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ABSTRACT
This paper presents Taghreed; a full-fledged system for effi-
cient and scalable querying, analyzing, and visualizing geo-
tagged microblogs, e.g., tweets. Taghreed supports arbitrary
queries on a large number (Billions) of microblogs that go
up to several months in the past. Taghreed consists of four
main components: (1) Indexer, (2) query engine, (3) re-
covery manager, and (4) visualizer. Taghreed indexer effi-
ciently digests incoming microblogs with high arrival rates
in light memory-resident indexes. When the memory be-
comes full, a flushing policy manager transfers the mem-
ory contents to disk indexes which are managing Billions of
microblogs for several months. On memory failure, the re-
covery manager restores the system status from replicated
copies for the main-memory content. Taghreed query en-
gine consists of two modules: a query optimizer and a query
processor. The query optimizer generates an optimal query
plan to be executed by the query processor through efficient
retrieval techniques to provide low query response, i.e., order
of milli-seconds. Taghreed visualizer allows end users to issue
a wide variety of spatio-temporal queries. Then, it graphi-
cally presents the answers and allows interactive exploration
through them. Taghreed is the first system that addresses
all these challenges collectively for microblogs data. In the
paper, each system component is described in detail.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS
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1. INTRODUCTION
Online social media services become very popular in the

last decade which has led to explosive growth in size of
microblogs data, e.g., tweets, Facebook comments, and
Foursquare check in’s. Everyday, 255+ Million active Twit-
ter users generate 500+ Million tweets [40, 42], while 1.23+
Billion Facebook users post 3.2+ Billion comments [13].
As user-generated data, microblogs form a stream of rich
data that carries different types of information including
text, location information, and users information. More-
over, microblogs textual content is rich with user updates on
real-time events, interesting keywords/hashtags, news items,
opinions/reviews, hyperlinks, images, and videos. Conse-
quently, this richness in data enables new queries and ap-
plications on microblogs that were not applicable earlier on
traditional data streams. For example, performing keyword
search on streaming data [7, 9, 45, 46] is now of interest for
the first time. Other examples for newly emerging applica-
tions on microblogs includes event detection [1, 20, 27, 36,
44], news extraction [6, 34, 37], spatial search [24], and anal-
ysis [17, 38, 39]. Such kinds of applications are so important
that major IT companies spend millions of dollars to enable
them to their customers [3, 41].

Although the research community has addressed a large
set of newly emerging queries and applications on mi-
croblogs [1, 7, 12, 21, 24, 26, 27, 34, 37, 45], none of those
provides a full fledged system that facilitates microblogs
data management to support arbitrary queries on multiple
attributes. Only TweeQL [26, 27] is proposed as a gen-
eral query language for Twitter data, a prime example of
microblogs. However, TweeQL just provides a wrapping in-
terface for Twitter streaming APIs without addressing the
actual data management issues for microblogs big data. On
the other hand, microblogs can be considered a kind of semi-
structured data that could be managed with systems like As-
terixDB [2]; a distributed system that supports interactive
queries on big semi-structured data. However, AsterixDB is
not appropriate to handle microblogs in its streaming form
for two main reasons: (a) AsterixDB does not support di-
gesting and indexing fast streaming data in real-time, and
consequently (b) AsterixDB does not provide mechanisms
to manage data flushing for memory-resident data to disk
which is a must for managing a long history of microblogs
data. Moreover, none of this work addresses interactive vi-
sualization and analysis with end users.



In this paper, we present Taghreed; a full-fledged system
for efficient and scalable querying, analyzing, and visualiz-
ing geotagged microblogs. On the contrary to all other work
on microblogs, Taghreed system goals is to manage, query,
analyze, and visualize microblogs streaming data for long
periods that go up to several months. In addition, Taghreed
provides data management techniques that are able to sup-
port interactive query responses on different microblogs at-
tributes, promoting spatial, temporal, and keyword as first-
class attributes as they are involved in most of the impor-
tant queries and application of microblogs. The main tech-
nical challenges in Taghreed comes from three main sources:
(1) the large number of microblogs to be managed (order
of Billions), (2) the continuous arrival of new microblogs in
high rates (order of hundreds or thousands every second),
and (3) the new types of queries on the rich microblogs data
which cannot be supported by Data Stream Management
Systems (DSMS). Unlike the traditional streaming data, the
combination of fast-arriving large number of data items and
the queries on a rich set of attributes, e.g., spatial, tem-
poral, keyword, users, and language, requires Taghreed to
employ both real-time and disk-based efficient and scalable
data indexing to be able to digest real-time data and support
such queries interactively, i.e., the query answer is provided
instantly. Thus, Taghreed main components are: (1) Ef-
ficient and scalable data indexing, (2) efficient interactive
query processing, (3) low-overhead recovery management,
and (4) effective data visualization, where each of them faces
different technical challenges.
Indexer. Supporting indexing on microblogs data faces

three main challenges: (1) continuous digestion of real-
time microblogs, with high arrival rates, in main-memory,
(2) managing a large number of microblogs, order of Billions,
on disk, and (3) managing data flushing from main-memory
indexes to disk indexes so that the system response is not
hurt and the main-memory resources are efficiently utilized.
To address these challenges, Taghreed proposes a set of seg-
mented hierarchical indexes on spatial, temporal, and key-
word attributes of microblogs. In both main-memory and
disk, Taghreed employs two indexes: a keyword index and a
spatial index. Each index consists of temporally-partitioned
index segments, where each segment organizes its data based
on either spatial or keyword attributes, depending on the
index type. Based on the different challenges of indexing
real-time data and big historical data, the organization and
the employed data structure of main-memory and disk in-
dexes are different. Taghreed also adapts several flushing
policies to transfer data from main-memory to disk. The
flushing manager is mainly concerned with minimizing the
system overhead, e.g., disk access latency and main-memory
utilization, while keeping as much data as possible in main-
memory to reduce the query processing time. The details of
Taghreed indexing are presented in Section 4.
Query engine. Taghreed query engine is mainly con-

