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Introduction and background

- Development of electronic tracking chips

Figure 1: Honey bee with RFID

Figure 2: Honey bee with harmonic radar



Bees as Biosensors(l)

Why choose bees as biosensor?
- - Superb abllity to detect chemical signal, less easily distracted,

short training period
- - Less than 2% probabillity of false positives or false negatives

when properly conditioned
Applications of the technology

- Detect chemicals of military concern
- Bloenvironmental monitoring



Bees as blosensors(u)

- Bees as chemical biosensors:
- Chemical signals
- Proboscis extension reflex
- Methods for conditioning by
Ribbands.
- Traceable, free-flying biosensors

Figure 3: Bee anatomy
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Figure 4. PERs results for chemical detection of fertilizer, fertilizer-based bombs,
and decomposition products of animal carcasses compared to anise, a floral scent.



Experiment
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Fig. 7. A schematic of the experimental setup used for the Mis-
soula, Montana, field experiment (target feeder location to scale,
hives and external feeder locations approximate). The feeder foot-
print is 0.023 m x 0.023 m.

LIDAR

Figure 5: Schematic of the experimental setup used Figure 6: Schematic of the experimental setup used for the
for the Missoula, Montana experiment Missoula, Montana field experiment. Freeder footprint is 0.023m x 0.023m



Signal Processing
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Fig. 3. Return as a function of the range bin and laser pulse num- g 100 lll
ber for the four signal classes. (a) Typical noise signal, (b) typical = 50l |
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plots is scaled differently in order to illustrate the features of each
class of signal.
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Fig. 5. Discrete Fourier tranaforms for the signala observed in 4(h) (DC), 4(e) (imodulated DC), 4(d) (average bee return ), and the lower plot
in Fig 2 (strong bee return), respectively.



Results(I)

A: Average voltage
return

B: Filter out DC and
noise returns

C: Get new score
matrix, and use
gaussian filter to get
density map

D: Use fourier transform
to get one more score
matrix, use gaussian
filter, to get density map
of score matrix
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Figure 9: LIDAR results
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Results(ll

A: Average voltage
return

B: Filter out DC and
noise returns

C: Get new score
matrix, and use
gaussian filter to get
density map

D: Use fourier transform
to get one more score
matrix, use gaussian
filter, to get density map
of score matrix
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Figure 10: LIDAR results
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Remarks

1) Determine upper and lower threshold values for variety of weather
conditions rather than determine threshold value onsite.
1) A more powerful laser for better output intensity. This would allow

for a higher intensity peak like in figure 7.
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Questions



