
Pesticide
Project

By: Nick Kory,
Abenezer Yitagesu,
Zoe Shang,
Joel Borja

1

Outline

● Introduction
● Application Goals
● Technologies Used
● Frontend
● Login
● Backend
● Conclusion/Future work

2

Introduction

Purpose
Responsive web design for mobile devices/desktop dashboard where pesticide
products have been and will be applied at UC Riverside; document pesticide
product applications; reports product use.

Users
Applicators, pest control supervisor, Ag Ops personnel, PIs, and other land
users.

3

Application Goals

App will display on web map:

- Locations that have been treated with product.
- Locations currently under REI.
- Locations scheduled for product application.
- Date/time of scheduled applications

Record pesticide applications by treatment block, include pesticide name and
treatment end date/time.

4

Pesticide app scheduling and
notification mobile appUCR Ag Ops Pesticide scheduling

and notification

Order application

Document application

View application sites

Application order information
screen

pesticide --select--

rate --select--

REI --select--

PHI --select--

equipment --select--

technician --select--

day scheduled --select--

Application sites screen

• User views scheduled
application information

pesticide Roundup Pro

scheduled Mon, 9/19

Application sites screen

UCR Ag Ops Pesticide scheduling
and notification

recently applied

scheduled for application

Technologies Used

Back End

- MySQL Server

Front End

- HTML, CSS, PHP, JavaScript
- Leaflet API > Google Maps API
- Openstreetmap
- Bootstrap

9

10

Login

11

Frontend

12

Frontend

13

14

15

16

Login

● Used: HTML, CSS, and PHP
● Attempted registering users
● Attempted checking if users are registered
● Attempted to implement a recover lost password feature
● Attempted returned to home

17

LOGIN MODES

Figure 1: User login

Figure 2: Registration

Figure 3: Forgot Password

Back End

● Database: MySQL
● Spring boot framework
● API

Submit Order

Fetch Products

Fetch Technicians

19

20

21

Future Works

22

● Integrating UC Riverside identity
management.

● Notifications to supervisors when
an order is created (via the app or
via email).

● Admin view.
● “Tunnel-proof” code that saves

orders and posts when a WiFi or
data connection is lost then
re-established.

● Integrating dynamic field loads
when ArcGIS layer is updated.

● Protection against SQL injections.
● Feature for supervisors to

add/change permissions of users.
● Read receipts when a field worker

sees a new order.
● Package deployment to UC

Riverside hosted web server.
● Create test / dev / prod

implementations.

Questions?
By: Nick Kory,
Abenezer Yitagesu,
Zoe Shang,
Joel Borja

23

Spatial Computing(CS225)
Project Presentation

Group 8

Siddharth Shenoy, Devansh Sheth, Ganesh Krishnan Sivaram, Mahip Shah

Finding correlation between
vegetation, temperature,

humidity and wildfires using
satellite data for counties of

California

◦BUT WHY ARE WE

DOING IT? AND

WHAT ARE WE

ACTUALLY DOING?

WHY ?

◦ California fires are getting bigger.

◦ Large wildfires in the US now burn

more than twice the area they did in

1970.

◦ A recent study found that the portion

of California that burns from

wildfires every year has increased

more than five-fold since 1972.

HOW ?

The Satellite Dataset

Temperature Data
MODIS MOD11A2

Vegetation Data
MODIS MOD13A2

Fire Data
MODIS MOD14A2

Humidity Data
MODIS MOD16A2

Reality

Challenges faced

◦Data Format Conversion

◦Normalizing data

◦Data combining

◦Correlation between four features

◦Verification of actual occurrence of wildfire with our data

Data processing

◦Extracting values from HDF file

◦Aggregate data for various

counties

◦Normalize the data for a common

resolution

◦Merge the four factors into a

single dataset

Actual Satellite Data

HDF VIEW

Conversion of data points

Sinusoidal Projection

County boundaries

◦For each and every county in

California, we approximate the

boundaries in form of a polygon

whose co ordinates are used to

get the data relevant to that

county

Output post processing
Vegetation data
for each day for
each county

Temperature data
for each day for
each county

Output post processing

Humidity data for each
day for each county

Fire data for each day
for each county

Data merging

Final Output

Fire

Temperature

Humidity Vegetation

First normalize the resolution. How ?

Complex calculations? No

How do we do merging?

◦First we convert the resolution of all the data with different resolution to daily

resolution by using linear regression over the period

◦ Then we merge all the data from 4 files into one single file with each record

containing vegetation , temperature, humidity and fire data for the county on

a particular date

◦Then we filter the data based on counties to get data for each county and sort

them date-wise for the whole year

What do we get?

◦Single CSV file with data points for

each county for every day

Finding correlation between parameters

◦Once we get the data in the expected format, we find the correlation

between fire - vegetation, fire - humidity and fire - temperature using scatter

plots.

◦We have assumed there is positive correlation between the two attributes,

and we want to prove it using the outputs.

