CS141: Intermediate Data Structures and Algorithms

Graphs

Amr Magdy
Graph Data Structure

- A set of nodes (vertices) and edges connecting them
Graph Applications

- Road network
- Social media networks
- Knowledge bases

Jerry Brown
- Resident-in California
- Governor-of California
- Capital-of Washington

US
- State-in California
- Capital-of Washington
Graph Representations

- **Adjacency matrix**
  - Storage and access efficient when many edges exist

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Graph Representations

- Adjacency matrix
  - Storage and access efficient when many edges exist
Graph Representations

- Incidence Matrix
  - Expensive storage, not popular

![Graph Diagram]

```
<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
<th>E8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Graph Representations

- Adjacency list
  - Storage efficient when few edges exit (sparse graphs)
  - Sequential access to edges (vs random access in matrix)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

Fig(i): Connected Graph

Fig(ii): Unconnected Graph

There are three components of above unconnected graph
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
  - Tree: directed acyclic graph with max of one path between any two nodes
  - Forest: set of disjoint trees
Basic Graph Algorithms

- Graph traversal algorithms
  - Bread-first Search (BFS)
  - Depth-first Search (DFS)
- Topological Sort
- Graph Connectivity
- Cycle Detection
Breadth-first Search (BFS)

How to traverse?

Diagram: A tree structure with nodes labeled from 1 to 12.
Breadth-first Search (BFS)

- How to traverse?
- Use a queue
Breadth-first Search (BFS)

- How to traverse?
  - Use a queue
  - Start at a vertex $s$
    - Mark $s$ as visited
    - Enqueue neighbors of $s$
  - while $Q$ not empty
    - Dequeue vertex $u$
    - Mark $u$ as visited
    - Enqueue unvisited neighbors of $u$
Breadth-first Search (BFS)

(a) Breadth-first Search (BFS)

(b) Breadth-first Search (BFS)

(c) Breadth-first Search (BFS)

(d) Breadth-first Search (BFS)

(e) Breadth-first Search (BFS)

(f) Breadth-first Search (BFS)

(g) Breadth-first Search (BFS)

(h) Breadth-first Search (BFS)

(i) Breadth-first Search (BFS)
Depth-first Search (DFS)

- How to traverse?
Depth-first Search (DFS)

- How to traverse?
- Use a stack
Depth-first Search (DFS)

- How to traverse?
- Use a stack
- Start at a vertex \( s \)
  - Mark \( s \) as visited
  - Push neighbors of \( s \)
  - while Stack not empty
    - Pop vertex \( u \)
    - Mark \( u \) as visited
    - Push unvisited neighbors of \( u \)
Complexity of Graph Traversal

For $G = (V,E)$, $V$ set of vertices, $E$ set of edges

**BFS**
- Time: $O(|V|+|E|)$
- Space: $O(|V|)$ (plus graph representation)

**DFS**
- $O(|V|+|E|)$
- Space: $O(|V|)$ (plus graph representation)
Graph Connectivity

- Checking if graph is connected:
Graph Connectivity

> Checking if graph is connected: 
> isConnected(G)
> 
> { 
>     DFS(G)
>     if any vertex not visited
>         return false
>     else
>         return true
> }

Time Complexity: $O(|V|+|E|)$
Graph Connected Components

Getting the graph connected components

Fig(ii):
Unconnected Graph

There are three component of above unconnected graph
Graph Connected Components

- Getting the graph connected components
- Mark all nodes as unvisited
  \[ \text{visitCycle} = 1 \]
  while (there exists unvisited node n)
  
  \[
  \begin{aligned}
  &- \text{Start DFS}(G) \text{ at n, mark visited node with visitCycle} \\
