
Demonstration ofKite: A Scalable System for
Microblogs Data Management

Amr Magdy Mohamed F. Mokbel

Department of Computer Science and Engineering, University of Minnesota
{amr,mokbel}@cs.umn.edu

I. I NTRODUCTION

Motivated by its wide availability and richness, there have
been a plethora of recent work in querying, analyzing, and
visualizing microblogs (see [3] for a brief survey). Examples
of microblogs include tweets, online reviews, and comments
on news websites. Unfortunately, existing work in microblog
lacks data management tools that provide the necessary infras-
tructure to support efficient storage, indexing, and retrieval of
microblogs. Hence, researchers, developers, and practitioners
who need to process microblogs for their own purposes would
need to either build their own ad-hoc techniques [5] or use
any of existing general purpose big data engines, e.g., Spark, as
their backbone infrastructure [4]. Relying on ad-hoc techniques
does not scale neither in terms of data size nor in terms of
supporting various functionality. Meanwhile, existing general
purpose big data engines are built in a generic way to support
various data and query workloads and are not equipped to
support the specific characteristics of microblogs [2]. This
results in sub par performance when supporting microblogs.

Queries on microblogs have three main distinguishing
characteristics [2]: (1) All queries are temporal. For example, if
a user issued a query like “find tweets about Obama”, without
explicitly specifying a temporal interval, the underlyingsystem
will add a default temporal interval, e.g., last week, otherwise
we will get tweets from ten years ago, which is not practical.
(2) All queries are top-k. For any issued query, even if it
is not mentioned explicitly, the underlying system will adda
defaultk to limit the size of the answer to top-k according to a
specified or default ranking function, otherwise we will getan
excessive number of tweets for every query. If the user needs
more thank results, there is an option to retrieve the nextk mi-
croblogs according to the same ranking function. (3) Keyword
and spatial queries are very popular. A significantly high ratio
of queries posed on microblogs is either asking for microblogs
containing a certain keyword(s) or posted within a certain area.
Unfortunately, these distinguishing characteristic are not well
supported bygeneral purposesystems.

In this demonstration, we presentKite; a data management
system tailored to the specific needs of microblogs data and
query workloads.Kite aims to be the standard platform for
accessing microblogs, allowing other researchers, developers
and practitioners to focus on their data analysis tasks and/or
applications without worrying on the underlying management
and retrieval of microblogs data. Distinguished from our work
in [1], Kite is not tailored for a specific family of queries
on certain attributes, instead it could query arbitrary attributes
featuring a wide variety of queries and analysis capabilities.

Flushing Policy

HDFS

(Indexed)

Disk Index

Manager

In-memory

Indexes

Memory Index

Manager

Apache Ignite

Runtime

Query Operators

Query Processor

Stream

Connectors

Query

Language

Application

Developers

Insert Data Operation Pipeline
Query

Query

Compiled Programs

(Java)

Flush Data

Flushed Data

Create/Drop

Indexes

Microblog Streams

Data Batches

Insert Data

Disk Indexer

Memory Indexer

Flushing

Manager

Access Indexes

Fig. 1. Kite System Overview.

To this end,Kite is equipped with light spatial and keyword
in-memory index structures that can digest the high rate
of incoming microblogs. Then, the in-memory indexes are
equipped with a buffer manger policy that is specifically de-
signed to favor top-k and temporal queries. When the memory
is full, a portion of the data is evicted from memory and
goes to secondary storage index structures that are organized
temporally and built in the Hadoop Distributed File System
(HDFS) for both spatial and keyword queries. A scalable query
processor is exploiting these system infrastructures to provide
efficient querying on arbitrary microblogs attributes for both
in-memory and in-disk data. All system facilities are accessed
through a declarative SQL-like query language to ease building
applications on top of microblogs data.

We demonstrateKite with a system deployment on Ama-
zon EC2 and using real tweets. The demonstration scenarios
include showing the system capabilities in terms of scalability
and query performance, in addition to showing the easiness of
building rich applications on top ofKite.

II. SYSTEM OVERVIEW

Figure 1 depictsKite system overview. The system consists
of three main components, namely,Memory Indexer, Disk
Indexer, and Query Processor. The system components are
realized exploiting the in-memory infrastructure of Apache
Ignite system.Kite receives streams of microblogs that are
digested in main-memory indexes with high arrival rates.
Whenever the allocated memory budget of a certain index is
filled, its data is subject to flushing to a corresponding disk
index. Indexes are created and/or dropped by system users on

arbitrary attributes. Meanwhile, application developersexploit
the rich features ofKite through either Java programming
APIs, just like Hadoop or Spark, or SQL-like query language.
The different system components are briefly discussed below.