Correlation with 2 variables at a time for the
counties of California

For this we used ArcGIS to show a 3 way
correlation between the parameters.

Prescribed fires

A controlled or prescribed burn, is a

wildfire set intentionally for purposes

of forest management.

Detected by the data and is termed as

wildfire but actually it is started by

humans to control the occurrence of

wildfire in that region in future and

hence has no relation with vegetation

and temperature on that day

How do we verify?

Basically check real-time occurrences

Limitations

◦Contribution of other factors (like sudden climate changes) to wildfires is

ignored which can be significant

◦ Incorrect data points due to different landscape (specially water bodies)

◦Noise in data due to cloud cover

◦There will be areas where temperature and vegetation is high and humidity is

low but there is no wildfire occurring which currently cannot be verified

Future Work

◦Expansion of the idea to the whole world

◦Addition of more factors to increase accuracy of the correlation

◦ Ignoring the prescribed fires to further analyse the occurrence of natural

wildfire

◦Using the analysis to suggest preventive measures for wildfires

Max-p-regions
Problem
Group 9
Group Member:

Yongyi Liu
Shiyi Zhang
Tong Jia
Xiangyu Li

Outline
Overall Introduction
Previous Work
State-of-the-Art
Our Improvement and Thoughs

Problem Definition
Extensive attribute: population
Inner attribute: Income
Geographical Relationship

Problem Definition

Objective Function

Previous Work
a. apply the conventional clustering algorithm without
considering the geographical location and define regions as
the subset of spatially contiguous areas assigned to the
same cluster

b. Constructing homogenous regions by including x and y
coordinates of the centroids of the areas as two additional
attributes in the clustering algorithm.

Problem in the previous work: the spatial contiguity of
different region is not guaranteed

State-of-the-Art
1. Construction
-> growing regions + assigning enclaves

2. Local Search Phase
-> a. Simulated Annealing
-> b. Tabu Search

Simulated Annealing
Pros:
Escaping from the local
minimum

Cons:
Randomness (The annealing
phase to hard to control.)
Time-consuming (based on
the parameter).

Tabu Search
Pros:
Escaping from the local
minimum

Cons:
Relate on Initial Solution

Our Contribution
Improvement in the construction phase

 -test how threshold affects the performance
 -change the O(n^2) greedy method in the growing phase to a
O(n) method that finds out the area with minimum extensive
attribute

Improvement in the local search phase
 -modified the simulated annealing search
 -proposed a hybrid heuristic method that involves the
 advantage of SA, Tabu search and greedy method

How threshold affects performance

Changing O(n^2) to O(n)

Simulated Annealing Improved
Improvements:
Replace constant loop
number with flexible loop
number
Stop the loop in advance to
save time

Pros:
Use less time

Mixed Search
Improvements:
Combine the Simulated
Annealing Search with Tabu
Search
Add a Greedy descent to make
sure we won’t miss a good
result

Pros:
1. Escape local minimum
2. Avoid repeat search
2. Don’t relay on Initial solution
3. Won’t miss good solutions

Experimental Result

METHOD T I M E
CONSUMED

W R D
(BEFORE)

WRD (AFTER) DIFF I M P R O V E M T N
PERCENTAGE

TABU 25189.7 10130302.1 9742281.3 388020.8 3.83%

SA 106700.8 10130302.1 9825322.2 304979.9 3.01%

SA+ 16068.8 10130302.1 9908254.6 222047.5 2.19%

MIXED 95968.8 10130302.1 9737182.8 393119.3 3.88%

Thanks

Scalable Max-P Regions

Faisal Almaarik
Hussah Alrashid

Outline

● Introduction
○ Problem Statement

● Related Work

● Scalable Max-P Regions
○ Data Preprocessing
○ General Approach

● Results/Future Work

Problem Statement

● What is the problem?

● Why Max-P regions is a unique Model?
● What are the challenges ?

What Is The Problem

● Homogenous regions

○ set of spatially contiguous areas that provide a high degree of similarity in the attributes

● Aggregation multiple areas into regions are not easy

○ shape of regions

○ the equality of an attribute value across the regions

○ membership of constraint

● Max-P regions model.

Why Max-P Regions Is A Unique Model?

● The number of regions is modeled as an endogenous parameter.
● The data form the final shape of each regions.
● Analytical study for regions.

○ Crime rate
○ Unemployment rate

What Are The Challenges?

● Trapped in the local search algorithm looking for optimal solution.

● Finding feasible neighboring solutions efficiently.

● Computational time

Related Work

Heuristic Search Algorithm Region Compactness Feasible Solution Technique

Simulated Annealing Tabu Greedy Parallel NMI
Corridor Region

Formula
Move Swap Merge

Scalable Max-P Regions: Data Preprocessing

● Data Preprocessing:
○ Removing islands.
○ Merging different datasets.

● Datasets:
○ New York City - 2056 Areas
○ New York State - 4918 Areas
○ California + Arizona + Nevada States - 10263 Areas

Scalable Max-P Regions: General Approach

● Construction Phase:
○ Grow Regions

■ Select seed area.
■ Add areas that reduces region dissimilarity.
■ Stops when threshold reaches a predefined value.

