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Graph Data Structure

A set of nodes (vertices) and edges connecting them
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Graph Applications

Road network

Social media networks

Knowledge bases
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Graph Representations

Adjacency matrix

Storage and access efficient when many edges exist
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Graph Representations

Adjacency matrix
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Graph Representations

Incidence Matrix 

Expensive storage, not popular
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Graph Representations

Adjacency list

Storage efficient when few edges exit (sparse graphs)

Sequential access to edges (vs random access in matrix)
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Types of Graphs

Directed and Undirected graphs

Weighted and Unweighted graphs

Connected graphs

Bipartite graphs

Acyclic graphs

Tree/Forest
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Types of Graphs

Directed and Undirected graphs

Weighted and Unweighted graphs

Connected graphs

Bipartite graphs

Acyclic graphs

Tree/Forest

Tree: directed acyclic graph with max of one path between 

any two nodes

Forest: set of disjoint trees
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Basic Graph Algorithms

Graph traversal algorithms

Bread-first Search (BFS)

Depth-first Search (DFS)

Topological Sort

Graph Connectivity

Cycle Detection
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Breadth-first Search (BFS)

How to traverse?
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Breadth-first Search (BFS)

How to traverse?

Use a queue
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Breadth-first Search (BFS)

How to traverse?

Use a queue

Start at a vertex s

Mark s as visited

Enqueue neighbors of s

while Q not empty

Dequeue vertex u

Mark u as visited

Enqueue unvisited neighbors of u
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Breadth-first Search (BFS)
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Depth-first Search (DFS)

How to traverse?
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Depth-first Search (DFS)

How to traverse?

Use a stack
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Depth-first Search (DFS)

How to traverse?

Use a stack

Start at a vertex s

Mark s as visited

Push neighbors of s

while Stack not empty

Pop vertex u

Mark u as visited

Push unvisited neighbors of u
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Complexity of Graph Traversal

For G = (V,E), V set of vertices, E set of edges

BFS

Time: O(|V|+|E|)

Space: O(|V|) (plus graph representation)

DFS

O(|V|+|E|)

Space: O(|V|) (plus graph representation)
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Graph Connectivity

Checking if graph is connected:
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Graph Connectivity

Checking if graph is connected:

IsConnected(G)

{

DFS(G)

if any vertex not visited

return false

else

return true

}

Time Complexity: O(|V|+|E|)
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Graph Connected Components

Getting the graph connected components
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Graph Connected Components

Getting the graph connected components

Mark all nodes as unvisited

visitCycle = 1

while( there exists unvisited node n)

{

- Start DFS(G) at n, mark visited node with visitCycle

- Output all nodes with current visitCycle as one 

connected component

- visitCycle = visitCycle+1

}

Time Complexity: O(|V|+|E|)

26



Cycle Detection

Does a connected graph G contain a cycle? 

(non-trivial cycle)
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Cycle Detection

Does a connected graph G contain a cycle? 

(non-trivial cycle)

General idea: if DFS procedure tries to revisit a visited 

node, then there is a cycle

28



Cycle Detection

Does a graph G contain a cycle? (non-trivial cycle)

IsAcyclic(G) {

Start at unvisited vertex s

Mark “s” as visited

Push neighbors u of s in stack <node:u, parent:s>

while stack not empty

Pop vertex u

Mark u as visited

if u has a visited neighbor v 

& v is non-parent for u

return true

Push unvisited neighbors v of u <node:v, parent:u>

return false

}
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Cycle Detection

Does a connected graph G contain a cycle? 

(non-trivial cycle)

General idea: if DFS procedure tries to revisit a visited 

node, then there is a cycle

Why checking if v non-parent for u?

To eliminate trivial cycles, a cycle that involve only two nodes
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Cycle Detection in Directed Graphs

IsAcyclicDirected(node s, currPath) {

if s in currPath return true

if s is visited return false

Mark s as visited

Add s to currPath

for each neighbor u of s

if(IsAcyclicDirected(u, currPath))

return true

remove s from currPath

return false

}
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Cycle Detection in Directed Graphs

while(there is unvisited node s)

{

currPath = {}

if(IsAcyclicDirected(s, currPath))

return true

}

return false
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Topological Sort

Determine a linear order for vertices of a directed acyclic 

graph (DAG)

Mostly dependency/precedence graphs

If edge (u,v) exists, then u appears before v in the order
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Topological Sort
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Spanning Tree

Given a connected graph G=(V,E), a spanning tree T ⊆
E is a set of edges that “spans” (i.e., connects) all 

vertices in V.

A Minimum Spanning Tree (MST): a spanning tree with 

minimum total weight on edges of T

Application:

The wiring problem in hardware circuit design
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Spanning Tree: Example
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Spanning Tree: Not MST
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Spanning Tree: MST
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Spanning Tree: Another MST
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Finding MST: Kruskal’s algorithm

Sort all the edges by weight 

Scan the edges by weight from lowest to highest

If an edge introduces a cycle, drop it

If an edge does not introduce a cycle, pick it

Terminate when n-1 edges are picked 

(n: number of vertices)
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Finding MST: Kruskal’s algorithm
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42



Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm
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Finding MST

Kruskal’s algorithm: greedy

Greedy choice: least weighted edge first

Complexity: O(E log E) – sorting edges by weight

Edge-cycle detection: O(1) using hashing of O(V) space

Prim’s algorithm: greedy

Complexity: O(E+ V log V) – using Fibonacci heap data structure
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Shortest Paths in Graphs

Given graph G=(V,E), find shortest paths from a given node 

source to all nodes in V. (Single-source All Destinations)
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Shortest Paths in Graphs

Given graph G=(V,E), find shortest paths from a given node 

source to all nodes in V. (Single-source All Destinations)

If negative weight cycle exist from s→t, shortest is undefined

Can always reduce the cost by navigating the negative cycle

If graph with all +ve weights → Dijkstra’s algorithm

If graph with some -ve weights → Bellman-Ford’s algorithm
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Dijkstra’s Algorithm

Prev: {A,U,U,U,U}



Dijkstra’s Algorithm
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Dijkstra’s Algorithm

Prev: {A,C,A,B,C}



Dijkstra’s Algorithm

Prev: {A,C,A,B,C}
A: A → A

B: A → C → B

C: A → C

D: A → C → B → D

E: A → C → E



Dijkstra’s Algorithm
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Book Readings & Credits

Book Readings:

Ch. 22, 23.2, 24.3

Credits:

Figures:

Wikipedia

btechsmartclass.com

https://www.codingeek.com/data-structure/graph-introductions-

explanations-and-applications/

Prof. Ahmed Eldawy notes

Laksman Veeravagu and Luis Barrera
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