
ing" queries as "frequent" queries, which can be computed through
simple counting techniques, and (2) It assumes that the underly-
ing system has unlimited memory. Hence, it does not account for
expiring data from memory, which is crucial to ensure the accu-
racy of trending queries on recent data. Meanwhile, the second
approach ([22]) is designed in a generic way to support trending
queries for various contexts, where location can be considered as a
context. Due to its generic nature, it has two main drawbacks: (1) It
does not take advantage of the distinguishing characteristics of the
spatial dimension, and (2) It is mainly designed to handle queries
on arbitrarily large historical time periods, which makes it poor in
handling queries on recent data in terms of both query performance
and memory consumption, while recent data is the most important
in discovering timely trends.

In this paper, we present GeoTrend; a microblogging system that
supports online trending queries for arbitrary ad-hoc areas with
limited memory resources. GeoTrend abstracts localized trending
queries to be in the form: "Find the top-k trending keywords in the

last T time units in area R", where R is an arbitrary ad-hoc area
and the keyword search is a proxy for trending events. GeoTrend

adopts a wide definition of trending keywords that goes beyond the
simple counting assumption (i.e., frequent keywords) to consider
trending as the growth in number of appearances over the query
period T . It is likely that trending keywords are not among the
frequent ones. For example, the keyword “love" is consistently fre-
quent in Twitter, and it appears much more frequent than the key-
word “elections", while the latter is considered trending over the
election week. This particular property along with the focus on
supporting recent trending queries (i.e., last T time units) are the
main distinctions of GeoTrend over its main competitors [22, 36].

GeoTrend employs an in-memory incomplete pyramid struc-
ture [3] that is able to digest incoming real-time microblogs with
high arrival rates. The incomplete pyramid hierarchy divides the
entire space into a set of multi-layers cells, where cells in each layer
are non-overlapping. To accommodate incoming data in limited
memory resources, each index cell is equipped with a novel and
efficient count aggregation technique that maintains count-based
measures over the last T time units and expires data that is outside
T . Injecting the concept of expiration in our aggregation is a key
to GeoTrend success, as it ensures discovering trends from only re-
cent data and ensures continuous digestion of fresh microblogs in
the limited memory. GeoTrend count aggregation technique dis-
tinguishes itself from all previous sliding-window counting tech-
niques (e.g., [2, 12, 17, 25]) by its simple and efficient structure that
uses low-overhead update techniques to digest/expire microblogs
with high rates; up to an order of magnitude higher than Twitter
rate. In particular, it uses a constant memory per keyword regard-
less of the length of time span T . This is in contrast to existing
techniques that have memory overhead proportional to T . This en-
ables GeoTrend to support arbitrarily large time spans with millions
of keywords while using much less memory.

For scalable query processing, each GeoTrend index cell main-
tains a materialized list of top-k trending keywords that appear
within the cell spatial boundaries. Then, incoming queries with ar-
bitrary spatial regions efficiently merge the materialized top-k lists
to come up with a final top-k list. In system peak times with more
keywords arriving within the query time T , GeoTrend employs a
memory optimization technique that exploits the nature of user-
generated data to smartly select and shed less important keywords
that are unlikely to contribute to any incoming query.

GeoTrend is experimentally evaluated based on a real system de-
ployment with a real-time feed of US tweets (collected from a Twit-
ter firehose archive) and locations of Bing Mobile search queries.
Our experiments show that GeoTrend digests microblogs in high
rates of up to 50K microblog/second, provides average query la-
tency of 3 milli-seconds, and achieves much less memory con-
sumption than its competitors with 90+% query accuracy.

In the rest of this paper, Section 2 highlights related work, Sec-
tion 3 introduces our trending measures, and Section 4 gives an
overview of GeoTrend. The GeoTrend indexing, memory optimiza-
tion, and query processing are discussed in Sections 5, 6, and 7,
respectively. Section 8 presents the experimental evaluation and
Section 9 concludes the paper.

2. RELATED WORK
Related work to GeoTrend spans various areas, which include:

trending items in data streams, spatial queries on microblogs, and
spatial aggregate queries.

Trending items in data streams. Discovering trending items in
data streams [6, 9, 21, 31] is a well-studied topic. However, the
main focus of existing techniques on the entire data stream, i.e., no

support for old data expiration. Furthermore, there is no support for
the spatial aspect of incoming data streams. This renders all tech-
niques in this category not applicable for the problems addressed
in GeoTrend, which are: spatial querying, expiring old data as a
necessity for digesting new microblogs, and promoting recent data
that encounter a high fraction of queries.

Spatial queries on microblogs. Microblog locations are re-
cently exploited for either visualization, where microblogs are plot-
ted on the map [35, 40], geotagging, where geotags are extracted
from the microblog contents [20, 26], modeling, where a model is
built between users, locations, and topics [19], or real-time query
processing [7, 29, 36]. The last category is the most related to
our work. However, none of them address discovering trending
items on recent microblogs. In particular, Mercury [29] searches
individual microblogs and does not support any aggregate query.
GeoScope [7] addresses an interesting, yet orthogonal, problem of
finding correlated <location, topic> pairs. Using GeoScope, we
can support neither getting top-k trending keywords as no ranking
is employed nor handling arbitrary query regions as the locations
are considered as a predefined discrete set, e.g., cities. Finally,
AFIA [36] supports getting the top-k frequent keywords on real-
time data within arbitrary spatial regions. However, AFIA [36]
techniques cannot be extended to discover trending items as they
keep only top-k frequent keywords in their index with no other in-
formation about any other keywords.

Spatial aggregate queries. There exists a lot of work in spatial
aggregate queries, e.g., see [24, 28, 34, 37, 42], where the main
focus is on building spatial index structures for disk-resident data.
Aggregate information is precomputed and maintained for easy re-
trieval. Data is infrequently updated, and hence it is acceptable
to use traditional spatial index structures without additional fea-
tures for high arrival rates. Unfortunately, none of these works can
support fast microblogs streams where high rates of digestion and
expiration are cores issues to address.

3. TRENDING MEASURES
Discovering trending items in microblogs currently depends on

keyword count [7, 31, 38], within a limited time period, due to
its simple computations that scales for massive numbers of mi-
croblogs. However, absolute count measure does not capture trend-

ing items effectively. In fact, it promotes keywords that are immor-
tally top frequent ones, e.g., job and love, while ignoring other key-
words that encounter considerable increasing count over time but
they are not among the top frequent ones. For example, consider
two keywords love and elections. Taking their count in hourly ba-
sis, over the last three hours, love has appeared 1000, 1150, and 950
times, while elections has appeared 200, 400, and 600 times. While
love is the most frequent, it is clear that elections is a trending one.
Yet, depending on absolute count does not capture this.

To overcome such limitation, trending items in the broader con-
text of streaming data [9, 21] are detected based on changes in items
behavior over time. This correctly detects rising keywords even if
they are not top frequent. However, existing popular measures usu-
ally include expensive computations, e.g., Singular Value Decom-
position, which is not efficient to maintain incrementally. In fact,
efficient incremental computations is crucial for microblogs envi-
ronments scalability, so that measures are not recomputed with new
arrivals of keywords that come in fast rates. For this, GeoTrend uses
an efficient and effective measure that is based on the keyword rate

of count increase over time. Count is easy to compute and main-
tain incrementally over time. So, measures that depend on count
are suitable to scale in microblogs environments. GeoTrend can
adapt several trending measures as long as each of them is based

on counting. Thus, GeoTrend is equipped with two measures: ei-
ther rate of count increase over time, or weighted count over recent

time period, introduced in Sections 3.1 and 3.2, respectively.