○ Enclaves Assignment
■ Select an enclave that has at least one assigned area as a neighbor.
■ Find neighboring regions.
■ Calculate neighboring regions dissimilarity when the enclave is added.
■ Enclave is added to the most similar region.

Scalable Max-P Regions: General Approach

● Local Search Phase (Tabu):
○ Find feasible neighbors by moving one area to another region

■ Create a list of border areas and their neighboring regions.
■ Move each area in the list to all the neighboring regions if it satisfies the following conditions:

● Region size > 1
● New threshold > predefined threshold
● Spatial contiguity is preserved

○ Moves are taken until maximum number of iterations is made without improving the dissimilarity measure.

Results

Results

Our Implementation when compared to the smallest

dataset of [1]’s Implementation: 2056 vs 400 areas.

Future Work

● Partition the data and parallelize the grow regions phase.

● Test the implementation against larger datasets.

SCALABLE RANGE QUERY FOR POLYGON LAYERS
Laila Abdelhafeez
Carter Slocum

Outline

1. Problem definition
2. Limitations of the related work
3. Challenges
4. Contribution
5. Evaluation
6. Front End
7. Demonstration

Big spatial data
systems

Data Partitioning — Global Index

Problem definition

Given arbitrary boundary points for a polygon
“California”, retrieve all data points “tweets” that are
located inside the query polygon boundary.

Filter-refine approach

Filter-refine approach employs two stages:
1. Filter the data using MBR — minimum bounding

rectangle. Only the data within the MBR,
candidate set, can be within the polygon.

2. Refine the candidate set using the exact
geometry using the point in polygon operation.
**Blue tweets are within California but red tweets are
not.

Filter-refine in GeoSpark

1. Broadcast query polygon to all partitions.
2. Perform filter-refine on each partition of the

data.

Challenges

1. Point-in-polygon operation is computationally expensive for complex polygons.
2. BIG DATA leads to a huge number of point-in-polygon operation for just one polygon.
3. Processing polygon layers will result intolerable processing time.

Proposed solution

Make use of the local index built on each partition.
In analogy of divide and conquer approach:

1. Decompose the complex polygon into set of
smaller polygons by clipping the query polygon
with the underlying index.

2. Clipping the polygon will result three possible
states:

a. Grid cell is wholly contained in query polygon.
(Add all cell data to result set)

b. Grid cell is outside the query polygon. (Ignore
all data in this cell)

c. Grid cell intersects the query polygon resulting a
smaller polygon. (perform filter-refine on the
resulting polygon)

Missing problem?

◼ The previously mentioned solution, reduces the computation time of a single
polygon query.

◼ An executor works on a partition of the data.
◼ A single polygon will appear in a small number of partitions, leaving other

executors idle.
◼ Leverage these idle executors to process other polygons that are in different

locations.

Polygon layer query

Given a polygon layer “Countries of the world”, retrieve all data points that is located inside each polygon
separately.

Proposed solution cont.

1. Partition the polygons into the partitions that include them.

2. Clip the polygon with the partition boundary, to get a smaller polygon that only

intersects with the current partition.

3. Process the polygons of each partition.

4. Group the results.

Polygon layer results

Continents Countries States Counties Postal codes
File size 4 MB 12 MB 27 MB 1.1 GB 1.2 GB
Records 8 255 4,489 45,961 152,908
Source ARCGIS NE NE GADM UCR STAR
Total time 7.6 minutes 7 minutes 8 minutes 14.6 minutes 9.7 minutes
Average size per
record

0.5 MB 0.05 MB 0.006 0.025 0.008

Polygon
partitioning
time

1.9 minutes 50 seconds 9 seconds 36 seconds 27 seconds

Range query
time

5.7 minutes 6.2 minutes 7.8 minutes 14 minutes 9.2 minutes

Displaying Results

1. Polygon Data are stored as large lists of Lat/Lon coordinates. (NA is over 60k)

2. Users may not wish to store multiple Gigabytes of polygon data for quick entry.

3. Need to quickly and Intuitively display Polygons and query results

Spatial Polygon Front-End

◼ Browser Based front end to display Map + polygons.
◼ Intuitive query on click.
◼ Far less data in memory and over Network.

Front End Challenges

◼ Cannot Load 6 GB of polygon data every page.
◼ Cannot send multiple MB of query data to back-end over

Network
◼ Must reserve shape to overlay on Google Maps.
◼ Need to Map from Lat/Lon to Pixel coords

Spatial Polygon Front-End

◼ Built Using Google Maps Javascript API for Background map and Polygon Scaling
◼ Mapshaper to prune vertices while maintaining shape and polygons (Visvalingam)

Front End Results

◼ Data loaded reduced by 99.5%

◼ 3610 polygons converted and drawn in roughly one second

◼ Fully functional Interface for issuing Queries.