cerned with supporting a wide set of generic interactive
queries, i.e., low query response in order of milli-seconds,
on the large number of managed microblogs. By generic
queries we mean a framework that is not tailored to certain
predefined queries. Instead, it could be easily adapted to
support different types of queries with almost no loss in sys-
tem performance. To this end, Taghreed has chosen to sup-
port efficient retrieval of individual microblogs based on the
main querying attributes which are the spatial, temporal,

and keyword attributes. In other words, Taghreed can get
a set of microblogs that lie within certain spatio-temporal
range and satisfy certain keyword expression very fast. Us-
ing these individual microblogs, other types of filtering, e.g.,
based on users, and aggregation, e.g., frequent keywords,
are performed with efficient distributed data scanners. To
accomplish low query responses, the query engine consists
of two main modules: (1) A query optimizer, whose main
task is to generate an optimal query plan, to hit the sys-
tem indexes, based on different cost models. (2) A query

processor, that performs effective pruning through the sys-
tem indexes to efficiently retrieve the data of interest with
minimal system overhead. Then, it employs efficient dis-
tributed data scanners to answer more complex or extended
queries that involve attributes other than spatial, tempo-
ral, and keywords. The details of Taghreed query engine are
presented in Section 5.

Recovery manager. With hours and even days of data
managed in the main-memory, Taghreed provides a recovery
management module that is able to restore the system sta-
tus on memory failures. For social media application, the
recovery manager is required to be of low-overhead so that
it does not hurt the continuous real-time operations. Thus,
Taghreed employs a memory-based triple-redundancy model
that replicates the main-memory contents three time. On
memory failure, the recovery manager uses the replicated
copies to restore the system status without interrupting the
real-time operations. The details of Taghreed recovery man-
ager are presented in Section 6.

Visualizer. With all the technical details of manag-
ing and querying microblogs data in the system back end,
Taghreed provides end-to-end solution with an interactive
front end that takes users queries through web-based inter-
faces, dispatches them to the query engine, and receive the
answers back to visualize. The visualization module com-
prises of an integrated interface that present answers of a
rich set of queries and also provides a comprehensive appli-
cations on microblogs data. The details of Taghreed visual-
izer are presented in Section 7.

2. RELATED WORK
Taghreed related work lies mostly in three areas, namely,

microblogs data processing, big data systems, and spatial-
keyword search.

Microblogs data processing. Microblogs research
mostly lies in two categories: (a) Microblogs data anal-
ysis where the main focus is to provide novel applications
and exploit user activities and opinions from microblogs con-
tents, e.g., semantic and sentiment analysis [5, 29, 31], de-
cision making [8], news extraction [37], event and trend de-
tection [1, 20, 27, 36], understanding the characteristics of
microblog posts and search queries [21, 35], microblogs rank-
ing [12, 43], and recommending users to follow or news to
read [15, 34]. (b) Microblogs data management where
the main focus is to provide infrastructure to handle mi-
croblogs data, e.g., logging [19], indexing [7, 9, 24, 45, 46],
and query languages [26]. Taghreed lies in the second cat-
egory. Distinguishing itself from all existing data manage-
ment work on microblogs, Taghreed is the first system to:
(1) Combine keyword search with spatio-temporal search on
microblogs providing all the needed indexing, query opti-
mization, and processing infrastructure techniques. (2) Pro-
vide flexible querying framework on other microblogs at-



tribute, e.g., users and language. (3) Handle microblogs
data in both real-time and historical forms so that queries
are enabled on a long history of data that goes up to several
months.
Big data systems. Microblogs data is a kind of big data

that is flowing in a streaming form in large numbers and
with high arrival rates. Although there exists a lot of work
on spatio-temporal queries over streaming data [18, 22, 30,
32, 47], the main focus of such work is on continuous queries
over moving objects. In such case, a query is registered first,
then its answer is composed over time from the incoming
data stream. On the contrary, queries answers on microblogs
are retrieved from existing stored objects that have arrived
prior to issuing the query. On another hand, AsterixDB [2]
and Map-D [25] are systems that support interactive queries
on big data. However, none of them tackle the problem of
real-time digestion and indexing of data with high arrival
rates. They are mostly designed for managing big batches
of stored data. Consequently, they lack the ability to handle
the microblogs in its mixed form where the data comes as
a fast stream, managed as hot recent data for a while, and
then being flushed to a large data repository on disk.
Spatial-keyword search. Spatial keyword queries of

different types are well studied on web documents and web
spatial objects (see the survey [10]). However, all these tech-
niques are not suitable for handling microblogs for two rea-
sons: (1) none of these techniques consider the temporal
dimension which is a must in all microblogs queries, and
(2) these techniques mostly use offline disk-based data parti-
tioning indexing which cannot scale to support the dynamic
nature and arrival rates of microblogs [7, 10].

3. SYSTEM OVERVIEW
This section gives an overview of Taghreed design princi-

ples, system architecture, and supported queries.

