

CS225: Spatial Computing

Course Outline

Instructor: Amr Magdy Computer Science and Engineering www.cs.ucr.edu/~amr/

Welcome to CS 225

 Instructor: Amr Magdy Office: Tomas Rivera Library, 159B
 http://www.cs.ucr.edu/~amr/
 Email: amr@cs.ucr.edu
 (Include [CS225] in the subject
 – no spaces)
 Office hours [tentative]: TT: 2:30 - 3:30 PM

> Course Website: <u>https://www.cs.ucr.edu/~amr/#teaching</u>

Office hours: TBA

Course Content

- Introduction to Spatial Computing
- Spatial Relationships and Data Models
- Spatial Data Storage and Indexing
- Spatial Query Processing
- Spatial Networks
- Geo-visualization
- Spatial Data Mining
- Trends and Innovations in Spatial Applications

Course Content

- Course Research Elements:
 - "Introduction to Research" lecture
 - > Surveying the literature methodology
 - > Paper reviews practice
 - > Presenting research papers
 - Writing technical papers (survey and/or final report)
 - Project stages

 (identifying idea, literature survey, tackling the problem, and documenting the results)
 - > Lecture contents on new trends on spatial-related research

Grading and Policies

- Course work
 - Project (65%)
 - > Hands-on on spatial technologies (7.5%)
 - > Class participation (Evaluating others) (5%)
 - > Paper reviews (7.5%)
 - Mini-topics Presentations (10%)
 - > Final exam (5%)
- > Delivery policies:
 - > Groups of 3-4 students required for the project.
 - > Delivery instructions and policies announced per assignment.
- Cheating is not allowed and will be reported
 - If you are using any external source, you must cite it and clarify what exactly got out of it.
 - You are expected to understand any source you use.

Project: Grade Breakdown

- Idea Proposal (with potential revision cycles) (5%)
 - extra credit up to 10% for exceptional ideas and above-average quality ideas
- Outline of project deliverables
- Literature survey (10%)
- Project deliverables (35%)
- > Final report, presentation, and discussion (15%)

Project: Categories

- Novel Research
 - > Preliminary investigation for a novel research idea
- Literature Survey Paper
 - > Surveying the literature of a certain spatial topic
- Literature Experimental Evaluation
 - > Experimentally compare major techniques of a certain spatial topic
- Vision Analysis
 - Track the advances in topics of a vision report (e.g., CCC Spatial Computing 2020 Workshop)
- Interdisciplinary project
 - > Apply spatial computing technologies to a non-CS field
- Spatial Application
 - > Apply spatial technologies to a real use case.

Project: Deliverables and Assessment UCR

- Novel Research
 - > Clearly identifying and presenting the research elements
 - Preliminary solution idea
 - > Preliminary evaluation results
- Literature Survey Paper
 - Comprehensive list of papers
 - Literature classification/taxonomy
 - Manuscript quality (writing, figures, organization,...etc)
- Literature Experimental Evaluation
 - Long and short lists of papers
 - Evaluation outline and corresponding implementations from the short list (or a subset)
 - > Evaluation results

Project: Deliverables and Assessment

- Vision Analysis
 - Itemized analysis of the vision report
 - Quality of surveying work on each topic
- Interdisciplinary Project
 - > Clear problem definition and importance
 - > Survey of related work
 - > Quality of the main deliverable, e.g., script, program, etc
- Spatial application
 - > Quality of the delivered software modules

Paper Reviews and Presentations

- > Two review assignment (7.5%)
 - Summarization of paper research elements
 - Paper critique
- Mini-topics presentations (10%)
 - Group-based topic preparations (titles and tentative outlines provided).
 - > Each group member must present.
 - > Involve presenting research papers as well as relevant articles.
 - > Open for new title suggestions.

Hands-on on Spatial Technologies

- Any spatial technology is fine, check instructor approval
- Any reasonable-sized hands-on is fine as well
- Candidate technologies
 - Spatial Databases
 - > PostGIS, Oracle Spatial, SpatiaLite, MonetDB/GIS, etc
 - > GIS Software
 - > ArcGIS, QGIS, etc
 - Maps
 - Google Maps, Bing Maps, ESRI Maps, etc
 - ESRI Story Maps
 - > Big Spatial Data Systems
 - > Simba, SpatialHadoop, GeoSpark, SpatialSpark, etc
 - GeoSpatial Analysis Tools
 - PySAL, GeoPandas, Fiona, Shapely, GeoDa, SSN & STARS, SP and SF R packages, OGR GDAL

Final Exam

Lectures content

Sample Survey Papers

- In-Memory Big Data Management and Processing: A Survey. Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. TKDE, vol. 27, no. 7.
- A survey of top-k query processing techniques in relational database systems. Ihab F. Ilyas, George Beskales, Mohamed A. Soliman. ACM Computing Surveys (CSUR), Vol. 40, Issue 4, No. 11, Oc. 2008.
- Crowdsourced Data Management: A Survey. Guoliang Li, Jiannan Wang, Yudian Zheng, Michael J. Franklin. TKDE, vol. 28, issue 9.

> Literature Surveys

- 1. Scalable Techniques for *Kriging Spatial Interpolation*
- 2. Spatial operations using *doubly connected edge lists* (DCELs).
- 3. Spatial Applications on *Multi-scale Geographically Weighted Regression* (MGWR)

Spatial Applications (Real use cases in UCR)

Irrigation status app

- Purpose: Display status of irrigation blocks, record duration of irrigation events and technicians responsible.
- Core functionality
 - > App will display on web map:
 - > Irrigation blocks currently being irrigated.
 - Date/time of next scheduled irrigation by block of blocks not being irrigated.
 - > Irrigation technician responsible for Irrigation.
 - Record date and time of irrigation started and ended by block; calculate duration.

> Spatial Applications (Real use cases in UCR)

Pesticide application app

- Purpose: Display where pesticides have been and will be applied and records pesticide applications.
- Core functionality
 - > App will display on web map:
 - Locations that have been treated with a pesticide, include name if selected.
 - > Locations currently under REI,
 - Locations scheduled for pesticide application, include name if selected.
 - > Tentative date/time of scheduled applications.
 - Record pesticide applications by treatment block, include pesticide name and treatment end date/time.

UCR

- > ESRI GeoAI tools
 - > ArcGIS and Microsoft AI: Scalable GeoAI in the Cloud
 - https://www.youtube.com/watch?v=m7GqaC5_fFU
 - > Geo Artificial Intelligence
 - GeoAl medium blogs
 - GeoAl Demonstration Gallery
 - > Geospatial Data Science
 - > Spatial Analysis and Data Science
 - > <u>R-ArcGIS Bridge</u>
 - > Bridging Into New Realms: R-ArcGIS Bridge and Microsoft R
 - > R Notebooks in ArcGIS Pro for Spatial Data Science
 - ArcGIS API for Python A powerful python library for spatial analysis, mapping and GIS

- > ESRI GeoAl tools
 - Online Lessons:
 - > Use Deep Learning to Assess Palm Tree Health
 - > Extracting Information using Image classification
 - > Downscale Climate Data with Machine Learning
 - > Predict Seagrass Habitats with Machine Learning
 - Identify and Ecological Niche for African Buffalo (with R-ArcGIS Bridge)
 - > Analyze Crime using Statistics and R-ArcGIS Bridge
 - Analyzing violet crime using hot spot analysis and space time cube

Credits

- > Prof. Shashi Shekhar course
 - http://www.spatial.cs.umn.edu/Courses/Spring18/8715/index.php