3.1 Rate of Increase Measure
Rate of count increase over time is measured using a trend

line slope that is computed based on the statistical linear regres-
sion [23]. Assume the last T time units are divided into N equal
time intervals, trend line slope gauges the increase in keyword
count in recent intervals compared to the oldest interval as follows:

Trendreg =
6
∑N−1

i=1 [i× (ci − c0)]

N(N + 1)(2N + 1)
(1)

Where N is the number of time intervals on which the count change
is gauged over the last T time units. ci, 0 ≤ i < N , is the count
at time interval i, and for all i > j, interval i is more recent than
interval j, so that c0 is the oldest counter and cN−1 is the most re-
cent counter. The detailed derivation of Equation 1 based on linear
regression slope is shown in [22].

The value of N controls the accuracy of discovering trending
items, as it represents the number of counts for which the regression
slope is calculated. The higher the value of N , the more accurate
the regression output. Setting N=T gives the highest accuracy, yet
it is the most expensive computationally and memory-wise. On
the contrary, setting N=2 is the least expensive option that divides
the whole T time units into two intervals, yet it provides the least
accuracy and might miss the actually rising keywords.
Trendreg measure that is presented in Equation 1 is also effi-

ciently maintainable in an incremental way on the arrival of new
appearances of the keyword. As a new keyword appearance in-
crease the count of just the most recent counter cN−1, the only
affected term in Trendreg would be (N − 1) × (cN−1 − c0).
With increasing cN−1 by one, this term is increased by (N − 1)

and thus the whole Trendreg value is increased by
6(N−1)

N(N+1)(2N+1)

(per Equation 1). In case N value is fixed through the processing
of a microblog stream, which is the realistic case, the increase in
Trendreg is a constant value that guarantees efficient incremental
maintenance of Trendreg in real-time environments.

3.2 Weighted Count Measure
As an extensible framework for any count-based aggregate mea-

sure, GeoTrend can employ weighted count over recent time period

to detect frequent keywords in different spatial regions. Assume the
last T time units are divided into N equal time intervals, keyword
weighted count can be measured as follows:

Trendfreq =

N−1
∑

i=0

ci × w
N−1−i

(2)

Where 0 < w ≤ 1 is a weighting parameter, and N is the number
of time intervals on which the count is gauged over the last T time
units. ci, 0 ≤ i < N , is the count at time interval i, and for all
i > j, interval i is more recent than interval j, so that c0 is the
oldest counter and cN−1 is the most recent counter.
Trendfreq is an exponentially weighted sum of the N counters,

where recent keyword counts have higher weight than older ones.
The weight of counter ci is wi, where i = (N − 1) is the most
recent time period that has the highest weight w0 = 1, regardless
the value of w. Smaller w gives lower weight to older counts, and
setting w to 1 gives equal weights to all counts and produces total
count over the last T time units. Similar to Trendreg , the value of
Trendfreq is also efficiently maintainable in an incremental way
where each new instance of a keyword simply adds one to both
cN−1 and Trendfreq values.

PreprocessedMicroblogs

Stream

AnswerUser

Microblogs

Query
Query

Processor
Top-k

Keywords

Region

Preprocessor

In-memory Spatial Index

Memory

Optimizer

Count

Aggregations

/Expirations

Trash

Expired

Data

Spilled

Data

Figure 1: GeoTrend Architecture.

For presentation simplicity, we assume to maintain a single
trending measure Trendreg (Equation 1). However, GeoTrend can
easily maintain more than one measure simultaneously to support
queries that get either recently rising keywords or absolute frequent
keywords using the same indexing data structures.

4. GeoTrend OVERVIEW
This section gives GeoTrend system architecture (Section 4.1)

and query formulation (Section 4.2).

4.1 System Architecture
Figure 1 gives the architecture of GeoTrend, which consists of

a preprocessor and three main components: an in-memory spatial
index structure that embeds count aggregation and expiration mod-
ule, a memory optimizer module, and a query processor module.

Preprocessor. Each incoming microblog first goes through a
preprocessor that extracts its timestamp, location, and keywords. A
microblog location could be the latitude and longitude coordinates
associated with the incoming microblog, if available, or be the lo-
cation associated with the user profile who issued the microblog.
Keywords are taken from hashtags associated with microblogs, if
present, or a random word of its text.

In-memory Index. The preprocessed microblogs are digested,
with high arrival rates, in the in-memory spatial index. The index
divides the space into multiple levels, each level consists of a set
of non-overlapping cells. Each index cell is equipped with efficient
count aggregation and expiration module that maintains trending
measures for the cell’s keywords over the last T time units. So,
any data that is older than T is expired and thrown out of memory.
Details of indexing are presented in Section 5.

Memory Optimizer. In case of scarce memory resources, the
memory optimizer module is invoked on all index cells to shed key-
words that are less likely to contribute to query answers. This saves
significant memory space while keep highly accurate queries. De-
tails of memory optimization are presented in Section 6.

Query Processor. Users post their queries to the query proces-

sor module, that efficiently exploits the index materialized aggre-
gate measures to return query answers to the users. Details of query
processing are presented in Section 7.

4.2 Query Formulation
GeoTrend users can post queries in the form "Find the most

trending keywords within a spatial region R". Internally, the sys-
tem beefs up this query with three parameters: (1) k; the number
of keywords to be returned, (2) a time span T ; where the trending
keywords should be posted within the last T time units, and (3) a
trending measure Trend; where the returned k keywords should be
highest ranked based on Trend. The query answer is then retrieved
based on precise point locations that are extracted from microblogs
through a pre-processing step (as highlighted in Section 4.1). For-
mally, GeoTrend query is defined as follows:

Query Definition: Given an arbitrary spatial region R, an inte-

ger k, a time span T time units, and a trending measure Trend,

GeoTrend finds k keywords such that: (1) The k keywords are

posted within the region R. (2) The k keywords are posted within

the last T time units. (3) The k keywords are the highest ranked

based on Trend measure among keywords that are posted within

R and T .

Our query limits its answer size to k as a natural consequence for
the plethora of keywords that come with microblogs, which calls to
selectively provide end users with the most relevant results (top-k
items) based on a certain ranking function. In fact, for the same
reason, all research efforts on microblogs are limiting their answer
size to k [7, 8, 29, 36, 41] to be useful for end users. Further-
more, our query retrieves its answer from only recent keywords
that are posted within the last T time units. This basically pro-
motes real-time nature of microblogs as a first-class citizen, which
is a distinguishing property for nowadays microblogging services,
to discover trends that are happening now on social media websites.

Upon initialization, a system administrator sets default values for
parameters k, T , and Trend. Users may still change the default
values of k and T , yet a query may have less performance if the
new values consider larger search space than the default values.
Optimizing the index performance for a pre-set parameter values
is a common design choice for major web services. For example,
Twitter gives the most recent k tweets to a user, where k=10, and
so in a keyword search result. If a user would like to get more than
k results, an extra query response time will be paid on demand.