3.1 Design Principles
Taghreed is designed based on two principles:
1. Dominance of the temporal, spatial, and key-

word attributes: All microblogs queries have to be
temporal, and then it mostly involves spatial and key-
word dimensions. The real-time nature of microblogs
data makes the temporal dimension a must to be in-
cluded in all queries (see [7]). In addition, the richest
attributes in microblogs are the spatial and keywords
attributes which are involved in most of the queries and
applications (see [1, 7, 12, 21, 24, 26, 27, 34, 37, 45]).
Consequently, Taghreed promotes the three attributes,
spatial, temporal, and keyword, as first-class citizens
and supports native system indexes on them. In ad-
dition to their importance, indexing spatial, temporal,
and keyword attributes provides effective pruning for
the microblogs search space.

2. Importance of queries on recent microblogs:
Due to the rich real-time content of microblogs, e.g.,
real-time updates on ongoing events [6, 11], impor-
tant queries are posted on recent microblogs data,
i.e., data of the last few seconds, minutes, or hours.
This triggers all the work on handling queries on real-
time microblogs ( see [1, 7, 23, 24, 28, 31, 34, 36,
45]). Consequently, Taghreed is designed to support
queries on real-time microblogs with all its subsequent
requirements of main-memory indexing, recovery man-
agement, and flushing management.
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Figure 1: Taghreed Architecture.

3.2 System Architecture
Figure 1 gives Taghreed system architecture that consists

of four main components, namely, indexer, query engine,
recovery manager, and visualizer. We briefly introduce each
of them below.

Indexer. Taghreed indexer is the main component that
is responsible for handling the microblogs data. First, the
real-time microblogs are going through a preprocessor that
performs location and keyword extraction. Then, the real-
time microblogs are continuously digested in main-memory
indexes, on spatial, temporal, and keywords attributes, that
provide high digestion rates and effective pruning for the
search space. When the memory becomes full, a subset of
the main-memory microblogs are selected, through a flush-
ing policy module, to be consolidated into scalable disk in-
dexes that are able to manage a large number of microblogs
for long periods, go up to several months. The details of
Taghreed indexer are presented in Section 4.

Query Engine. Taghreed query engine consists of two
main sub-components: a query optimizer and a query pro-
cessor. The query optimizer takes a user query from the
system front end dispatcher, generates an optimized query
plan to hit the system indexes efficiently, and provides the
query plan to the query processor to execute. The query
processor takes the query plan, executes it, and feed the
query answer to the system front end to be visualize to end
users. The details of Taghreed query engine are presented in
Section 5.

Recovery Manager. With dense main-memory con-
tents, Taghreed accounts for memory failures by incorpo-
rating a recovery manager component. The recovery man-
ager employs a triple-redundancy model for backing up the
main-memory contents. When the memory fails, the backup
copies are used to restore the system status. The details of
Taghreed recovery manager are presented in Section 6.

Visualizer. As a full-fledged system that provides end-
to-end solution for querying microblogs, Taghreed provides
an interactive visualizer component that interacts with end
users. Taghreed is among few data management systems
that take into account the end user perspective in its design.
Such design strategy is very important for designing social
media applications as the user experience plays a vital role
in application usability and popularity [16]. The visualizer
allows the user to issue queries, dispatches them to the query
engine, and receive the answers to present them to end users
in graphical form. It provides Taghreed users with a rich set
of interactive queries which are presented in an integrated
interface. The details of Taghreed visualizer are presented in
Section 7.



3.3 Supported Queries
Taghreed supports any query on microblogs that involves

the spatial, temporal, and keyword attributes. The tem-
poral dimension is mandatory while spatial and keyword
dimensions are optional. The queries are answered by fil-
tering the search space through hitting the system indexes
for the three main attributes. If the query involves other
attributes, Taghreed employs generic distributed data scan-
ners that refine the answer based on the other attributes.
This enables Taghreed to support generic queries that sat-
isfy a wide variety of applications. Section 7 presents a rich
sample of queries that can be supported by Taghreed system
along with their interactive visual interfaces to end users.

4. INDEXER
The plethora of microblogs data combined with the newly

motivated queries on the rich stream, e.g., spatial-keyword
search, makes data indexing an essential part to manage and
query microblogs data. In other words, microblogs come in
very large numbers, i.e., Millions and even Billions, so that
interactive queries—where the answer is needed instantly—
cannot be answered efficiently by just scanning the big data.
Thus, supporting indexing on microblogs is essential for ef-
ficient retrieval of microblogs data that is needed to answer
the interactive queries. Next in this section, we will dis-
cuss the selection of attributes to be indexed along with the
organization and the details of the indexes.
As a user-generated data, microblogs are rich data that

contains several attributes to post queries on, e.g., times-
tamp, location, keywords, user attributes, and language. Al-
though Taghreed goal is to provide a framework to answer
arbitrary queries on microblogs where more queries can be
supported with minimal performance loss, it is not practical
from a system point of view to support a separate index on
each of microblogs attribute. Thus, Taghreed has chosen to
provide indexes on the most effective attributes to be in-
dexed and perform efficient distributed scanning for other
attributes if involved in any of the queries. The effective
attributes to be indexed are chosen based on two factors:
(1) the attributes that are involved in most of the impor-
tant queries on microblogs, (2) the attributes whose a wide
domain of values, i.e., can take a large number of distinct
values, and hence would provide the most effective pruning
for the microblogs search space. An example of an attribute
that has limited domain of values is the language attribute.
The language attribute in Twitter data has a domain of only
56 values. If language attribute is indexed, that means that
all of the incoming microblogs, that are Billions, will be di-
vided into at most of fifty six chunks where each of them
will be huge to search within. Thus, the language attribute
will not provide very effective pruning for Billions of mi-
croblogs. Based on these two factors, Taghreed has chosen
to support indexes for spatial, temporal, and keywords at-
tributes. From one hand, most of microblogs queries and
applications in the literature involve these three attributes.
On the other hand, the domains of values of these attributes
are wide enough to provide effective pruning for the search
space so that the number of processed microblogs to answer
certain query is minimized.
As a fast stream that comes with rapidly increasing high

arrival rates, microblogs real-time digestion must be in light
main-memory indexes that is able to cope with the in-
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Figure 2: Taghreed In-memory Segmented Index.

