
Mars: Real-time Spatio-temporal Queries on
Microblogs

Amr Magdy1§, Ahmed M. Aly2, Mohamed F. Mokbel3§, Sameh Elnikety4, Yuxiong He5, Suman Nath6
1,3Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455

2Department of Computer Science, Purdue University, West Lafayette, IN 47907

4,5,6Microsoft Research, Redmond, WA 98052-6399

{1amr,3mokbel}@cs.umn.edu

2aaly@cs.purdue.edu

{4samehe,5yuxhe,6suman.nath}@microsoft.com

Abstract—Mars demonstration exploits the microblogs location
information to support a wide variety of important spatio-
temporal queries on microblogs. Supported queries include
range, nearest-neighbor, and aggregate queries. Mars works
under a challenging environment where streams of microblogs
are arriving with high arrival rates. Mars distinguishes itself
with three novel contributions: (1) Efficient in-memory diges-
tion/expiration techniques that can handle microblogs of high
arrival rates up to 64,000 microblog/sec. This also includes highly
accurate and efficient hopping-window based aggregation for
incoming microblogs keywords. (2) Smart memory optimization
and load shedding techniques that adjust in-memory contents
based on the expected query load to trade off a significant storage
savings with a slight and bounded accuracy loss. (3) Scalable
real-time query processing, exploiting Zipf distributed microblogs
data for efficient top-k aggregate query processing. In addition,
Mars employs a scalable real-time nearest neighbor and range
query processing module that employs various pruning tech-
niques so that it serves heavy query workloads in real time.
Mars is demonstrated using a stream of real tweets obtained from
Twitter firehose with a production query workload obtained from
Bing web search. We show that Mars serves incoming queries
with an average latency of less than 4 msec and with 99% answer
accuracy while saving up to 70% of storage overhead for different
query loads.

I. INTRODUCTION
Microblogs, e.g., tweets, Facebook comments, and

Foursquare check-in’s, are among the most popular web
services nowadays. For example, Twitter has 500 Million
users who generate 400+ Million daily tweets [12], while
Facebook has 1+ Billion users who post 3.2+ Billion daily
comments [4]. The richness of such data has attracted a
plethora of research efforts that address various aspects
for microblog streams, e.g., see [2], [3], [5], [8], [10].
Combined with the advances in wireless communication and
GPS-equipped handheld devices, microblogs locations can
be attached to each microblog to indicate the whereabouts
of the microblog issuer. However, such location information
are not yet exploited beyond data visualization [9], [11] or
discovering localized events [13].
Mars exploits the microblogs locations to support a variety

of important spatio-temporal queries on microblogs. With the
plethora of incoming microblogs in real time, Mars supports
its queries over the time window of the last T time units.

§The work of these authors is partially supported by the National Science
Foundation, USA, under Grants IIS-0952977 and IIS-1218168.

Typical values of T spans from several hours to several days
based on the available memory resources and the application
requirements. Supported queries are categorized into three
main types: (a) Range queries, where users request a set
of recent microblogs in a certain area, (b) Nearest-neighbor
queries, where users request a set of recent microblogs close
to a certain location, and (c) Aggregate queries, where users
request the set of top-k frequent or trending keywords within
a certain area.
Mars works under a challenging environment due to the

high arrival rates of microblogs (e.g., Twitter arrival rate is
4,600 tweets/sec) and the requirements of fast query response.
This calls for the following three main features that are all
incorporated inside Mars:
(1) Efficient digestion/expiration techniques, to support high
arrival rates of incoming microblogs. For range and nearest-
neighbor queries, Mars spatio-temporal index is equipped
with various techniques for batch updates, lazy deletions,
and efficient index structure maintenance in real time. For
aggregate queries, Mars employs an efficient and highly
accurate aggregation technique that efficiently updates a set
of counters, for each incoming microblog keyword, over a
hopping-window of the last T time units. Mars can support
up to 64,000 microblog/sec.
(2) Efficient memory management. For real-time processing
and querying, Mars opts to operate only with in-memory
contents. Thus, it is crucial to manage the scarce memory
resource efficiently. We develop and integrate various tech-
niques to smartly decide the in-memory indexed contents to
balance between memory consumption, query response time,
and query accuracy. With high query accuracy, Mars shows
memory savings up to 70%.
(3) Scalable real-time query processing, that is able to process
heavy query workloads in real time. To this end, Mars bounds
its search horizon to the last T time units. In addition, Mars
employs a set of spatio-temporal pruning techniques and
exploits Zip distribution properties to minimize the number of
visited microblogs/keywords significantly and hence provide
average query latency of 4 msec.
We demonstrate Mars with a system prototype using a

stream of real tweets obtained from Twitter firehose, with an
actual query workload obtained from Bing web search.