5. GeoTrend INDEXING
GeoTrend employs a spatial pyramid index [3] to efficiently sup-

port queries in arbitrary spatial regions. The index divides the space
into multi-layers cells of different spatial granularity, where each
layer consists of a set of non-overlapping cells. For each incoming
microblog in real time, GeoTrend stores only its keywords and their
aggregate information rather than the microblog itself. To support
fast digestion of microblogs fast streams and low query latency, the
index is wholly resident in main-memory. However, main-memory
resources are limited and cannot accommodate microblogs aggre-
gate information for infinite time. Consequently, GeoTrend limits
its index contents to aggregate information of data that arrived only
in the last T time units, where old data that is outside the time span
T is expired. The length of window T depends on the available
memory resources, and typical values ranges from several hour to
few days of microblogs data. Indexing data of multiple days, that
have hundreds of millions of microblogs, is feasible as the index
does not store individual data records, but stores only aggregate in-
formation. Yet, such fast data rates impose scalability challenges
on both index insertion and expiration.

Insertion and expiration in microblogs environments are so chal-
lenging that residing in main-memory is not enough to scale for
microblogs high arrival rates. In particular, inserting keywords can
be performed in a traditional way [3], where each new keyword is
traversing the pyramid structure from its root cell passing by all
intermediate cells reaching the leaf cell that includes its point loca-
tion, to update cells contents. However, this is expensive given the
large number of keywords that arrive every second in microblogs.
To overcome this, GeoTrend employs a bulk insertion technique
that reduces the insertion cost so that it scales for digesting high
arrival rates. Similarly, expiring contents from GeoTrend index
should be ideally performed in similar rates like insertion so that
the index storage is stable in the system steady state. With large
number of cells and high data rates, proactive expiration that iter-
ates all index cells is very expensive and put significant overhead
on the index performance. To scale, GeoTrend employs a lazy ex-
piration that dramatically reduces the expiration cost.

The rest of the section presents the index structure (Section 5.1),
insertion (Section 5.2), and expiration (Section 5.3).

5.1 Index Structure
GeoTrend pyramid index structure is similar to a partial quad

tree and consists of a single root cell that represents the entire geo-
graphic area, level 1 partitions the space into four equi-area disjoint
cells, and so forth. As a partial tree structure, any index level could
have both leaf and intermediate cells. Figure 2 depicts an instance
of GeoTrend pyramid index. The figure shows a partial pyramid
that divides the space into three levels, where light gray cells in-
dicate intermediate cells, dark cells indicate leaf cells, and white
cells replace areas that are not actually maintained at that level.
The pyramid shape is determined based on the spatial distribution
of microblogs, through its index shaping process. Then, index real-

time operation is started in which the index continuously digests
incoming real-time data.

Index shaping. This is a one-time process that determines how
pyramid cells are divided to cover the space at different levels of
granularity. Areas with dense data distribution are divided into
smaller cells at deeper levels of the pyramid. On the contrary, ar-
eas with sparse data are divided into large cells that span only one
or two pyramid levels. To determine the pyramid shape, we insert
a sample of one day microblogs so that any cell stores maximum
number of microblogs, called cell’s Capacity. Capacity has been
chosen experimentally to range from 1000 to 2000 for fine granular
space division. Any cell contains more than Capacity is divided
further into four disjoint children cells. Once there are no more cell
divisions, all the individual microblogs are wiped and the shaping
process is concluded.

Index real-time operation. After its shaping, the index then
starts to continuously receive real-time data and stores only aggre-
gate information about incoming keywords rather than storing in-
dividual microblogs. Keyword aggregate information are stored in
both leaf and intermediate cells, so that information of the same
keyword are aggregated at different levels of spatial granularity.
Each index cell C, both leaf and non-leaf cells, stores four data
structures: a hash table H , a sorted list TopK, a rotating pointer p,
and a timestamp tlast, described below:

Hash table H . Each hash entry h ∈ H represents a single keyword
arrived to cell C in the last T time units. With each hash entry h,
we maintain the following:

1. A set of N counters, c0 to cN−1. The N counters divide
the time window T into a set of equal temporal intervals,
each of T

N
time units. Each counter maintains the number of

times that the hash entry h has appeared in its corresponding
T
N

time units. N is a system parameter that trades query ac-
curacy with computation efficiency as discussed in Section 3.
A larger value of N gives more accurate results, yet, it comes
with processing and storage overhead in maintaining more
counters.

2. A trending value Trend that is calculated based on hash en-
try h counters ci’s according to Equation 1.

List TopK. A sorted list of size k that maintains the top-k trending
keywords in this cell ranked based on the trending value Trend.
This is mainly to materialize the top-k answer of this cell to speed
up the query processing significantly.

Rotating pointer p. An integer value, in the range of 0 to (N −1),
that points to the current (i.e., most recent) counter. Thus, the most
recent counter is cp and the oldest counter is c(p−1)%N . Maintain-
ing p saves huge efforts in shifting the counter values and expiring
old counters every T

N
time units as discussed in Section 5.3.

TrendIn-memory

Spatial Index

92

#Refugee

#Summer

#CLS

c0 c1 c2 c3

p=3

Keywords

991

320

721

611

432

612

821

211

511

431

120

311

521 491 401 110

#HopeHick 312 281 211

-34.67

5.53

-2.63

Top-2 List

-18.10

#Refugee,-2.63

#CLS,5.53

-2.93

#CampRoc

T

#Tronc

#Summer

#ENGSLO

c0 c1 c2 c3

p=0

Keywords

42

12

22

92

72

70

81

43

55

65

38

63

0.03

-0.17

Trend

Top-2 List

#ENGSLO,-0.17

#Summer,0.03

T

-3.9

Intermediate cell contentsLeaf cell contents

Figure 2: GeoTrend index structure and cell contents.

Trend

#Brexit

#Summer

#ENGSLO

c0 c1 c2 c3

p=0

Keywords

42

12

1

92

72

0

81

43

0

65

38

0

0.03

-0.17

Top-2 List

#Summer,0.03

#Brexit,0.1

T

0.1

#Tronc 22 70 55 63 -3.9

(a) Index Insertion

Trend

★�✁e①✂✄

#Summer

★☎✆✝✞✟❖

c0 c1 c2 c3

p=3

Keywords

42

12

1

92

72

0

81

43

0

0

0

0

-10.33

-5.4

Top-2 List

#ENGSLO,-5.4

#Brexit,0.07

T

0.07

#Tronc 22 70 55 0 -7.2

(b) Index Expiration

Figure 3: Example of GeoTrend index insertion and expiration.

Timestamp tlast. The starting timestamp of the time interval of
the last expiration of C contents, where it is used to decide which
counters need to be expired in the following expiration cycle.

Figure 2 shows the contents of two index cells, one intermedi-
ate cell and one leaf cell. Both cells encloses exactly the same
data structures. The intermediate cell encounter more keyword ar-
rivals as it lies one level higher than the leaf cell, and so it covers
four times larger space area. The intermediate cell in Figure 2 con-
tains five hashtags, Summer, CLS, Refugee, CampRoc, and Hope-

Hick, each maintains four counters, N=4, and Trend value. It also
maintains a top-2 list sorted based on Trend value and an integer
pointer p=3. The leaf cell in Figure 2 contains three hashtags, Sum-

mer, ENGSLO, and Tronc, which also maintain four counters per
hashtag and a top-2 list. So, N and k values are fixed for all index
cells. Yet, its integer pointer p=0, which is a different value than the
other cell, as p value is updated on data expiration, which happens
at different time based on the cell, as discussed in Section 5.3.

