
Demonstration of Taghreed: A System for Querying,

Analyzing, and Visualizing Geotagged Microblogs

Amr Magdy#, Louai Alarabi#, Saif Al-Harthi§, Mashaal Musleh§,

Thanaa M. Ghanem⋆, Sohaib Ghani§, Saleh Basalamah§, Mohamed F. Mokbel#

#Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
§KACST GIS Technology Innovation Center, Umm Al-Qura University, Makkah, KSA

⋆Department of Information and Computer Sciences, Metropolitan State University, Saint Paul, MN
{amr,louai,mokbel}@cs.umn.edu, {sharthi,mmusleh,sghani,sbasalamah}@gistic.org,

thanaa.ghanem@metrostate.edu

Abstract—This paper demonstrates Taghreed; a full-fledged
system for efficient and scalable querying, analyzing, and visual-
izing geotagged microblogs, such as tweets. Taghreed supports a
wide variety of queries on all microblogs attributes. In addition,
it is able to manage a large number (billions) of microblogs for
relatively long periods, e.g., months. Taghreed consists of four
main components: (1) indexer, (2) query engine, (3) recovery
manager, and (4) visualizer. Taghreed indexer efficiently digests in-
coming microblogs with high arrival rates in light main-memory
indexes. When the memory becomes full, the memory contents are
flushed to disk indexes which are managing billions of microblogs
efficiently. On memory failure, the recovery manager restores
the memory contents from backup copies. Taghreed query engine
consists of two modules: a query optimizer and a query processor.
The query optimizer generates an optimized query plan to be
executed by the query processor to provide low query responses.
Taghreed visualizer features to its users a wide variety of spatio-
temporal queries and presents the answers on a map-based user
interface that allows an interactive exploration. Taghreed is the
first system that addresses all these challenges collectively for
geotagged microblogs data. The system is demonstrated based
on real system implementation through different scenarios that
show system functionality and internals.

I. INTRODUCTION

Online social media services become very popular in
the last decade which has led to explosive growth in size
of microblogs data, e.g., tweets, Facebook comments, and
Foursquare check in’s. Everyday, over a billion of active users
generate billions of microblogs on Twitter and Facebook. As
user-generated data, microblogs form a stream of rich data that
carries different types of information including text, location,
photos, users, and language information. This richness in
data enables new queries and applications on microblogs that
were not applicable earlier on traditional data streams, e.g.,
snapshot queries on keywords and spatial information, event
detection, and news extraction. Such kinds of applications are
so important that major IT companies are spending millions
of dollars to enable them to their customers [3], [9].

Although the research community has addressed a large set
of newly emerging queries and applications on microblogs,
none of those provides a full fledged system that facilitates

*This work is supported by KACST GIS Technology Innovation Center at
Umm Al-Qura University, under project GISTIC-13-06, and was done while
the first, second, fifth, and last authors were visiting the center.

microblogs data management to support arbitrary queries on
multiple attributes. Only TweeQL [8] is proposed as a general
query language for Twitter data, a prime example of mi-
croblogs. However, TweeQL just provides a wrapping interface
for Twitter streaming APIs without addressing the actual data
management issues for microblogs big data. On the other
hand, microblogs can be considered a kind of big data as
it comes with high volume and high velocity. High volume
data could be managed with Big Data Management Systems
(BDMS) like AsterixDB [2] while high velocity data could
be managed by Data Streams Management Systems (DSMS).
However, microblogs come with the two aspects, i.e., high
volumes and velocity, while both BDMS and DSMS are not
equipped to handle both aspects simultaneously. BDMS are
not equipped to digest streaming data in real-time while DSMS
are not equipped with indexes and query processing techniques
that can handle the microblogs queries. Moreover, none of this
work addresses interactive visualization with end users.

In this paper, we demonstrate Taghreed [7]; a full-fledged
system for efficient and scalable querying, analyzing, and
visualizing geotagged microblogs. On the contrary to all other
works on microblogs, Taghreed system goals are to manage,
query, analyze, and visualize microblogs data for relatively
long periods that go up to several months. In addition,
Taghreed provides data management techniques that are able
to support interactive query responses on different microblogs
attributes.