A. Memory Indexer

The Memory Indexercomponent organizes incoming mi-
croblogs in main-memory index structures to achieve: (i) scal-
able digestion of incoming data with high arrival rates, and
(ii) efficient in-memory query processing on recent data, which
represents a high fraction of incoming queries toKite. The
Memory IndexerencapsulatesStream Connectorsto digest
and pre-process the incoming data streams. Then, the resulted
batches of data are inserted in main-memory indexes that are
primarily organizedtemporally, as most recent ones are likely
to be queried more than older ones.Kite currently supports a
temporal inverted index for the keyword attribute, a temporal
partial quad tree for the spatial attribute, and a temporal
hash index that is used for other microblogs attributes, all
based on Apache Ignite in-memory structures. Each index
is allocated a memory budget. Once the index memory is
filled, a Flushing Mangerselects a subset of in-memory data
to spill to a corresponding disk-resident index. TheMemory
Index Managersynchronizes the workflow between the stream
connectors, the indexes, and the flushing manager.

B. Disk Indexer

Kite adds aDisk Indexercomponent to Apache Ignite, so
that it maintains a set of disk-resident index structures that
digest the flushed data from the main-memory ones. TheDisk
Index Managerreceives the flushed data from theFlushing
Manager and inserts them as one batch into corresponding
disk indexes in Hadoop Distributed File System (HDFS). Each
index consists of a set of HDFS blocks, where data in each
block is grouped based on the index key attribute. Similar to
in-memory disk structures, disk-based structures are append-
only temporal inverted index, temporal quad tree index, and
temporal hash index. Each disk index is organized in temporal
slices to efficiently support temporal queries that are dominant
in microblogs queries.

C. Query Processor

Kite query processor provides a set of generic operators
that can be combined to support arbitrary queries on arbi-
trary microblogs attributes. In specific, it providesSELECT,
PROJECT, JOIN, TEMPORAL, (TOP-K, ORDER BY), and
(COUNT, GROUP BY) operators. The first three operators are
similar to the ones supported in the standard SQL.TEMPORAL
determines the temporal horizon of the query, due to the im-
portance of temporal queries in microblogs. The combination
of TOP-K andORDER BY provides a native support for top-
k queries using different ranking functions. Currently,Kite
provides a set of pre-defined widely-used ranking functions
to rank the top-k results. However, the subsequent versions of
the system is planned to support user-defined ranking functions
for more flexibility for application developers. Finally, the
combination ofCOUNT and GROUP BY is used to submit
aggregate queries that find most frequent items for certain
attribute, e.g., find the most frequent keywords in Minneapolis.
Such count queries are very popular in nowadays microblogs
applications to find trendy topics among microblogs users.

Fig. 2. Twitter News Application.

III. D EMONSTRATION SCENARIOS

Kite system is demonstrated using a real system deploy-
ment on an Amazon EC2 cluster of 20 nodes and using a
rich dataset of real tweets. The dataset consists of ten billions
tweets collected through Twitter APIs along three years. The
tweets are fed to the system as a fast stream of 40,000
tweets/second. Our demonstration attendees would be able to
interact withKite trough one of the following scenarios.

Scenario 1: Admin Console. In this scenario, the demo
attendees would be able to administrate the system through a
console interface. The console facilitates connecting streams of
data, creating and dropping indexes, and logging information
about on-going system operations.

Scenario 2: Query Console. The console also allows the
demo attendees to post queries to the system using the SQL-
like query language. The console shows the results as well
as monitoring query performance through logging information
such as query time, touched index(es), and cluster nodes.

Scenario 3: Scalable Querying. In this scenario, we show
the scalability ofKite compared to existing systems in search-
ing tweets, both real-time and historical tweets. The demo
attendees would post queries to find tweets that satisfy certain
spatial or keyword predicates and see the query performance.

Scenario 4: Building Microblogs Applications. In this
scenario, the demo attendees would experience building a
quick application easily usingKite. The application is anews
aggregator(Figure 2) that displays and organizes tweets that
are published by news media, e.g., New York Times on Twitter.
The attendees will witness creating an index onuser id and
posting a query toKite to find news by source among 750
different news accounts on Twitter.

REFERENCES

[1] A. Magdy et. al. Demonstration of Taghreed: A System for Querying,
Analyzing, and Visualizing Geotagged Microblogs. InICDE, 2015.

[2] A. Magdy et. al. Towards a Microblogs Data Management System. In
MDM, 2015.

[3] A. Magdy et. al. Microblogs Data Management Systems: Querying,
Analysis, and Visualization. InSIGMOD, 2016.

[4] G. Mishne et. al. Fast Data in the Era of Big Data: Twitter’s Real-time
Related Query Suggestion Architecture. InSIGMOD, 2013.

[5] W. Feng et. al. STREAMCUBE: Hierarchical Spatio-temporal Hashtag
Clustering for Event Exploration Over the Twitter Stream. InICDE,
2015.