5.2 Index Insertion
To reduce the index update cost and scale for digesting high ar-

rival rates, GeoTrend spatial index employs an efficient bulk inser-
tion technique that saves thousands of comparison operations for
keyword locations with spatial cell boundaries compared to the tra-
ditional way of inserting individual data records. The bulk insertion
process consists of two steps: (1) traversing pyramid index cells
with batches of keywords, and (2) while traversing, keywords are
inserted in their corresponding cells. Each step is described below.

Pyramid traversal. To reduce the pyramid traversal cost, the in-
coming keywords are buffered for t seconds before being inserted
in bulk. t represents a trade-off between the insertion overhead and
the delay between a microblog arrival and being available to search
results. Typical values of t is 1-2 seconds which is an acceptable
delay for real-time applications, and still sufficient to collect sev-
eral thousands of keywords to insert as a batch. For example, Twit-

ter receives around 12,000 tweets every 2 seconds, which is a rea-
sonable batch size that saves significant insertion cost. During the
buffering, a spatial minimum bounding rectangle (MBR) is main-
tained around point locations that are associated with the keywords.
We then traverse the pyramid levels through comparing the MBR
boundaries, instead of locations of individual microblogs, and in-
sert keywords in their corresponding cells.

The buffered keywords are first inserted in the root cell C, as
shown in cell insertion below. If C is not a leaf cell, the new key-
words are recursively inserted in C’s children cells. The new key-
words are divided based on their locations into four MBRs, each
MBR encloses a subset of the keywords that corresponds to one of
the children cells. Then, the same cell insertion process is applied
to each of the children cells. This leads to replicating all keywords
across all index levels. Such replication significantly reduces the
query latency for large query areas as it minimizes number of pro-
cessed cells for large query regions. On another hand, it increases
both index insertion time and memory consumption. Our exper-
iments study the impact of this replication on indexing overhead,
query processing, and memory consumption.

Cell insertion. On the arrival of new keywords to any cell C,
two steps are performed: (1) inserting the new keywords in the
hashtable C.H , and (2) updating the list C.TopK that maintains
C’s top-k keywords.

(1) Insertion in hashtable C.H . For each newly arrived key-
word, if there is no corresponding hash entry in the hashtable C.H ,
it is added to C.H with zero-initialized N counters and Trend

value. Then, regardless of whether there was a prior hash entry or
not, its most recent counter cp is incremented by one, which leads

its Trend value to be incremented by
6(N−1)

N(N+1)(2N+1)
(per Equa-

tion 1). Such constant increment to Trend value makes it very
efficient to maintain it incrementally as discussed in Section 3.

(2) Updating list C.TopK. For each new keyword inserted in
C.H , we check its Trend value to update C.TopK list, if needed,
so that it keeps maintaining the most trending k keywords in C. If
C.TopK has less than k keywords, the new keyword is inserted
in C.TopK directly. Once C.TopK has k keywords, the Trend

value of each new keyword is compared to Trendmin: the lowest
trending value in C.TopK. If the new keyword’s Trend is larger
than Trendmin, then it is inserted in C.TopK replacing the key-
word that corresponds to Trendmin.

Example: Figure 3(a) shows an example for index insertion. The
figure shows the content of the leaf cell shown in Figure 2 after in-
serting hashtag Brexit. As the hashtag is not previously present
in the cell, a new entry is added to the hashtable H with zero-
initialized counters. Then, the most recent counter, c0, is incre-
mented and Trend value is computed. As the new Trend value is
eligible for the top-2 list, the hashtag Brexit is inserted into the list.

5.3 Data Expiration
As GeoTrend index limits its contents to data of the last T time

units, it needs to periodically expire old data that is outside the
time span T . Thus, every T

N
time units, GeoTrend should hold

on inserting new data, iterate over all index cells, and expire the
old contents. However, this causes a significant interruption for
index real-time insertion and terribly reduces its digestion rates.
To prevent such interruption, GeoTrend skips such an expensive
expiration that expires all cells at once and employs a lazy expira-
tion technique that postpones expiring any index cell contents until:
(1) either an insertion occurs in this cell, or (2) a query comes to this
cell and hence an expiration is necessary so as not to consider old
data in the query answer. In both cases, expiration is necessary, and
performed, only in a single cell. This minimally interrupts real-time
insertion of GeoTrend index as it expires only one cell at a time,
and even consumes no index traversal cost as it piggybacks this
cost on either insertion or query processing. The effect of putting
this overhead on query response is minimal as expiration is per-
formed once and it pays off for all incoming queries. However,
this lazy expiration does not guarantee to expire all old contents. In
fact, cells that encounter neither insertions nor queries during the T
time units, e.g., low dense spatial regions like suburbs, would keep
very old contents. To overcome this, GeoTrend runs an additional
cleaning process, every T time units, that is very light and efficient,
so that it does not put an overhead on the index performance. Both
lazy expiration and periodic light cleaning are described below.

Lazy expiration. The contents of a cell C is expired only if
it is last expired more than a complete period of T

N
time units

ago. This is checked through C.tlast timestamp, that is the start-
ing timestamp of the period when C.H is last expired. If nc =
⌊

NOW−tlast

T/N

⌋

≥ 1, then the oldest nc counters need to be expired

and C.tlast is updated to be tlast=tlast+nc ×
T
N

. For presentation
simplicity, assumes nc=1, i.e., we expire only the oldest counter.
Then, the oldest counter c(p−1)%N should expire for all entries in
the hashtable C.H . This requires to set the value of c(p−1)%N to
zero, the value of pointer p is decremented to be p = (p− 1)%N ,
and the aggregate Trend value is recomputed. This is repeated nc

times when nc >1.
Maintaining p saves huge efforts in expiration. A traditional way

is to shift the counter values for each hash entry. With p, we keep
all counter values intact in their positions, and we just shift left (i.e.,
rotate) the value of p to replace the oldest expiring counter with a
new one. With this, it is always the case that counter cp represents
the current T

N
time units while counter c(p−1)%N represents the

oldest T
N

time units within the time span T .
Expiring the contents of hashtable C.H leads to invalidating the

contents of C.TopK list. Thus, C.TopK is recomputed with each
expiration of C.H contents. However, recomputing C.TopK list
comes with a very little overhead on the lazy expiration process.
While updating Trend value of each hash entry h, h is considered
as a potential candidate for C.TopK. If C.TopK has less than k

keywords, then h is inserted in C.TopK right away. If C.TopK
has k keywords, then h.Trend is compared to Trendmin: the
lowest trending value in C.TopK. If h.Trend is larger than
Trendmin, then it is inserted in C.TopK replacing the keyword
that corresponds to Trendmin. This repeats for each hash entry h

while its counters are updated.

Example: Figure 3(b) gives the contents of Figure 3(a) cell after
c0’s time period expires. In this case, (a) c0 is concluded, (b) the
oldest counter c3 would expire its old values and reset to zero for
all keywords, (c) the current pointer p becomes 3 as c3 becomes
the current active counter, and (d) Trend values are recomputed

1

10

10
2

10
3

10
4

10
5

10
6

1 10 10
2

10
3

10
4

10
5

10
6

N
u

m
b

e
r o

f Ke
y
w

o
rd

s

Keyword Frequency

Level-1
Level-2
Level-3
Level-4

Figure 4: Zipf distribution of Twitter keywords at different

spatial levels.

based on the new counter positions, where c2 is the oldest counter.
Meanwhile, the top-2 list is recomputed, based on the new Trend

values, to include Brexit and ENGSLO keywords.