The main technical challenges in Taghreed comes from
three main sources: (a) the large number (billions) of mi-
croblogs, (b) the continuous arrival of microblogs with high
rates (thousands per second), and (c) the new types of queries
on the rich microblogs data which cannot be supported by
Data Stream Management Systems (DSMS) and are so popular
on microblogs . Unlike the traditional streaming data, the
combination of fast-arriving data and selective queries, e.g.,
keyword search, requires Taghreed to employ both real-time
and disk-based efficient and scalable data indexing to be able
to digest streaming data and support such queries interactively,
i.e., the query answer is provided instantly. Thus, Taghreed
main components are: (1) Efficient and scalable data indexing,
(2) efficient interactive query processing, (3) low-overhead
recovery management, and (4) effective data visualization.

We demonstrate Taghreed as an actual on-going system

Interactive Visualizer

Query

Visualizer

User

Query

Optimizer

Query

Processor

Query Plan

Query Dispatching

Query Engine

Query Answer

Answer

Disk Indexer

Main-memory

Indexer

Flushing Policy

Microblogs Stream

Indexer

Main-memory

Contents

Recovery Module

Recovery

Manager

Preprocessor
Preprocessed Microblogs

Memory Failure

Fig. 1. Taghreed Architecture.

implementation that manages a large archive of real tweets and
is also fed with live streaming tweets from Twitter streaming
APIs.

II. SYSTEM OVERVIEW

This section gives an overview of Taghreed design princi-
ples, system architecture, and supported queries.

A. Design Principles

Taghreed is designed based on two principles:

1) Dominance of the temporal, spatial, and keyword
attributes: All microblogs queries have to be tempo-
ral, and then it mostly involves spatial and keyword
dimensions. The real-time nature of microblogs data
makes the temporal dimension a must to be included
in all queries (see [5]). In addition, the richest at-
tributes in microblogs are the spatial and keywords
attributes which are involved in most of the queries
and applications. Consequently, Taghreed promotes
the three attributes, spatial, temporal, and keyword, as
first-class citizens and supports native system indexes
on them. In addition to their importance, indexing
spatial, temporal, and keyword attributes provides
effective pruning for the microblogs search space.

2) Importance of queries on recent microblogs: Due
to the rich real-time content of microblogs, e.g., real-
time updates on ongoing events [4], [6], important
queries are posted on recent microblogs data, i.e.,
data of the last few seconds, minutes, or hours. This
triggers all the literature work on handling queries
on real-time microblogs (e.g., [1], [5]). Consequently,
Taghreed is designed to support queries on real-time
microblogs with all its subsequent requirements of
main-memory indexing, recovery management, and
flushing management.

B. System Architecture

Figure 1 gives Taghreed system architecture that consists
of four main components, namely, indexer, query engine,
recovery manager, and visualizer. We briefly introduce each
of them below, more details can be revised in Taghreed full
paper in [7].

Indexer. Taghreed indexer is the main component that is
responsible for handling the microblogs data. First, the real-
time microblogs are going through a preprocessor that extracts

location and keyword information. Then, the microblogs are
continuously digested in main-memory indexes in real time.
When the memory becomes full, a subset of the main-memory
microblogs are selected, through a flushing policy module, to
be consolidated into scalable disk indexes that are able to man-
age billions of microblogs. Taghreed employs its indexes on
spatial, temporal, and keyword attributes of microblogs which
are considered the first-class attributes based on the design
principles. The detailed indexes structure and organization can
be revised in [7].

Query Engine. Taghreed query engine is mainly concerned
with supporting a wide set of generic interactive queries
such that the framework could be easily adapted to support
different types of queries with almost no loss in system
performance. To this end, Taghreed supports efficient retrieval
of individual microblogs that lie within certain spatio-temporal
range and satisfy certain keyword expressions. Then, other
types of filtering, e.g., based on users, and aggregation, e.g.,
frequent keywords, are performed with efficient distributed
data scanners. To accomplish low query responses, the query
engine consists of two main modules: (1) A query optimizer,
that generates an optimized query plan to hit the system
indexes based on different cost models. (2) A query processor,
that executes the query plan to perform efficient data retrieval
from the system indexes. Then, it employs efficient distributed
data scanners to answer extended queries that involve attributes
other than spatial, temporal, and keywords.