  &- \text{Output all nodes with current visitCycle as one connected component} \\
  &- \text{visitCycle} = \text{visitCycle}+1
  \end{aligned}
  \]

Time Complexity: \( O(|V|+|E|) \)
Cycle Detection

- Does a connected graph $G$ contain a cycle? (non-trivial cycle)
Cycle Detection

- Does a connected graph $G$ contain a cycle? (non-trivial cycle)
- General idea: if DFS procedure tries to revisit a visited node, then there is a cycle
Cycle Detection

Does a graph G contain a cycle? (non-trivial cycle)

IsAcyclic(G) {
    Start at unvisited vertex s
    Mark “s” as visited
    Push neighbors u of s in stack <node:u, parent:s>
    while stack not empty
        Pop vertex u
        Mark u as visited
        if u has a visited neighbor v
            & v is non-parent for u
            return true
        Push unvisited neighbors v of u <node:v, parent:u>
    return false
Cycle Detection

- Does a connected graph G contain a cycle? (non-trivial cycle)
- General idea: if DFS procedure tries to revisit a visited node, then there is a cycle
- Why checking if v non-parent for u?
  - To eliminate trivial cycles, a cycle that involve only two nodes
Cycle Detection in Directed Graphs

IsAcyclicDirected(node s, currPath) {
    if s in currPath return true
    if s is visited return false
    Mark s as visited
    Add s to currPath
    for each neighbor u of s
        if(IsAcyclicDirected(u, currPath))
            return true
    remove s from currPath
    return false
}
Cycle Detection in Directed Graphs

while (there is unvisited node s)
{
    currPath = {};
    if (IsAcyclicDirected(s, currPath))
        return true;
}
return false;
Topological Sort

- Determine a linear order for vertices of a directed acyclic graph (DAG)
  - Mostly dependency/precedence graphs
  - If edge \((u,v)\) exists, then \(u\) appears before \(v\) in the order
Topological Sort

L ← Empty list
S ← Set of all nodes with no incoming edge
while S is non-empty do
    remove a node n from S
    add n to end of L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
return L (a topologically sorted order)
Spanning Tree

Given a connected graph $G=(V,E)$, a spanning tree $T \subseteq E$ is a set of edges that “spans” (i.e., connects) all vertices in $V$.

A **Minimum Spanning Tree (MST)**: a spanning tree with minimum total weight on edges of $T$

Application:
- The wiring problem in hardware circuit design
Spanning Tree: Example

A — 1 — B

A — 4 — D

B — 3 — E

B — 4 — C

E — 2 — F

D — 4 — E

C — 5 — F

E — 7 — F
Spanning Tree: Not MST

Total weight = 21
Spanning Tree: MST

Total weight = 16
Spanning Tree: Another MST

Total weight = 16
Finding MST: Kruskal’s algorithm

- Sort all the edges by weight
- Scan the edges by weight from lowest to highest
- If an edge introduces a cycle, drop it
- If an edge does not introduce a cycle, pick it
- Terminate when $n-1$ edges are picked
  ($n$: number of vertices)
Finding MST: Kruskal’s algorithm

Diagram of a graph with weighted edges, showing the process of finding the minimum spanning tree (MST) using Kruskal’s algorithm.
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST

› Kruskal’s algorithm: greedy
  › Greedy choice: least weighted edge first
  › Complexity: $O(E \log E)$ – sorting edges by weight
  › Edge-cycle detection: $O(1)$ using hashing of $O(V)$ space

› Prim’s algorithm: greedy
  › Complexity: $O(E + V \log V)$ – using Fibonacci heap data structure
Shortest Paths in Graphs