Light cleaning. To account for sparse cells that rarely encounter
insertions and queries, and hence do not encounter any lazy ex-
piration, we run a light periodic cleaning. Every T time units, a
light expiration process is traversing all index cells. If the cell is
last expired older than T time units ago, then all cell contents are
wiped, otherwise, nothing is done. This process intentionally over-
look contents that is within the last T time units but still old enough
to be expired, i.e., older than T

N
time units ago. This is intended to

make it very light and efficient, while this contents are left for the
next lazy or periodic expiration in the cell. Although some cells
would contain unneeded contents for T time units, practically this
does not cause much overhead as they are very sparse cells. As the
light cleaning process wipe all cells contents, so no TopK update
is needed as TopK is wiped as well.

6. MEMORY OPTIMIZATION
As GeoTrend index is wholly resident in main-memory, it might

be the case that during peak times, e.g., local events in major
cities, available memory resources are limited to store the vast
amount of incoming data. In that case, some applications are will-
ing to remove a portion of memory contents that minimally affects
query accuracy, still sustain the system real-time performance in
peak times. Thus, GeoTrend employs a main-memory optimiza-
tion technique, called TrendMem that reduces memory footprint
significantly while keep query answers highly accurate. Trend-

Mem is based on a key observation that identifies a very interest-
ing spatial property for microblogs data. Such property is used
to smartly identify victim data to expel from main-memory with-
out sacrificing the query accuracy. In the rest of this section, Sec-
tion 6.1 presents the key observation and key idea behind Trend-

Mem. Then, Section 6.2 presents the details of TrendMem realiza-
tion inside GeoTrend index.

6.1 TrendMem Key Ideas
Key observation. Memory optimization in GeoTrend takes ad-

vantage of the observation that keywords popularity in microblogs
follows a Zipf distribution [11, 16, 32, 33], i.e., small percentage
of keywords appear with high frequency while the majority of key-
words appear very few times. Interestingly, Zipf distribution holds
not only for the entire microblogs collection over the entire world,
but also over those appearing in smaller spatial regions. We demon-
strate such interesting property in Figure 4 that shows the frequency

distribution of millions of real tweets at four different levels of spa-
tial granularity (Level 1 is the entire USA, Level 2 is the four quar-
ters of the USA, and so on). The figure shows that majority of
keywords in the Twitter stream are infrequent across all levels of
spatial granularity. Such majority of infrequent keywords consume
large percentage of the memory for their counters. Yet, our Trend-

Mem technique exploits the existence of such infrequent keywords
in a smart way to identify a subset of them that are very unlikely
to contribute to trending query answers. This subset is shed from
main-memory without hurting the accuracy of query answers.

Key idea. The key idea of our TrendMem technique that some
keywords with low frequency are unlikely to be trending ones.
Those keywords must satisfy a crucial condition: they must en-
counter low frequency in all sub-intervals of the last T time units.
This condition is sufficiently working as it judges count change
over time, which is the same as our trending measures (Section 3).
To elaborate, if we decide on a keyword importance only through
its total count during the last T time units, it might be the case
that a keyword encounter low total count, yet, its count is rising
significantly over time. Thus, we may end up removing trending
keywords from main-memory. However, if we ensure that the key-
word count is low in all the sub-interval of the last T time units,
then it is very unlikely that growth of count of this keyword makes
it a potential trending one. Then, it is unlikely to contribute to query
results and it can be removed without affecting the query accuracy.

6.2 TrendMem Technique
Main idea. In each cell C in GeoTrend index, TrendMem peri-

odically removes keywords that are ǫ-infrequent in all the N time

intervals of the last T time units. ǫ-infrequent keyword is a key-
word that has count less than ǫ · n, where ǫ is a small fraction, e.g.,
0.001, and n is the total number of keyword arrivals in cell C in the
corresponding time interval. For example, if C received total of ni

keyword arrivals during time interval i, 0 ≤ i ≤ (N − 1), then a
keyword W is considered ǫ-infrequent if its counter ci < ǫ ·ni, for
all 0 ≤ i ≤ (N − 1). Removing infrequent items from a cell C
is invoked every 1

ǫ
insertion cycles in C. This ensures to limit the

size of the hashtable C.H to O(1
ǫ
log(ǫ · n)) entries (inspired by

the same ideas presented in LossyCounting algorithm [30]). Also,
any keyword with total count > (ǫ · n) at any sub-interval of T
is guaranteed to be maintained. In fact, checking a keyword to
be infrequent in each of the N sub-intervals independently ensures
the consistency of the keyword infrequency along the whole time
window T and thus guarantees not to expel any possibly trending
keywords as discussed in Section 6.1. In addition, employing a
percentile threshold ǫ, which means keyword importance is identi-
fied based on a percentage of frequencies of its neighbor keywords
within the spatial locality. This guarantees that dense spatial areas
do not affect suburb areas and leads to maintain an accurate top-k
keyword list in each spatial locality. This makes TrendMem pro-
vides highly accurate query answers.

Impact on the index. To realize TrendMem inside GeoTrend in-
dex, two main operations are added to the index insertion: (1) peri-
odic cleaning of infrequent keywords inside each cell every 1

ǫ
inser-

tion cycles in the cell, and (2) checking on ǫ-infrequent keywords
in each sub-interval to decide on removing which keywords. To
this end, each index cell maintains an insertion cycles counter that
is initialized to zero. The counter is incremented by one with every
insertion in the cell. Once it reaches 1

ǫ
, the cleaning procedure is

triggered and the counter is reset to zero. The cleaning procedure
goes through a complete scan for all hash entries in hashtable H

and removes any keyword that is consistently infrequent during all
the N intervals. To check for the keyword infrequency in each sub-

interval independently, each cell maintains additional N counters
ni, 0 ≤ i ≤ (N − 1), that keep the total number of keyword ar-
rivals in each of the N sub-intervals of the time window T . Thus,
with each insertion to the cell, the counter of the current interval is
incremented by the number of new keywords. Using this, the infre-
quency check is then performed very cheap by comparing ǫ · ci of
each keyword counters to the counter ni, for all 0 ≤ i ≤ (N − 1).

A typical value of ǫ would be around 0.001, which is considered
large enough to limit the memory footprint without really affect-
ing the accuracy of the query result. Although introducing ǫ saves
significant storage, apparently, executing the periodic cleaning pro-
cedure incurs additional computational overhead during the index
insertion operation. Since we adjust the triggering of our cleaning
procedure to be every 1

ǫ
insertions, a lower value of ǫ implies less

frequent cleaning, i.e., less insertion overhead and less storage sav-
ing, but higher query accuracy. For example, when ǫ is 0.01, we run
the cleaning procedure every 100 insertions. Yet, when ǫ is 0.0001,
we perform the cleaning every 10,000 insertions, which is cheaper
in computation cost, achieves higher query accuracy, but consumes
more memory. Our experimental evaluation studies in details the
effect of varying ǫ on the insertion overhead, storage saving, and
query accuracy, showing that GeoTrend can provide a reasonable
compromise that achieves excellent performance for all them.