creasing arrival rates (Twitter rate in October 2013 was
5,200 tweet/second compared to 4,000 tweet/second in April
2012 [42]). In addition, keeping the most recent data in
main-memory speeds up the query responses as most of the
real-world queries access the most recent data [7]. On the
other hand, Taghreed would not be able to manage Billions of
microblogs, for several months, in main-memory due to the
scarcity of this resource. Consequently, Taghreed indexing
would include both main-memory and disk-resident indexes.
As Figure 1 shows, the streaming microblogs are handled
by a real-time preprocessor for keyword and location ex-
traction. Then, the main-memory indexes would digest the
preprocessed microblogs in real-time with high arrival rates.
When the memory becomes full, a flushing manager would
manage to transfer main-memory contents to the disk in-
dexes. Disk indexes are then responsible to manage a very
large number of microblogs for several months.

In the rest of this section we describe Taghreed indexer.
First, we describe the main-memory indexing of real-time
microblogs in Section 4.1. Second, we describe the disk-
based indexing in Section 4.2. Finally, the flushing manage-
ment from main-memory to disk is discussed in Section 4.3.

4.1 Main-memory Indexing
Taghreed provides light-weight in-memory indexes that

employ efficient index update techniques to be able to digest
high arrival rates of microblogs in real-time. The indexes are
supported on the spatial, temporal, and keywords attributes.
In this section, we describe index structure and organization.
We also discuss the real-time digestion through efficient in-
dex update operations.

Index organization. Figure 2 shows the organization
of Taghreed in-memory indexes. Taghreed employs two seg-
mented indexes in the main-memory: a keyword index and a
spatial index. Both of them are temporally partitioned into
successive disjoint index segments. Each segment indexes
the data of T hours, where T is a parameter to be opti-
mized by the flushing manager (see Section 4.3). The newly
incoming microblogs are digested in the most recent segment
(Segment 1 in Figure 2). Once the segment spans T hours
of data, the segment is concluded and a new empty segment
is introduced to digest the new data. Index segmentation
has two main merits: (a) new microblogs are digested in a
smaller index, which is the most recent segment, and hence
becomes more efficient, and (b) it eases flushing data from



memory to disk under certain flushing policies.
Real-time digestion. The keyword index segment is an

inverted index that organizes the data in a light hashtable.
The hastable maps a single keyword (the key) to a list of
microblogs that contain the keyword. The list of microblogs
of each keyword is ordered reverse-chronologically so that
the insertion is always in the list front item in O(1). Thus,
the whole insertion in the index is O(1). With such opti-
mization, Taghreed keyword segments are able to digest up
to 32,000 microblog/second.
The spatial index segment is a pyramid index structure [4]

(similar to a partial quad tree [14]) that employs efficient
update and structuring techniques to provide a light-weight
spatial indexing. The pyramid index is a space-partitioning
tree of cells, where each cell has either zero or four chil-
dren cells, and sibling cells cover equal spatial areas. Unlike
data-partitioning indexes, e.g., R-tree, pyramid index could
support high digestion rates due to the low restructuring
overhead with newly incoming data. Each cell has a ca-
pacity of certain number of microblogs, where the capacity
is a system parameter. The microblogs inside each cell are
stored in a reversed chronological order. When a cell en-
counters microblogs that exceeds its capacity, it is split into
four children cells if and only if the microblogs lie in at least
two different quarters of the cell. This excludes redundant
split operations for highly skewed data. Similarly, to elimi-
nate redundant merge operations, underutilized cells are not
merged immediately. Instead, four siblings are merged, in
lazy basis, only when three of them are completely empty.
Such lazy split and merge operations saves 90% of the struc-
turing operations in the highly dynamic microblogs envi-
ronment. Also the index structure stabilizes relatively fast
which decrease the structuring overhead to its minimal lev-
els. To update the index efficiently, microblogs are inserted
in batches, periodically each t seconds, instead of travers-
ing the pyramid levels for each individual microblog. Typi-
cal values of t are 1-2 seconds so that several thousands of
microblogs are inserted in each batch. Then, the pyramid
levels are traversed once with minimum bounding rectangle
of all the microblogs in the batch. This saves thousands of
comparison operation in each insertion cycle. With these op-
timization, Taghreed spatial segments are able to digest up
to 32,000 microblog/second. More details on the real-time
spatial indexing in Taghreed can be reviewed in [24].
All the deletion operation from the in-memory indexes are

handled by Taghreed flushing manager. Thus, the details
of deletion from the main-memory indexes are explained in
Section 4.3.