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 20141238

��������	

����
��������

������������

��������	
�������	�����
�����	

��������	
���������	���	
��	����������	

��
��

��
��

��

����

����
�������

�����������

���
�����������

�������
�����������

Fig. 1. System Architecture.

II. SYSTEM OVERVIEW
Figure 1 presents Mars system architecture that mainly

includes two querying modules, centered around a space-
partitioning in-memory index. Incoming microblogs to Mars
go through a preprocessor that attaches location and extracts
keywords before forwarding microblogs to the update module.
Microblog location could be associated from a GPS-enabled
device or extracted from either the user profile or the mi-
croblog contents. Microblog locations can be either precise
latitude/longitude coordinates or a city/county boundary. Mars
users can issue their queries through either a web service, a
desktop application, or a mobile app. Mars receives the sub-
mitted queries through its query APIs, and internally forwards
them to the appropriate query module.

III. SPATIO-TEMPORAL PYRAMID INDEX
Index structure. Mars employs an in-memory partial pyra-
mid index [1]. The pyramid index is spatio-temporal: the
whole space is spatially partitioned into cells with different
granularity (pyramid levels); within each cell, microblogs and
aggregate information are indexed temporally.
Index update. Incoming microblogs, and their aggregate
information, are inserted in bulk to the pyramid index. The
bulk insertion is triggered every few seconds to flush thousands
of incoming microblogs to the index, which reduces significant
overhead over inserting microblogs one by one. Unlike inser-
tion, deletions are done in a lazy way, mostly piggy backed
on insertions to avoid any extra overhead.
Index maintenance. The index dynamically adapts its struc-
ture based on the incoming microblogs via split and merge
operations. As splitting and merging pyramid cells are expen-
sive operations, they are done only if necessary. Basically, four
cells are merged only if three of them are empty. A cell is split
only if it is over capacity and splitting its contents span at least
two children cells. Details of Mars index are presented in [6].

IV. SPATIO-TEMPORAL QUERIES
Supported queries. Mars supports spatio-temporal top-k

queries based on the spatial proximity and temporal recency
of each microblog. Due to the large numbers of microblogs,
Mars limits its answer size to only k microblogs and bounds
its search horizon to spatial and temporal boundaries, R and T ,
respectively. Users issue queries like “Retrieve k microblogs
near location P ”. Then, Mars reports the top-k microblogs
according to a spatio-temporal ranking function that combines

the spatial proximity of each microblog M to P and the
temporal recency of M with a parameter 0 ≤ α ≤ 1 that
weights the importance of the spatial and temporal aspects.
This allowsMars to support both range and k-nearest-neighbor
queries. When α = 0, Mars reports the k most recent
microblogs in range R. When α = 1, Mars reports the closest
k microblogs to P that were posted in the last T time units.
Query processing. Mars query processor limits its search

to microblogs in area R and posted in the last T time units.
Thus, index cells within R are processed prioritized by their
spatio-temporal scores. In each cell, microblogs are processed
in a chronological order. As the answer size is only k, once
Mars has an initial answer of k microblogs, it exploits the
spatio-temporal ranking function to calculate new tightened
search boundaries R′ and T

′ that contain the least acceptable
microblogs, based on their ranking scores, to be included in
the answer. The goal is to minimize the number of visited
microblogs while providing the answer as the highest-ranked
top-k microblogs with respect to the querying user.
Memory management. Supported queries are answered

from microblogs posted in the last T time units. However, stor-
ing all microblogs during T time units could be prohibitively
expensive. Hence, Mars goes two major steps beyond such
expensive storage. First, we exploit the fact that different parts
of the space have different microblog arrival rates. Thus, in
dense areas, e.g., city centers, the top-k microblogs would have
arrived more recently than urban areas. Hence, in dense areas
it is sufficient to cover smaller time horizons. This technique
saves 50% of memory consumption while still offering 99%
accuracy. Second, we employ a load shedding technique that
trades significant reduction in memory footprint (up to 75%
less storage) for a slight decrease in query accuracy (more than
95% accuracy). The idea is to expel a set of victim microblogs
that are less likely to contribute to a query answer.
The details of Mars spatio-temporal queries processing and