7. QUERY PROCESSING
This section discusses query processing in GeoTrend. As

GeoTrend index already materializes top-k items in each spatial
cell, processing top-k queries is simple, efficient, and provides low
response time. In fact, GeoTrend query processing depends on get-
ting top-k keywords in the query region R by manipulating only the
top-k lists that are maintained in the index cells that overlap with
R. Our hypothesis is that it is highly unlikely that a keyword that
did not make it to any of the top-k lists in any cell would make it to
the final answer. The main reason is that our trending measures are
additive (per Equations 1 and 2), which means the trending value
of a certain keyword W over an arbitrary region R equals the sum-
mation of W ’s trending values in all index cells that overlap with
R. Thus, top-k items within each cell have much better chances
to be the global top-k items in R. This hypothesis is supported
empirically by our experimental results, where the vast majority of
queries can get the true top-k trending keywords in R from the ones
that appear in any top-k list.

GeoTrend query processing is composed of two main steps. In
the first step, GeoTrend finds a set of pyramid index cells S that
cover the query spatial region R in a way that minimizes the num-
ber of cells in S while maximizes the coverage ratio with R. In the
second step, it finds the top-k keywords in R by aggregating the
values from only top-k lists that are maintained in S cells. Details
of the two steps are described below.

Step 1 takes the query spatial region R and the root cell of the
spatial pyramid index as input and outputs a set of cells S that com-
pletely cover R, such that: (a) the number of cells in S is minimal,
which reduces the aggregation cost in Step 2, and (b) the cells in S

have the highest overlap ratio with R, which maximizes the accu-
racy of the retrieved results. We define the overlap ratio between a
cell C and the query region R as the area of the part of C that is
inside R divided by the area of C, i.e., C∩R

C
. Starting at the pyra-

mid root cell, we recursively visit the children overlapping with R.
A cell C is added to S if one of the following two conditions is
satisfied: (1) C is a leaf cell, or (2) C is completely inside R, i.e.,
overlap ratio of 100%. In both cases, we know that C has the best
covering area which is the same coverage we can get from C’s chil-
dren. So, to minimize the number of cells in S, we just add C, and

 0

 5

 10

 15

 20

 25

 10 100 1000

M
e
m

o
ry

 U
s
a
g
e
 (G

B)

k

GT
GT-ε

AFIA
GRN-ε

(a) Memory usage vs. k

 0

 2

 4

 6

 8

 10

 12

 1e-006 0.0001 0.01

M
e

m
o

ry
 U

s
a

g
e

 (G
B)

ε

GT
GT-ε

AFIA
GRN-ε

(b) Memory usage vs. ǫ

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 1e-006 0.0001 0.01

Qu
e

ry
 A

c
c
u

ra
c
y
 (%)

ε

GT
GT-ε

GRN
GRN-ε

(c) Query accuracy

 0

 50

 100

 150

 200

 250

 1e-006 0.0001 0.01

A
rr

iv
a
l R

a
te

(K m
ic

ro
b
lo

g
/s
e
c
)

ε

GT
GT-ε

AFIA
GRN-ε

(d) Supported arrival rate

Figure 5: Impact of memory optimization module.

skip all its children. Otherwise, we visit children cells applying the
same procedure.

Step 2 takes the set of cells S from Step 1 as input and produces
the final answer of the top-k keywords that appear in S. In this
step, we only consider keywords that have appeared in at least one
top-k list of all the cells in S. Following the spirit of Fagin’s TA
algorithm [13], the main idea of this step is to employ a max-heap
priority queue, initiated by the top item in each list in S. The key of
the priority queue is the trending value. Then, we keep extracting
items from the queue one by one. For each extracted item Top,
we do the following: (1) We compute the total trending value of
Top as the sum of its values in all cells in S. (2) If the total value
of Top is among the highest k found so far, we update our final
answer accordingly. (3) We replace Top in the priority queue by
the next item in the top-k list of its cell, if any. This is repeated
until either exhausting all top-k lists in S or the maximum possible
total value for any remaining keyword is less than the kth entry in
the current final answer. This maximum value is upper bounded by
the summation of the existing keys in the max-heap.

8. EXPERIMENTAL EVALUATION
This section evaluates GeoTrend experimentally. We compare

GeoTrend with AFIA [36] and GARNET [22], which are the
state-of-the-art and the closest to our work in the literature. Our
AFIA implementation uses two spatial grid levels of granularity of
1km × 1km and 10km × 10km, and four levels of temporal res-
olution, hour, day, week, and month. GARNET [22] is primarily
proposed for queries of any generic context, where we instantiated
context as location to use a one-level spatial grid index of resolution
10km × 10km per cell. We use GARNET memory components
and limit our evaluation to its in-memory performance, which is
the main focus of GeoTrend queries and system components. With
our comparison to competitor systems, we also evaluate different
design choices and modules of GeoTrend, including memory op-
timization technique, replicating keywords across index level, and
materializing top-k list at indexing time.

The rest of this section organized as follow. Section 8.1 presents
experimental setup. Section 8.2 evaluates memory overhead of dif-
ferent alternatives and its effect on index scalability. Finally, Sec-
tion 8.3 evaluates query processing.

8.1 Experimental Setup
Our experiments are based on a real GeoTrend system prototype

implemented in C# as a multi-threaded server that uses latches for
concurrency control. GeoTrend is deployed on a server running
Windows Server 2012 on Intel 2.40GHZ Core i7 CPU with 64GB
RAM. We use 152 million geotagged tweets obtained from the
Twitter Firehose archive. The tweets are used to simulate an in-
coming stream of microblogs with high arrival rates. Each tweet is
associated with a point location (latitude and longitude). For key-
words, we use hashtags (if present) or select a random word from

the tweet text. For queries, we use a query log from Bing Mobile
containing actual point locations (latitudes and longitudes) of user
search queries on Bing. This query log is used to compose a default
query load of 1000 MBR queries (centered around the point loca-
tions) with different area sizes that range from 4mi2 to 400Kmi2,
containing 15% with large areas (40Kmi2 to 400Kmi2). Unless
mentioned otherwise, the default value of k is 100, N is 8 counters
per hash entry, T is 24 hours, and ǫ is 0.001.

All experimental results are collected during steady state after
running the system for at least T time units. All measurements
are done in real time, i.e., while the tweet stream is flowing. Our
main performance metrics are the supported microblogs arrival
rate, memory overhead, query latency, and query result accuracy.
Accuracy is calculated as the percentage of entries in the received
result that are included in the correct top-k answer computed with
infinite resources.

8.2 Memory Consumption
Figure 5 shows the memory usage of different techniques study-

ing the impact of memory optimization module on both index scal-
ability and query accuracy. We evaluate the GeoTrend pyramid in-
dex with and without employing the memory optimization module
(denoted as GT-ǫ and GT, respectively). We also compare with
AFIA [36] (denoted as AFIA) and GARNET [22] with and with-
out employing its ǫ memory cleaning process (denoted as GRN-ǫ

and GRN, respectively). GARNET ǫ-cleaning process is similar to
GeoTrend ǫ-cleaning.

Figures 5(a) and 5(b) depict the memory usage for different val-
ues of k and ǫ, respectively. For different values of k (Figure 5(a)),
only AFIA memory usage increase significantly while the rest of
technique encounter relatively stable memory usage. The high-
est AFIA memory usage (at k=1000) is around 24GB excluding
programming language overhead. Such large overhead comes for
two reasons. With increasing k, the number of items in archived
dynamic summaries are increasing significantly and hence it con-
sumes more memory. In addition, such dynamic summaries are
replicated in multi-resolution over both spatial and temporal di-
mensions per its index structure. This even amplifies the effect of
increasing k and encounter high memory consumption. Both GT-ǫ

and GRN-ǫ encounter nearly 40% of AFIA memory. Yet, GT-ǫ can
significantly improves this and consumes less than 10% of AFIA

memory. The amount of memory saving is actually changing with
different ǫ values as Figure 5(b) shows. This figure shows mem-
ory usage of GT-ǫ is reducing dramatically with increasing ǫ as
more keywords are removed from all index cells. However, GRN-ǫ

consumes relatively high memory due to the large number of cells
it maintain. Also, ǫ value does not have significant effect on its
memory overhead as its spatial cell size is much smaller, then each
cell receives much less keywords and so ǫ removes relatively stable
amount of keywords.