4.2 Disk-based Indexing
To be able to support a large number of microblogs data

for long periods, that go up to several months, Taghreed

supports disk indexes to manage the microblogs that are ex-
pelled from the main-memory. Similar to the main-memory
indexes, disk indexes are supported on spatial, temporal,
and keywords attributes. However, the disk indexes orga-
nization and structure are different from the main-memory
ones. In this section, we describe the index organization,
structure, and update operations.
Index organization. Taghreed employs two disk indexes:

a keyword index and a spatial index. Figure 3 shows the
organization of Taghreed disk spatial index, which is simi-
lar to the organization of the keyword index as well. Each
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of both indexes is organized in temporally partitioned seg-
ments. The temporal segments are replicated in a hierarchy
of three levels, namely, daily segments, weekly segments,
and monthly segments. The daily segments level stores the
data of each calendar day in a separate segment. The weekly
segments level consolidates the data in each successive seven
daily segments that forms data for one calendar week in a
single weekly segment. Again, the monthly segments level
consolidates data of each successive four weekly segments in
a single segment that manages the data of a whole calen-
dar month. The main reason behind replicating the indexed
data on three temporal levels is to minimize the number of
accessed index segments while processing queries for differ-
ent temporal periods. For example, for an incoming query
asking about data of two months, if only daily segments
are stored, then the query processor would need to access
sixty indexes to answer the query. On the contrary to the
described setting, the query processor would need to ac-
cess only two indexes of the two months time horizon of the
query. This significantly reduces the query processing time
so that Taghreed is able to support queries on relatively long
periods.

Index structure and update. Taghreed disk keyword
index segments structure are inverted indexes while spatial
index segments are R+-trees. Unlike pyramid structure, R+-
tree is disk-friendly where tree nodes are disk pages. At any
point of time, only a single daily segment is active to absorb
the expelled microblogs from the main-memory. Once a one
full day passes, the current active daily segment is concluded
and a new empty segment is introduced to absorb the next
incoming data. Upon concluding seven successive daily seg-
ments, a weekly segment is created in the background to
merged the data of the whole week in a single index. The
same repeats for monthly segments upon creating four suc-
cessive weekly segments.

Updating the disk indexes is performed in isolation from
the employed flushing policy (see Section 4.3 for flushing



policies details). Regardless the flushing policy, disk indexes
are always temporally disjoint from the main-memory in-
dexes. In other words, whenever Taghreed inserts data in
the disk indexes, there exists a check point timestamp tcp
where all the data in the main-memory indexes are more
recent than tcp and all the data in disk-based indexes are
older than or equals tcp. Guaranteeing this, consolidating
data from main-memory keyword index into disk keyword
index is done very efficient through bucket-to-bucket map-
ping without bothering with deforming the temporal organi-
zation of the data. It is worth noting that mapping memory
buckets to disk buckets is inapplicable for the spatial index
as the spatial structure that is employed in the main-memory
(the pyramid index) is space-partitioning structure which is
different than the data-partitioning structure (the R+ tree)
that is employed on disk. In the rest of the section, we ex-
plain the consolidation process from main-memory to disk
for both indexes, keyword and spatial.
To consolidate data from main-memory keyword index to

disk keyword index, we perform three steps. First, we check
if the new data would require creating a new daily segment.
For this, we check the oldest and the newest timestamps of
the data to be flushed, which are provided from the flushing
manager. If the two timestamps span two different days,
then a new daily segment is created. The second and third
steps are performed repeatedly for each keyword slot in the
index. Each slot contains a list of microblogs that are stored
in a reverse chronological order. The second step maps each
slot from the main-memory to the corresponding slot in the
active disk index segment, based on the keyword hash value.
The third step then merges the main-memory data list, L,
into the existing microblogs list on the disk. L data is first
checked if it spans two days so that the list could be divided
into two sublists and two index segments may be accessed.
After that, the list (sublist) of microblogs is merged into the
corresponding slot by prepending the list to the existing disk
list. This is O(1) operation due to the temporal order and
disjointness of the two lists. On the contrary, to consolidate
data from main-memory pyramid index to disk R+-tree in-
dex, the data are flushed in raw format, where batches of
microblogs are bulk loaded to the R+-tree without any map-
ping between the memory index partitions and disk index
partitions. Although this builds the index partitions from
scratch, it is necessary due to the difference between the
employed spatial structures. As R+-tree is disk-friendly, the
bulk loading flushing is efficient enough to handle the seg-
mented microblogs data.

4.3 Flushing Management
The main task of Taghreed flushing manager is to deter-

mine which microblogs should be flushed from the main-
memory indexes to disk indexes when the memory becomes
full. Although the task looks trivial for the first glance, it
highly affects the query performance [33] as it controls the
main-memory contents. The incoming queries to Taghreed

are answered from both main-memory and disk contents.
The more relevant data in main-memory, the less disk access
is needed to answer the queries, and then the lower query re-
sponse time. Thus, Taghreed flushing manager enables the
system administrator to employ one of multiple available
flushing policies. The flushing policy tries to compromise the
indexing and flushing overhead with the availability of rele-
vant data, to incoming queries, in the main-memory. In this

section, we describe three different flushing policies namely
Flush-All, Flush-Temporal, and Flush-Query-Based.
We also discuss the pros and cons of each of them.

Flush-All. The simplest flushing policy is to dump the
whole memory contents to the disk. This makes the main-
memory indexing very flexible as any number of segments
can be used without dramatic effect on the flushing process.
Also, it minimizes the disk access overhead as less number of
flushing operations are performed. Obviously, Flush-All pre-
serves the property of temporal disjointness between main-
memory contents and disk-contents as it always dump all the
old data to the disk before receiving new recent data in the
main-memory. However, Flush-All is not a recommended
flushing policy as it causes system slowdowns in terms of
query responses. Once the flushing operation is performed,
all the memory-indexes become empty and hence all the in-
coming queries are answered only from disk contents. This
causes a significant sudden slowdown which is an undesirable
effect from a system point of view.