Recovery Manager. With dense main-memory contents,
Taghreed accounts for memory failures by incorporating a
recovery manager component. The recovery manager employs
a triple-redundancy model for backing up the main-memory
contents. When the memory fails, the backup copies are used
to restore the system status.

Visualizer. With all the technical details of managing and
querying microblogs data in the system back-end, Taghreed
provides end-to-end solution with an interactive front-end that
takes users queries through web-based interfaces, dispatches
them to the query engine, and receive the answers back to
visualize. The visualization module comprises of an integrated
interface that presents answers of a rich set of queries and also
provides seeds for comprehensive applications on microblogs
data. Section III presents different scenarios to demonstrate
Taghreed front-end.

C. Supported Queries

Taghreed supports any query on microblogs that involves
the spatial, temporal, and keyword attributes. However, the
query latency depends on the required processing beyond the
three main attributes. For any query, the temporal dimension is
mandatory while spatial and keyword dimensions are optional.
The queries are answered by pruning the search space through
hitting the system indexes for the three main attributes. If
the query involves other attributes, generic distributed data
scanners are used to refine the answer. This enables Taghreed
to support generic queries that satisfy a wide variety of
applications as Section III shows.

III. DEMONSTRATION SCENARIOS

In this section, we demonstrate some applications that can
be powered by Taghreed back-end. However, the potential

Fig. 2. Multi-dimensional Queries on Microblogs.

applications are endless and bounded only with the richness of
microblogs, on which Taghreed provides flexible, efficient, and
scalable querying abilities. In addition, we demonstrate system
measurements that show Taghreed scalability in indexing and
querying microblogs. We use real data collected from Twitter,
as a prime example of microblogs. In particular, our dataset
contains more than two billion real geotagged tweets obtained
from Twitter streaming APIs for the last few months and is
increasing everyday. The real tweets are temporally partitioned,
in a daily basis, into disjoint segments and indexed on keyword
and spatial attributes as described before. We then power a
set of web-based applications using Taghreed RESTful APIs.
Our demo attendees would be able to interact with Taghreed
through one or more of the following scenarios.

A. Scenario 1: Interactive Multi-dimensional Querying

In this scenario, we show the powerful ability of Taghreed
to perform: (1) multi-dimensional queries, i.e., querying mul-
tiple attributes simultaneously, and (2) interactive querying,
where the results are changing instantly based on user nav-
igation on the geographical map interface. Thanks to the
flexible query processing technique and the parallel scalable
processing, Taghreed demo attendees would be able to provide
a set of input parameters to get results for multiple queries very
fast.

Figure 2 shows the main user interface for multi-
dimensional queries. The user interface facilitate the user
to provide: (1) a spatial range bounded by the visible map
borders, (2) time range, (3) optional filtering keywords, and
(4) optional filtering user through top bar text boxes. The ap-
plication then submits a multi-dimensional query to Taghreed
back-end to get the following from the input spatio-temporal
boundaries: (1) individual tweets, (2) tweet frequency over
time in a daily step, both filtered by the optional keywords
and user, (3) top-30 frequent keywords, (4) top-10 active users,
and (5) top-10 popular users. The numbers thirty and ten have
been chosen for visualization space limitations. The application
interface then displays the output as shown in Figure 2. Demo

attendee navigation through the geographical map interface
changes the query spatial extent and hence changes the results
interactively for the above five outputs. Figure 2 shows the
output for Makkah and Jeddah cities in Saudi Arabia.

B. Scenario 2: Multi-dimensional Spatial Comparison

Exploiting the power of multi-dimensional querying abil-
ities in Taghreed, we show a scenario of comparing Twitter
activity in two different arbitrary spatial regions, e.g., two cities
or a city versus a country, as shown in Figure 3. The user
interface facilitates submitting two multi-dimensional queries
given two different spatial regions and common time range,
filtering keywords, and user. The outcomes then, provides
a side-to-side comparison for number of tweets over time,
frequent keywords, active users, and popular users in the two
regions. With arbitrary time window and keywords, we can
explore user activities towards specific events in different areas,
e.g., Twitter activity about US elections in Seattle and Chicago.
Figure 3 gives a user activity comparison between two Saudi
cities, Medina and Hail, during October and November 2013.