The effect of reducing memory overhead is shown in Figures 5(c)

 0.1

 1

 10

 100

 1000

 10000

 10 50 100

Qu
e

ry
 L

a
te

n
c
y
 (m

s
)

k

GT
GT-ε

GT-QT
GRN-ε

(a) Query Latency vs. k

 0
 5
 10
 15
 20
 25
 30
 35
 40

 0.004 0.04 0.4 4 40

Qu
e

ry
 L

a
te

n
c
y
 (m

s
)

R (K mi
2
)

GT
GT-ε
GT-QT

GRN-ε

(b) Query Latency vs. R

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 50 100

A
rr

iv
a

l R
a

te
(K m

ic
ro

b
lo

g
s
/s
e

c
)

k

GT
GT-ε

GT-QT
GRN-ε

(c) Supported Arrival Rate

 0

 2

 4

 6

 8

 10

 12

 10 50 100

M
e

m
o

ry
 U

s
a

g
e

 (G
B)

k

GT
GT-ε

GT-QT
GRN-ε

(d) Memory Overhead

Figure 6: Impact of keyword replication across pyramid index levels.

and 5(d) on query accuracy and supported arrival rates of incoming
microblogs. AFIA is not included in query accuracy as it support
only top-k frequent queries and cannot adapt our trending measure.
For different values of ǫ > 0.01, query accuracy exceeds 90% for
both GT-ǫ and GRN-ǫ. In Figure 5(d), GRN-ǫ supports the highest
arrival rate due to its simple index structure (one-level grid index)
while AFIA supports the lowest arrival rates due to its cell repli-
cation over both spatial and temporal dimensions. GeoTrend al-
ternatives come in the middle of both and still can support up to
50K microblog/second which is an order of magnitude higher than
current Twitter rate.

8.3 Query Processing
This section evaluates GeoTrend index design decisions that af-

fects query processing. Section 8.3.1 evaluates the effect of repli-
cating keywords across index levels. Section 8.3.2 evaluates the
effect of maintaining top-k list inside each index cell.

8.3.1 Keyword Replication

In this section, we evaluate the replication of keywords in all
pyramid index levels. To this end, we compare the pyramid index
with a partial quad-tree index [15] that has similar cell structure
to the pyramid, yet, keywords are maintained only in leaf cells (de-
noted as GT-QT). The two indexing structures favor different objec-
tives: (1) The pyramid index maintains keywords aggregates in all

leaf and non-leaf cells, increasing both memory and insertion over-
head, but its query processor accesses far fewer cells, from higher
levels, to compute the final answer. (2) The quad-tree index main-
tains keywords aggregates only in leaf cells, reducing both mem-
ory and insertion overhead, but increasing the query latency as the
query processor accesses many cells to compute the final answer.
The experiments results show that the quad-tree would not be able
to provide low query latency although it has much lower memory
and insertion overhead.

Figure 6 denotes the pyramid index, with and without ǫ-cleaning,
as GT and GT-ǫ, quad tree as GT-QT, and GARNET as GRN-ǫ, ex-
cluding AFIA from query evaluation due to its different aggregate
measure. Figures 6(a) and 6(b) show one to three orders of magni-
tude better query latency for GT and GT-ǫ than GT-QT and GRN-ǫ

with varying answer size k and query region area R, respectively.
GT and GT-ǫ consistently outperform both GT-QT and GRN-ǫ for
different k values. However, with changing values of area R, the
improvement ratio changes: For small values of R, all indexes have
almost the same average query latency as the number of processed
cells is similar or close. When R increases, GT and GT-ǫ use far
fewer cells than both GT-QT and GRN-ǫ, as they have a chance to
use larger non-leaf cells contained in R, and therefore they give
much lower query latency.

This lower query latency comes with the cost of higher insertion
overhead and larger memory footprint than GT-QT. Figures 6(c)

and 6(d) show that this is a favorable trade-off with affordable in-
dexing overhead and memory footprint. For different values of k,
GT and GT-ǫ still support up to an order of magnitude higher ar-
rival rate than Twitter rate. Furthermore, GT-ǫ incurs only around
three times memory overhead compared to GT-QT. On the contrary,
GRN-ǫ still encounter high memory footprint due to the large num-
ber of cells in a fine-divided grid index with high resolution. This
shows the effectiveness of GeoTrend design decisions to provide an
excellent compromise in both memory overhead and query latency.

8.3.2 Materializing Top-k Lists

The query answer can be computed either by using all keywords
within the cell, which are expected to be huge with many keywords,
or by exploiting only top-k items in each cell as introduced in Sec-
tion 7. We show that maintaining these lists reduces query latency
significantly at the cost of acceptable overhead to store and main-
tain the sorted lists while continuously inserting new keywords and
deleting old information and acceptable reduction in query accu-
racy. In this section we evaluate the effect of maintaining top-k lists
on query latency, query accuracy, and insertion overhead, exclud-
ing memory overhead effect as the storage of top-k is negligible
compared to the cell all keywords storage. The experimental re-
sults show two orders of magnitude improvement in query latency
with sublinear increase in insertion overhead.

Figure 7 compares GeoTrend (denoted as GT), AFIA (denoted as
AFIA), and GARNET (denoted as GRN), with and without main-
taining top-k lists (denoted as suffix K and NK, respectively). Note
that AFIA has only top-k option as this is the only maintained data
structure in its index cell. It is also excluded from query measures
as it support only top-k frequent queries and cannot adapt our trend-
ing measure. Figure 7(a) depicts the query latency of all alterna-
tives for different k values. We observe that maintaining the top-k
lists reduces query latency of GeoTrend alternatives from 850 msec
for all values of k to between 1 and 3 msec, which is two orders
of magnitude reduction. GRN query latency is consistently much
higher than GeoTrend for two reasons. First, the large number of
cells processed from its fine-divided grid index compared to cells
of high levels of GeoTrend index which is much smaller in number.
Such inefficient division for the space is a result for GRN generic
framework for any context, so it is not tailored for location queries
and thus cannot make maximum use of the spatial properties of the
data. Second, GRN computes its aggregate measures from differ-
ent temporal cells, as it is originally proposed and optimized for
arbitrary temporal periods, which increase the aggregation time.

Figure 7(b) shows that for k ≥ 100, aggregating from top-k lists
provides at least 90% accuracy, providing an empirical evidence
for the effectiveness of using top-k lists with an acceptable accu-
racy loss. Figures 7(c) show the overhead of maintaining the top-k
lists on index insertion. AFIA still encounter the lowest arrival
rate for the same reason detailed before. For GeoTrend and GAR-

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 50 100

Qu
e

ry
 L

a
te

n
c
y
 (m

s
)

k

GT-K
GT-NK

GRN-K
GRN-NK

(a) Query Latency

 0

 20

 40

 60

 80

 100

 10 100 1000

Qu
e

ry
 A

c
c
u

ra
c
y
 (%)

k

GT-K
GT-NK

GRN-K
GRN-NK

(b) Query Accuracy

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000

A
rr

iv
a

l R
a

te
(K m

ic
ro

b
lo

g
s
/s
e

c
)

k

GT-K
GT-NK

GRN-NK

GRN-K
AFIA-K

(c) Supported Arrival Rate

Figure 7: Impact of maintaining top-k lists.