Flush-Temporal. An alternative flushing policy is to
expel a certain portion of the oldest microblogs to empties
a room for the newly real-time incoming microblogs. To
reduce the flushing overhead, this policy requires the main-
memory indexing to partition the data into segments with
the same flushing unit. Referring to the main-memory in-
dex organization in Figure 2, the flushing unit is defined as
T hours, i.e., the oldest T hours of data are flushed periodi-
cally. In this policy, T would be a system parameter that is
adjusted by the system administrator based on the available
memory resources, the rate of incoming microblogs, and the
desired frequency of flushing. Flush-Temporal also preserves
the property of temporal disjointness between main-memory
contents and disk-contents as it always dump data of a cer-
tain period of time. This moves the temporal check point
tcp by exactly T hours without causing any kind of tempo-
ral overlap. In addition, Flush-Temporal addresses the lim-
itations of Flush-All and does not cause sudden significant
system slowdowns. This comes on the cost of more frequent
flushing operations which needs more frequent disk access
overhead. However, as a background process, flushing disk
access does not significantly affect the system performance.

Flush-Query-Based. A third policy is to expel the mi-
croblogs that are not relevant to the incoming queries. This
is important when it is required to optimize the system in-
dexes to support certain query, or set of queries, efficiently.
The idea is to figure out the characteristic of data that will
not satisfy the target query answer, and hence expel them.
For example, if the query asks for most recent k microblogs
that contains a certain keyword. Then, if the inverted index
slot of any keyword contains more than k microblogs, that
means all microblogs older than the kth one will not make it
to any query answer. Thus, those microblogs can be safely
expelled to empties a space for more relevant microblogs to
reside in the main-memory.

A fundamental problem in such kind of flushing policies
is how to preserve the property of the temporal disjointness
between main-memory contents and disk-contents. In this
case, the microblogs are not expelled on either a tempo-
ral criteria or from a contiguous temporal period. On the
contrary, they are expelled selectively based on the query
selection criteria. Thus, by default, there is no guarantee
about the temporal overlap between the memory and disk
contents. The proposed solution in Taghreed system is to



flush the data to an intermediate disk buffer rather than
flushing directly to the disk indexes. Then, the query-based
flushing policy would be combined with a temporal flush-
ing policy (with larger values of T ) so that after certain
point of time it is guaranteed that all main-memory data
are more recent than a certain timestamp. At this point,
all the data in the intermediate buffer could be merged to
the disk indexes without violating the temporal disjointness.
This kind of policies would help to reduce the disk access
overhead during the query processing. However, the inter-
mediate disk buffer introduce difficulties of maintaining the
buffer and handle the temporal overlap gray area which is
the buffer data. Currently, Taghreed does not implement
any query-based flushing policies. However, we have rigid
plans to adapt some of these policies for top-k queries to
provide a system administration flexibility to tune the sys-
tem performance for important queries. A detailed example
for query-based flushing for top-k queries can be reviewed in
our full paper on spatial search queries on microblogs [24].
It is worth noting that all the flushing operations does

not affect the data availability. The main-memory data stay
available to the incoming queries until the flushing opera-
tion is successfully completed. Then, the temporal check
point, tcp, is atomically updated to indicate the new tempo-
ral boundaries between the main-memory contents and the
disk contents. If concurrent queries have already read the
old tcp value, the system keeps track of them using a simple
pin counting technique before the flushing manager discards
the flushed main-memory contents.

5. QUERY ENGINE
The second major component in Taghreed is the query

engine. This component consists of two main modules: a
query optimizer and a query processor. The two modules
are discussed in Sections 5.1 and 5.2, respectively.

5.1 Query Optimizer
As Section 4 shows, Taghreed provides two types of in-

dexes in both main-memory and disk: keyword index and
spatial index. In addition, disk indexes data is replicated
on three temporal levels, daily, weekly, and monthly index
segments. Consequently, the query processor may have dif-
ferent ways to process the same query based on: (1) the or-
der of performing keyword or spatial filtering based on the
system indexes, and (2) the number of hit disk indexes. For
example, the query that asks about only spatial data of the
period from June 1 to June 9 can be answered from disk spa-
tial indexes in two different ways: (a) either accessing nine
daily index segments, or (b) accessing one weekly and two
daily index segments. Each of those is called a query plan.
The costs of different query plans are different. The main
task of the query optimizer is to generate a plan to execute
so that the estimated cost is minimal. In this section, we
discuss Taghreed query optimization. First, we discuss the
keyword/spatial index order selection of both main-memory
and disk. Then, we discuss the disk index segments selec-
tion over the three levels of temporal hierarchy. Finally, we
describe the whole query plan generation scenario.
Keyword/spatial index order selection. When a

query involves querying both spatial and keyword dimen-
sions, there are two ways to retrieve the microblogs within
the query scope: (1) either hit the keyword index and per-
form spatial filtering for the retrieved microblogs, or (2) hit

the spatial index and perform keyword filtering for the re-
trieved microblogs. To select one of the two plans, Taghreed
query optimizer employs a cost model for each scenario. It
calculates the estimated cost for each plan and select the
cheap one. For a query q, the costs of both plans are calcu-
lated based on the following equations:

Cost(keyword|q) = Akw × query keyword count (1)

Cost(spatial|q) = Asp × query area (2)

Equation 1 is used to estimate the cost of hitting the key-
word index given q while Equation 2 is used to estimate
the cost of hitting the spatial index given q. The cost of q
depends on its number of keywords and its spatial extent.
Taghreed calculates a single number for each index, namely,
Akw and Asp. Akw is the average number of microblogs
in a keyword slot. Asp is the average number of processed
microblogs per query area of one mile square. Using Akw

and Asp, the query optimizer is able to estimate the num-
ber of microblogs need to be processed to provide the query
answer. In main-memory, this estimates the amount of pro-
cessing needed. On disk, this estimates the number of pages
needed to be retrieved from disk. Next, we discuss the cal-
culation of Akw and Asp.