its memory management are presented in [6].
V. AGGREGATE QUERIES

Supported queries. Mars supports aggregate queries, e.g.,
“Retrieve the top-k most frequent/trending keywords within a
certain area R”. The aggregate function is computed based
on either keyword frequency (top-k frequent) or a trending
measure (top-k trending) within the last T time units. In
particular, top-k trending keywords are ranked based on a
linear regression slope of the keyword frequency across time
sub-intervals in the last T time units.
Query processing. Mars supports aggregate queries in real

time by maintaining a set of aggregate information on each
microblog keyword in corresponding index cells. For each
keyword, the aggregate information is maintained in a set
of N counters, that split the time window T into equal sub-
intervals, where each counter maintains information about its
corresponding sub-interval. As time advances, new counters
are included and older counters are expired using a low-
overhead expiration technique. As real microblogs data follows
Zipf distribution, where most of keywords are infrequent, our
theoretical analysis and experimental results show that we can

1239

Fig. 2. Spatio-temporal Nearest-neighbor Queries.

therefore compute the final top-k answer list using only top-k
keywords in each index cell which significantly reduces query
processing time.
Memory management. Mars can satisfy all its aggregate

queries form in-memory contents if it sores the aggregate
information of all keywords that have arrived in the last
T time units. However, that may be prohibitively expensive
due to the large number of keywords. To minimize memory
consumption, Mars exploits the fact that microblog keywords
follow a Zipf distribution (which have just used for efficient
query processing) to maintain only those keywords with a
frequency greater than a certain threshold, as other keywords
are unlikely to appear in any top-k result. Mars extends the
Lossy Counting technique [7], that is designed mainly for
counting frequent items in a data stream, to accommodate the
time hopping-window behavior. Based on our experimental
data, we save 70% of Mars storage, while still answer all
queries with 100% accuracy.

VI. DEMONSTRATION SCENARIO
Mars functionality and system internals are demonstrated

using a real data set obtained from Twitter as a prime example
of a microblog stream. In particular, we use a rich set of 340
Million real tweets obtained from Twitter firehose. The real
tweets are fed to Mars with the current Twitter rate of 4,600
tweets/second. Our demo attendees would be able to interact
with Mars through one or more of the following five scenarios.

A. Scenario 1: Spatio-temporal Queries
Mars demo attendees would be able to issue spatio-temporal

range and nearest neighbor queries on Twitter data. Figure 2
depicts the user query screen of Mars demonstration. To issue
a spatio-temporal range or nearest neighbor query, a demo
attendee should: (a) Navigate to a location of interest through
the map or via the location text box, (b) Optionally change
the default parameters values of k, R, T , and α through the
query parameters box, and (c) Finally, click the search button
to obtain the results. Our front-end interface submits the search
query request to the back-end ofMars. Once the answer tweets

are returned back, the front-end interface shows them to the
user both on the map and on a right-side panel. Figure 2 gives
the output of a spatio-temporal 100-nearest-neighbor query
near Seattle, WA. The output shows each tweet text, location,
timestamp, and distance to user location.

B. Scenario 2: Aggregate Queries
The demo attendees can also issue spatio-temporal aggre-

gate queries through the main user query screen. To issue
a spatio-temporal top-k frequent/trending keyword query, a
demo attendee should: (a) click the ”Aggregate Queries” radio
button to switch the querying mode to either frequent or trned-
ing queries, (b) navigate to the spatial range of interest through
the map, (c) optionally change the default query parameters
values through the query parameters box, and (d) click the
search button to obtain the results. Figure 3 gives the output
of a spatio-temporal top-100 frequent keywords query near
Minneapolis, MN. The frequent keywords are displayed only
in the side panel and do not show up on the map; as they have
no exact locations. The output shows the keyword as well as
the number of times it has been tweeted in the query area.