- Given graph $G=(V,E)$, find shortest paths from a given node $source$ to all nodes in $V$. (Single-source All Destinations)
Shortest Paths in Graphs

Given graph $G=(V,E)$, find shortest paths from a given node $source$ to all nodes in $V$. (Single-source All Destinations)

- If negative weight cycle exist from $s \rightarrow t$, shortest is undefined
  - Can always reduce the cost by navigating the negative cycle

- If graph with all $+ve$ weights $\rightarrow$ Dijkstra’s algorithm

- If graph with some $-ve$ weights $\rightarrow$ Bellman-Ford’s algorithm
Dijkstra’s Algorithm

Initialize:

$Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
\end{array}$

$S: \{\}$

$\text{Prev: \{A,U,U,U,U,U\}}$
Dijkstra’s Algorithm
Dijkstra’s Algorithm

\[ Q: \begin{array}{cccccc}
    & A & B & C & D & E \\
Q: & 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & \infty & \infty & \infty \\
\end{array} \]

\[ S: \{A\} \]

\[ \text{Prev: \{A,A,A,U,U\}} \]
Dijkstra’s Algorithm

\[ Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty & \infty
\end{array} \]

\[ S: \{ A, C \} \]

\[ \text{Prev: \{A,A,A,U,U\}} \]
Dijkstra’s Algorithm

Q: | A | B | C | D | E |
---|---|---|---|---|---|
0  |   |   |   |   |   |
10 |   | 3 |   |   |   |
7  | 3 |   | 11| 5 |   |

S: { A, C }

Prev: {A,C,A,C,C,C}
Dijkstra’s Algorithm

$Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & & & \\
\end{array}$

$S: \{ A, C, E \}$

$Prev: \{A,C,A,C,C\}$

Diagram:

- Vertices: A, B, C, D, E
- Edges with weights:
  - A to B: 10
  - A to C: 7
  - B to C: 4
  - C to D: 8
  - C to E: 2
  - D to E: 9

- Current state:
  - Q: A, B, C, D, E
  - S: A, C, E
  - Prev: A, C, A, C, C
Dijkstra’s Algorithm

**Q:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**S:** \{ A, C, E \}

**Prev:** \{A,C,A,C,C\}
Dijkstra’s Algorithm

\[ A \quad B \quad C \quad D \quad E \]

\[
\begin{array}{c|c|c|c|c|c}
Q: & A & B & C & D & E \\
0 & 0 & \infty & \infty & \infty & 8 \\
10 & 10 & \infty & \infty & 8 & 8 \\
7 & 7 & 3 & \infty & 11 & 5 \\
7 & 7 & 3 & \infty & 11 & 5 \\
\end{array}
\]

\[ S: \{ A, C, E, B \} \]

\[ \text{Prev: \{A,C,A,C,C\}} \]
Dijkstra’s Algorithm

Q:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: \{ A, C, E, B \}

Prev: \{A,C,A,B,C\}
Dijkstra’s Algorithm

$Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & 7 \\
7 & 3 & 11 & \infty & 9 \\
7 & 3 & 11 & 11 & 5 \\
\end{array}$

$S: \{ A, C, E, B, D \}$

$Prev: \{ A, C, A, B, C \}$
Dijkstra’s Algorithm

\[ \text{Prev: } \{A, C, A, B, C\} \]

\[ S: \{ A, C, E, B, D \} \]
Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):

2     create vertex set Q

3 for each vertex v in Graph:  //Initialization
4         Dist[v] ← INFINITY  //Unknown distance from source to v
5         Prev[v] ← UNDEFINED  //Previous node in path from source to v
6     add v to Q  //All nodes initially unvisited (in Q)
7
8 Dist[source] ← 0  // Distance from source to source = 0
9 Prev[source] ← source

10 while Q is not empty:
11     u ← vertex in Q with min Dist[u]  //Node with the least distance
12     remove u from Q

13 for each neighbor v of u in Q:  //v is still in Q.
14     tmp ← Dist[u] + edge_length(u, v)  //trying u as “source->u->v”
15     if tmp < Dist[v]:  //A shorter path to v has been found
16         Dist[v] ← tmp
17         Prev[v] ← u

18 return Dist[], S[]
Book Readings & Credits

› Book Readings:
›   Ch. 22, 23.2, 24.3

› Credits:
›   Figures:
›     Wikipedia
›     btechsmartclass.com
›   Prof. Ahmed Eldawy notes
›   Laksman Veeravagu and Luis Barrera