To calculate Akw, two numbers are maintained for each
keyword index: the total number of microblogs inserted so
far in the index TotalM , and the number of distinct key-
words inserted in the index Nkw. Akw can be then calcu-
lated as follows: Akw = TotalM

Nkw
. Both TotalM and Nkw are

easy to maintain during the index update operations with
almost no overhead. To calculate Asp, two numbers are
maintained for each spatial index: the summation of aver-
age numbers of microblogs processed under each incoming
query since the index is created Sumavg, and the number of
queries processed on the index Nq. Asp can be then calcu-

lated as follows: Asp =
Sumavg

Nq
. To maintain Sumavg, for

each query, Taghreed keeps track of the total number of pro-
cessed microblogs during the query. Then, this number is
divided by the query area (in miles square). Finally, the di-
vision result is added to Sumavg while Nq is incremented by
one. It is worth noting that Akw is changing over time with
the data keyword distribution while Asp is changing over
time with the query load spatial distribution. This dynamic
learning process of Akw and Asp continuously improves the
cost estimation and hence the query performance.

Disk index segments selection. As data on disk is
replicated on three levels of temporal hierarchy, there are
usually different ways to access data in certain temporal
range: from either a daily index, a weekly index, or a
monthly index. To estimate the cost of hitting each index
individually, we use Equations 1 and 2. However, there are
different valid combinations of indexes. Trying to minimize
the overhead of getting an optimal combination of indexes,
the query optimizer starts with the combination with the
minimum amount of data to be accessed. This means us-
ing weekly and monthly indexes only for whole weeks and
whole months, respectively, in the query temporal horizon.
For example, if the query temporal horizon spans May 29 to
July 9, then the starting combination would be three daily
indexes for last three days of May, one monthly index for
whole June, one weekly index for first week of July, and



two daily indexes for July 8 and 9. As these indexes do
not contain any data outside the query temporal boundary,
so, it contains the minimum amount of data to be accessed.
The next step is to figure out the best combination. The
assumption made here that going up in the index temporal
hierarchy would increase the cost. In our example, replacing
the three daily indexes of the last three days of May with one
weekly index of the last week of May would incur more cost
as more disk pages would be retrieved. Thus, the employed
heuristic is to go down in the index hierarchy to explore and
divide weekly and monthly indexes into finer granularity in-
dexes, i.e., days and weeks, respectively. Starting from the
first generated combination, the query optimizer tries to re-
place weekly indexes with seven daily indexes (and monthly
indexes with four weekly indexes). Checking the costs of this
combinations are not costly as it is just summation of seven
(four) cost parameters numbers, i.e., Akw and Asp. The
optimizer then selects the combination with the minimum
estimated cost.
Query plan generation. To generate a complete query

plan, first the optimizer checks the query temporal horizon
versus the memory/disk data temporal boundary, tcp, to de-
termine the temporal horizon of both memory and disk data,
namely, tm and td, respectively. Afterwards, a sub-plan is
generated for each of them separately. In main-memory,
the index segments that intersect with tm are determined.
Then, the index to be hit (either keyword or spatial) is se-
lected based on the above selection model. On disk, an index
combination is generated for both spatial and keyword index
hierarchies. Then, the cost of each combination is estimated
based on Equations 1 and 2 and the cheapest one is selected.

5.2 Query Processor
To provide flexible and efficient spatio-temporal query-

ing framework, Taghreed has chosen to employ indexes on
spatial, temporal, and keyword attributes and perform fil-
tering on all other attributes through efficient distributed
data scanners (see Section 4 for more details on indexing
attributes selection). Thus, Taghreed query processor has
two phases of answering any queries: (1) retrieving a candi-
date set of microblogs from a spatio-temporal or a keyword-
temporal space, depending on the query plan, and (2) per-
forming further processing through scanning on the candi-
date set, if needed. We discuss the two phases below.
Phase 1: Filtering on the spatio-temporal keyword

attributes. In this phase, the query processor retrieves
a list of candidate microblogs based on the query spatial,
temporal, and keyword parameters. This is performed by
executing the optimized query plan (that is generated as
described in Section 5.1) through hitting the system indexes.
Specifically, the query processor receives a query plan that
consists of an optimized set of indexes to be accessed. Each
of the indexes is queried to retrieve a list of microblogs that
satisfy the user query parameters. The candidate lists are
then fed to the second phase for further refinement. As the
indexes provide efficient pruning on the indexed attributes,
this phase prunes a huge amount of data.
Phase 2: Refinement on other attributes. The out-

put of the phase 1 would be lists of microblogs that require
further processing. This phase performs the remaining pro-
cessing, through extensive distributed data scanning, to pro-
vide the final query answer. The type of processing depends
on the query type and the query plan. If the spatial index is

hit in phase 1, then keyword filtering would be performed in
phase 2 and vice versa. Also, this scanning is piggybacked by
other operations on any other attributes, e.g., counting mi-
croblogs of distinct languages or count frequent keywords,
so that Taghreed can support a wide variety of queries on
different attributes. More details and examples about the
supported queries are presented in Section 7.

6. RECOVERY MANAGER
With hours and even days of data managed in main-

memory, Taghreed system accounts for any failures that may
lead to data loss. Taghreed employs a simple, yet effective,
triple-redundancy model where the main-memory data is
replicated three times over different machines. The core idea
of this model is similar to Hadoop redundancy model that
replicates the data three times. In this section, we briefly
describe the operation of the recovery management module
in Taghreed in both normal and failure cases.