C. Scenario 3: Tweets Heatmap
Mars has an option to show a tweet heatmap where users

can navigate and zoom the map to find out areas with dense
tweets (marked in red), while areas with much less tweets
(marked as green), and so on. The heat map can be either based
on all US tweets or based on a certain keyword (e.g., the heat
map for the hash tag #Obama). The heat map is updated online
based on the incoming microblog stream. A fast forward run
of a heat map over our 340 Million tweets gives an impressive
visualization of the development of posting tweets in US.
Internally, Mars presents its heatmap based on the informa-

tion of its spatio-temporal pyramid index structure. The heat
map basically reflects the cells of the index. As each pyramid
cell covers a geographical map area, we draw such an area
with a certain color that reflects its aggregate information for
all tweets, or counters for each keyword. Zooming in the map
corresponds to going to deeper levels in the pyramid index.

1240

Fig. 3. Spatio-temporal Aggregate Queries.

D. Scenario 4: Admin View

In addition to issuing user queries as described in the
previous scenarios, the demo attendees would be able to
monitor the stream of queries that are received and handled
by Mars through an administrative screen. The admin screen
continuously shows the locations of the posted queries on
the map interface as well as the log entries of receiving and
finishing these queries. In addition to monitoring the queries
that are posted by demo attendees, Mars automatically plays
a stream of queries based on the locations of actual query
workload of 1 Million Bing web search queries.
The admin view of Mars serves three main goals: (1) Mon-

itoring the user activity in real time, (2) Continuously moni-
toring the system response times to users to quickly identify
unexpected slowdowns, and (3) Analyzing system bottlenecks
when certain regions may receive a large percentage of the
queries and hence need a customized treatment, e.g., allocate
more servers.

E. Scenario 5: Index Internals

Our demo shows the internals of Mars index by showing
animated index update operations (i.e., bulk insertions and
lazy deletions) on a geographical map. To show live index
update operations, we visualize the steps to insert a batch
of new tweets. This includes the arrival of the new tweets,
enclosing them in a minimum bounding rectangle, and navi-
gating through the pyramid levels to the corresponding spatial
cells. When we reach a cell where we would insert some
(or all) tweets, the lazy deletion checks for expired tweets to
be deleted and displays the number of deleted tweets on the
screen. The screen can also show a simple technique which
updatesMars index with individual tweets, instead of bulk, and
hence contrast the performance with our techniques. Figure 4
shows a step of such animated visualization when the bulk
insertion is visiting the second level of the pyramid index to
insert a set of new tweets in USA Midwest states. The red
cells on the map represents Mars index cells at the second

Fig. 4. Mars bulk insertion.

level while the markers indicate the tweets’ locations that are
enclosed within their minimum bounding rectangle.

REFERENCES
[1] W. G. Aref and H. Samet. Efficient Processing of Window Queries in

the Pyramid Data Structure. In PODS, 1990.
[2] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin.

Earlybird: Real-Time Search at Twitter. In ICDE, 2012.
[3] C. Chen, F. Li, B. C. Ooi, and S. Wu. TI: An Efficient Indexing

Mechanism for Real-Time Search on Tweets. In SIGMOD, 2011.
[4] Facebook Statistics. http://newsroom.fb.com/Key-Facts, 2012.
[5] G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy. The Unified Logging

Infrastructure for Data Analytics at Twitter. PVLDB, 5(12), 2012.
[6] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He. Mercury: A

Memory-Constrained Spatio-temporal Real-time Search on Microblogs.
In ICDE, 2014.

[7] G. S. Manku and R. Motwani. Approximate Frequency Counts over
Data Streams. In VLDB, 2002.

[8] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller. Twitinfo: Aggregating and Visualizing Microblogs for
Event Exploration. In CHI, 2011.

[9] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller. Processing and Visualizing the Data in Tweets. SIGMOD
Record, 40(4), 2012.

[10] M. Mathioudakis and N. Koudas. TwitterMonitor: Trend Detection over
the Twitter Stream. In SIGMOD, 2010.

[11] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling. TwitterStand: News in Tweets. In GIS, 2009.

[12] Twitter Statistics. http://expandedramblings.com/index.php/march-2013-
by-the-numbers-a-few-amazing-twitter-stats/, 2013.

[13] K. Watanabe, M. Ochi, M. Okabe, and R. Onai. Jasmine: A Real-
time Local-event Detection System based on Geolocation Information
Propagated to Microblogs. In CIKM, 2011.

1241