C. Scenario 3: Temporal Analysis on Interest Changes

In this scenario, using a top-k frequent keywords query,
we show an application to analyze the change in topics of
interest, in certain region, over time. To this end, the user
inputs a spatial region R, a temporal window T, and a temporal
step t, e.g., six hours. Then, a series of top-30 frequent
keywords queries are submitted to Taghreed back-end, each
covers R and a period of t time units within T. The answers
of each two consecutive queries are compared to analyze the
newly introduced keywords and the rank changes for existing
keywords. Using these comparisons, we show the evolution in
topical interest of users within the region. For each keyword,
we show a profile of rank changes within the periods of time it
exists. In addition, the most trending keywords are identified,
using approximation of regression line slope, and reported to
the user.

Fig. 3. Multi-dimensional Spatial Comparison. (Green color represents Medina while red color represents Hail)

D. Scenario 4: Spatio-temporal Interactive Heatmaps

In this scenario, we show an application that is built on
top of Taghreed while its functionality is not built-in in the
system front-end. Using the non-aggregate query that retrieves
individual tweets that are related to certain keywords, time, and
place, we develop an application that provides spatio-temporal
visual analysis for tweets that are related to certain topic, event,
etc. This visual analysis includes showing tweet distribution
in the form of heatmap through the time and space. The
heatmap can be played versus time in form of animation, as an
interactive video for tweets distribution. In addition, individual
tweets are still available for selective investigation at any point
of time. Figure 4 shows the heatmap of Oscars 2014 tweets at a
certain time instant. Such tweets can be easily obtained from
Taghreed back-end by filtering the results based on Oscars
hashtags. Then, the tweets are fed to our visual spatio-temporal
analysis tool depicted in the figure, that facilitates easy visual
analysis in the spatio-temporal space.

E. Scenario 5: System Internals

With the scalable distributed design of Taghreed system,
monitoring the system internals would be of interests for demo
attendees as well as system developers. Monitoring system
internals could help in identifying performance bottlenecks
and even provide rooms for improvement in the system design
itself. In our demo, we develop a simple interactive interface
that shows two aspects of system internals: (1) Digesting
the new microblogs in the system and loading them to the
segmented index. (2) Handling the incoming queries and the
performance of our query processor in terms of distributed
node utilization, throughput, intermediate storage consump-
tion, etc. Such measurements show Taghreed efficiency and
scalability to the demo attendees.

REFERENCES

[1] H. Abdelhaq, C. Sengstock, and M. Gertz. EvenTweet: Online Localized
Event Detection from Twitter. In VLDB, 2013.

Fig. 4. Oscars 2014 Tweets Heatmap.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, N. Onose,
P. Pirzadeh, R. Vernica, and J. Wen. ASTERIX: An Open Source System
for “Big Data“ Management and Analysis. PVLDB, 5(12):1898–1901,
2012.

[3] Apple buys social media analytics firm Topsy Labs.
http://www.bbc.co.uk/news/business-25195534, 2013.

[4] After Boston Explosions, People Rush to Twitter for Breaking
News. 2013. http://www.latimes.com/business/technology/la-fi-tn-
after-boston-explosions-people-rush-to-twitter-for-breaking-news-
20130415,0,3729783.story.

[5] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin.
Earlybird: Real-Time Search at Twitter. In ICDE, 2012.

[6] Sina Weibo, Chinas Twitter, comes to rescue amid flooding in Beijing.
2012. http://thenextweb.com/asia/2012/07/23/sina-weibo-chinas-twitter-
comes-to-rescue-amid-flooding-in-beijing/.

[7] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. Ghanem, S. Ghani,
and M. Mokbel. Taghreed: A System for Querying, Analyzing, and
Visualizing Geotagged Microblogs. In SIGSPATIAL, 2014.

[8] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller. Tweets as Data: Demonstration of TweeQL and TwitInfo.
In SIGMOD, 2011.

[9] New features on Twitter for Windows Phone 3.0, 2013.
https://blog.twitter.com/2013/new-features-on-twitter-for-windows-
phone-30.