When Taghreed is launched, all the main-memory mod-
ules, e.g., indexes and all data structures, are initiated on
three different machines. Each machine is fed with ex-
actly the same stream of microblogs, thus they form triple
identical copies of the main-memory system status. One
of the three machines is a master machine that launches
all the system components, i.e., memory-resident and disk-
resident components. The other two machines launch only
the memory-resident components. Any flushing from mem-
ory to disk in the master machine leads to throwing the data
out from the memory of the other two machines. On failure
of the master machine, the other two machines continue to
digest the real-time microblogs. Once the master machine is
recovered, the system memory image is copied to its main-
memory from one of the other machines. On the failure of
one of the secondary machines, the other machine data is
used to create an alternative for the failed machine. Repli-
cating the data three times significantly reduces the proba-
bility of having the three machines down simultaneously and
lose all the main-memory data.

Although Taghreed recovery management is not 100%
strict, it is acceptable for the relaxed social media appli-
cations that favor efficiency and scalability over strict con-
sistency and recovery management. Recovery management
through main-memory replication allow these applications
to scale without being limited with the overhead of disk-
based recovery interactions. In addition, its cost is almost
doubling or tripling the cost of the needed main-memory re-
sources which is affordable in the age when the memory cost
is becoming lower over time.

7. VISUALIZER
Taghreed is a full-fledged system that provides end-to-

end solution for microblogs users. Thus, Taghreed provides
an interactive visualizer component that interacts with end
users. Such component is very important for designing a
rich set of interactive queries along with their friendly user
interfaces. As a flexible querying framework for microblogs
data, Taghreed core data management components are able
to support a wide variety of queries efficiently which enables
such richness of query design. In this section, we present
an overview about the visualizer component and its integra-
tion with the back end components. Then, we present the
currently supported queries along with system interfaces to
visualize these queries to end users.

Visualizer overview. Taghreed interactive visualizer is



Figure 4: Taghreed Integrated Interface.

the system front end. It receives user queries through in-
teractive web-based user interfaces. The queries are then
dispatched to the query engine through Java-based function
APIs that allow fast interaction, eliminating the overhead of
exchanging data in standard formats, e.g., JSON or XML.
The query processor then sends back the queries answers so
that the visualizer present them to end users.
Supported queries. As discussed in Section 3.3,

Taghreed system is designed to provide a flexible framework
that is able to answer a wide variety of spatio-temporal
queries on different microblogs attributes. Thus, in this
part, we present only a sample of queries that are currently
supported. However, Taghreed is not limited to answer
the discussed queries and can be adapted to answer more
spatio-temporal keyword queries. Currently, Taghreed sup-
ports the following spatio-temporal queries on microblogs:

1. Keyword search. Within given spatial and temporal
ranges, find all microblogs that contain certain key-
words.

2. Top-k frequent keywords. Within given spatial
and temporal ranges, find the most frequent k key-
words, for a given integer k.

3. Top-k active users. Within given spatial and
temporal ranges, find the most k active users, for a
given integer k. Active users are defined as the users
who have posted the largest number of microblogs in
the query spatio-temporal range.

4. Top-k famous users. Within given spatial and
temporal ranges, find the most k famous users, for a
given integer k. Famous users are defined as the users
having the largest number of followers. The query
answer is selected from users whose home locations
lie in the query spatial range and have posted at least
one microblog during the query temporal range.

5. Daily aggregates. Within given spatial and tempo-
ral ranges, find the number of microblogs in each day.

6. Joint collective queries. Within given spatial and
temporal ranges, find the answer of all the previous
queries collectively.

7. Top-k used languages. Within given spatial and
temporal ranges, find the most k used languages, for a
given integer k.

It is worth noting that there are a variety of queries that
require scanning on attributes other than spatial, tempo-
ral, and keyword. All such scanning efforts are piggybacked
on phase 2 of the query processor (see Section 5.2). Also,
query 6 is an example of collective queries where multiple
queries share the processing power. This significantly re-
duces the amount of processing consumed per microblog.

System interfaces. Currently Taghreed provides two
user interfaces, one integrated interface to visualize queries 1
to 6 in addition to a separate interface that employs query 7
in a different way than just presenting a result of user
input query. Figure 4 shows the main integrated inter-
face. Through this interface, Taghreed user can input
a spatial range (through the map interface), a temporal
range (through the datepicker), and an optional keywords
(through text box). The system then dispatches the collec-
tive query 6 with default k=10 and present to the results
to the user in the five side boxes in Figure 4. Figure 5
shows another interface that employs query 7 to provide an
analysis for language usage in Arab Gulf area using Twitter
data. The query is issued for all the sub-regions, then the
output pie charts are displayed on the map interface. The
granularity of the results change at different zoom levels.

8. CONCLUSION
This paper presented Taghreed; a system for scal-

able querying and visualization of geotagged microblogs.
Taghreed is able to manage and query Billions of microblogs
through four main components. First, an indexer that han-
dles recent microblogs in segmented main-memory indexes
with their high arrival rates. When memory becomes full,
certain microblogs, selected through the flushing manager,



Figure 5: Language Distribution Query in Gulf
Area.

are expelled to disk-resident indexes. Second, a query en-
gine that provides query optimization and a query process-
ing on top of system indexes. Third, a recovery manager
that restores the system status in case of main-memory fail-
ure. Fourth, an interactive visualizer that interacts with
system end users. Taghreed provides a flexible framework
that can adapt several queries that involve spatial, tempo-
ral, and keyword attributes.
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