NET, the significant reduction in query latency comes at the cost
of 50% reduction in the supported arrival rate. For the worst case
(k=1000) in Figure 7(c), GeoTrend index supports at least 40,000
microblog/sec which is seven times the current Twitter rate.

9. CONCLUSION
In this paper, we presented GeoTrend; a scalable system that

supports spatial trending queries on recent microblogs. GeoTrend

supports a variety of trending measures that suit different applica-
tions. It also supports queries on arbitrary spatial regions using
data that has recently arrived in the last T time units. For this, it
employs an efficient main-memory spatial index that digests and
expires data with high rates. In peak times, where main-memory is
overwhelmed, it employs a smart memory optimizer that sheds less
important data while keep highly accurate query answers. The ex-
perimental evaluation shows the scalability of GeoTrend to digest
up to 50K microblog/sec, while providing average query latency of
3 msec and sustaining high performance with limited memory.

10. REFERENCES
[1] H. Abdelhaq, C. Sengstock, and M. Gertz. EvenTweet: Online Localized Event

Detection from Twitter. In VLDB, 2013.

[2] A. Arasu and G. S. Manku. Approximate Counts and Quantiles over Sliding
Windows. In PODS, 2004.

[3] W. G. Aref and H. Samet. Efficient Processing of Window Queries in The
Pyramid Data Structure. In PODS, 1990.

[4] Social media ’outstrips TV’ as news source for young people.
http://www.bbc.com/news/uk-36528256, 2016.

[5] After Boston Explosions, People Rush to Twitter for Breaking News.
http://www.latimes.com/business/technology/la-fi-tn-after-boston-explosions-
people-rush-to-twitter-for-breaking-news-20130415,0,3729783.story,
2013.

[6] C. Budak, D. Agrawal, and A. El Abbadi. Structural Trend Analysis for Online
Social Networks. PVLDB, 4(10):646–656, 2011.

[7] C. Budak, T. Georgiou, D. Agrawal, and A. E. Abbadi. GeoScope: Online
Detection of Geo-Correlated Information Trends in Social Networks. In VLDB,
2014.

[8] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird:
Real-Time Search at Twitter. In ICDE, 2012.

[9] Y. Chi, B. L. Tseng, and J. Tatemura. Eigen-Trend: Trend Analysis in the
Blogosphere Based on Singular Value Decompositions. In CIKM, pages 68–77,
2006.

[10] Sina Weibo, China Twitter, comes to rescue amid flooding in Beijing.
http://thenextweb.com/asia/2012/07/23/sina-weibo-chinas-twitter-comes-to-
rescue-amid-flooding-in-beijing/,
2012.

[11] E. Cunha, G. Magno, G. Comarela, V. Almeida, M. A. Gonçalves, and
F. Benevenuto. Analyzing the Dynamic Evolution of Hashtags on Twitter: a
Language-Based Approach. In Proceedings of the Workshop on Languages in

Social Media, pages 58–65, 2011.

[12] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining Stream Statistics
over Sliding Windows (extended abstract). In SODA, 2002.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for
Middleware. In PODS, pages 102–113, 2001.

[14] W. Feng, J. Han, J. Wang, C. Aggarwal, and J. Huang. STREAMCUBE:
Hierarchical Spatio-temporal Hashtag Clustering for Event Exploration Over
the Twitter Stream. In ICDE, 2015.

[15] R. A. Finkel and J. L. Bentley. Quad Trees: A Data Structure for Retrieval on
Composite Keys. ACTA, 4(1), 1974.

[16] H. Gao, J. Tang, and H. Liu. Exploring Social-Historical Ties on
Location-Based Social Networks. In The 6th Intl. AAAI Conf. on Weblogs and

Social Media, 2012.

[17] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Identifying Frequent Items in Sliding Windows over On-line Packet Streams. In
Internet Measurement Comference, 2003.

[18] Us department of health and human services disease tracking.
https://nowtrending.hhs.gov.

[19] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis.
Discovering Geographical Topics In The Twitter Stream. In WWW, 2012.

[20] Y. Ikawa, M. Enoki, and M. Tatsubori. Location Inference Using Microblog
Messages. In WWW, 2012.

[21] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying Representative Trends
in Massive Time Series Data Sets Using Sketches. In VLDB, pages 363–372,
2000.

[22] C. Jonathan, A. Magdy, M. Mokbel, and A. Jonathan. GARNET: A Holistic
System Approach for Trending Queries in Microblogs. In ICDE, 2016.

[23] J. F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 1, chapter 15,
pages 252–285. van Nostrand, 3rd edition, 1962.

[24] I. Lazaridis and S. Mehrotra. Progressive Approximate Aggregate Queries with
a Multi-Resolution Tree Structure. In SIGMOD, pages 401–412, 2001.

[25] L.-K. Lee and H. F. Ting. A Simpler and More Efficient Deterministic Scheme
for Finding Frequent Items over Sliding Windows. In PODS, 2006.

[26] G. Li, J. Hu, J. Feng, and K. Tan. Effective Location Identification from
Microblogs. In ICDE, 2014.

[27] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang. TEDAS: A Twitter-based
Event Detection and Analysis System. In ICDE, 2012.

[28] I. F. V. López, R. T. Snodgrass, and B. Moon. Spatiotemporal Aggregate
Computation: A Survey. TKDE, 17(2):271–286, 2005.

[29] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He. Mercury: A
Memory-Constrained Spatio-temporal Real-time Search on Microblogs. In
ICDE, 2014.

[30] G. S. Manku and R. Motwani. Approximate Frequency Counts over Data
Streams. In VLDB, 2002.

[31] M. Mathioudakis and N. Koudas. TwitterMonitor: Trend Detection over the
Twitter Stream. In SIGMOD, 2010.

[32] S. Nath, F. Lin, L. Ravindranath, , and J. Padhye. SmartAds: Bringing
Contextual Ads to Mobile Apps. In ACM MobiSys, 2013.

[33] K. Nguyen and D. A. Tran. An analysis of activities in Facebook. In IEEE

Consumer Communications and Networking Conference (CCNC), 2011.

[34] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Operations in
Spatial Data Warehouses. In SSTD, pages 443–459, 2001.

[35] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling.
TwitterStand: News in Tweets. In GIS, 2009.

[36] A. Skovsgaard, D. Sidlauskas, and C. S. Jensen. Scalable Top-k
Spatio-temporal Term Querying. In ICDE, pages 148–159, 2014.

[37] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-Temporal
Aggregation Using Sketches. In ICDE, pages 214–225, 2004.

[38] Trends 24. http://trends24.in.

[39] Twitter Location Trends.
https://support.twitter.com/articles/101125#Trend_Location.

[40] I. Weber and V. R. K. Garimella. Visualizing User-Defined, Discriminative
Geo-Temporal Twitter Activity. In ICWSM, 2014.

[41] L. Wu, W. Lin, X. Xiao, and Y. Xu. LSII: An Indexing Structure for Exact
Real-Time Search on Microblogs. In ICDE, 2013.

[42] D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient Aggregation over Objects
with Extent. In PODS, pages 121–132, 2002.

