CS141: Intermediate Data Structures and Algorithms

Greedy Algorithms

Amr Magdy
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
- Activities compete on a single resource, e.g., CPU.
Activity Selection Problem

- Given a set of activities \(S = \{a_1, a_2, \ldots, a_n\} \) where each activity \(i \) has a start time \(s_i \) and a finish time \(f_i \), where \(0 \leq s_i < f_i < \infty \).
- An activity \(a_i \) happens in the half-open time interval \([s_i, f_i)\).
- Activities compete on a single resource, e.g., CPU.
- Two activities are said to be compatible if they do not overlap.
Activity Selection Problem

- Given a set of activities \(S = \{a_1, a_2, \ldots, a_n\} \) where each activity \(i \) has a start time \(s_i \) and a finish time \(f_i \), where \(0 \leq s_i < f_i < \infty \).
- An activity \(a_i \) happens in the half-open time interval \([s_i, f_i)\).
- Activities compete on a single resource, e.g., CPU.
- Two activities are said to be compatible if they do not overlap.
- The problem is to find a maximum-size compatible subset, i.e., a one with the maximum number of activities.
Example

- \(a_3[0,6) \)
- \(a_{10}[2,14) \)
- \(a_1[1,4) \)
- \(a_9[8,12) \)
- \(a_5[3,9) \)
- \(a_4[5,7) \)
- \(a_8[8,11) \)
- \(a_2[3,5) \)
- \(a_7[6,10) \)
- \(a_{11}[12,16) \)
- \(a_6[5,9) \)
A Compatible Set

- a3[0,6)
- a10[2,14)
- a1[1,4)
- a9[8,12)
- a5[3,9)
- a4[5,7)
- a8[8,11)
- a2[3,5)
- a7[6,10)
- a11[12,16)
- a6[5,9)
A Better Compatible Set

\[
a_3[0,6) \quad a_{10}[2,14) \quad a_1[1,4) \quad a_9[8,12) \quad a_5[3,9) \quad a_4[5,7) \quad a_8[8,11) \quad a_2[3,5) \quad a_7[6,10) \quad a_{11}[12,16) \quad a_6[5,9)
\]
Participation Exercise

Two activities are said to be compatible if they do not overlap. For example, a1 and a8 are compatible activities. The subset that contains a2, a6, and a11 is a compatible subset of size 3, i.e., has three compatible activities. Find a maximum-size compatible subset, i.e., a one with the maximum number of activities, of the following set of activities.
An Optimal Solution

- a3[0,6)
- a10[2,14)
- a1[1,4)
- a9[8,12)
- a5[3,9)
- a4[5,7)
- a8[8,11)
- a2[3,5)
- a7[6,10)
- a11[12,16)
- a6[5,9)
Another Optimal Solution

a3[0,6)
a10[2,14)
a1[1,4)
a9[8,12)
a5[3,9)
a4[5,7)
a8[8,11)
a2[3,5)
a7[6,10)
a11[12,16)
a6[5,9)
Activity Selection Problem

Solution algorithm?
- Brute force (naïve): all possible combinations \(\rightarrow O(2^n) \)
- Can we do better?
- Divide line for D&C is not clear
Activity Selection Problem

Solution algorithm?

- Brute force (naïve): all possible combinations → $O(2^n)$
- Can we do better?
- Divide line for D&C is not clear

Instead, can we make a **greedy** choice?

- i.e., take the best choice so far, reduce the problem size, and solve a subproblem later
Activity Selection Problem

- Solution algorithm?
 - Brute force (naïve): all possible combinations $\rightarrow O(2^n)$
 - Can we do better?
 - Divide line for D&C is not clear

- Instead, can we make a **greedy** choice?
 - i.e., take the best choice so far, reduce the problem size, and solve a subproblem later

- Greedy choices
 - Longest first
 - Shortest first
 - Earliest start first
 - Earliest finish first
 - ...?
Activity Selection Problem

- Greedy choice: shortest length first
 - Why? To accommodate as much activities as possible
Activity Selection Problem

- Greedy choice: shortest length first
 - Why? To accommodate as much activities as possible
- Is this choice correct? Does it guarantee an optimal solution?
Activity Selection Problem

- Greedy choice: shortest length first
 - Why? To accommodate as much activities as possible
- Is this choice correct? Does it guarantee an optimal solution?
 - Can we find a counter example against this choice?
Activity Selection Problem

- Greedy choice: shortest length first
 - Why? To accommodate as much activities as possible
- Is this choice correct? Does it guarantee an optimal solution?
 - Can we find a counter example against this choice?
 - Yes
Activity Selection Problem

- Greedy choice: shortest length first
 - Why? To accommodate as much activities as possible
- Is this choice correct? Does it guarantee an optimal solution?
 - Can we find a counter example against this choice?
 - Yes
- This greedy choice does not work
Activity Selection Problem

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
Activity Selection Problem

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
- Is this choice correct? Does it guarantee an optimal solution?
 - Can we find a counter example against this choice?
Activity Selection Problem

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
- Is this choice correct? Does it guarantee an optimal solution?
 - Can we find a counter example against this choice?
 - Not clear
 - Let’s try to prove its correctness, if we cannot, then it is wrong
Activity Selection Problem

- Is greedy choice enough to get optimal solution?
- Greedy choice property
 - Prove that if a_m has the earliest finish time, it must be included in some optimal solution.
Activity Selection Problem

- Is greedy choice enough to get optimal solution?
- Greedy choice property
 - Prove that if a_m has the earliest finish time, it must be included in some optimal solution.

- Assume a set S and a solution set A, where $a_m \notin A$
 - Let a_j is the activity with the earliest finish time in A (not in S)
 - Compose another set $A' = A - \{a_j\} \cup \{a_m\}$
 - A' still have all activities disjoint (as a_m has the global earliest finish time and A activities are already disjoint), and $|A'| = |A|$
 - Then A' is an optimal solution
 - Then a_m is always included in an optimal solution
Activity Selection Problem

- Is greedy choice enough to get optimal solution?
- Greedy choice property
 - Prove that if \(a_m \) has the earliest finish time, it must be included in some optimal solution.
- Assume a set \(S \) and a solution set \(A \), where \(a_m \notin A \)
 - Let \(a_j \) is the activity with the earliest finish time in \(A \) (not in \(S \))
 - Compose another set \(A' = A - \{a_j\} \cup \{a_m\} \)
 - \(A' \) still have all activities disjoint (as \(a_m \) has the global earliest finish time and \(A \) activities are already disjoint), and \(|A'| = |A| \)
 - Then \(A' \) is an optimal solution
 - Then \(a_m \) is always included in an optimal solution
- In the example:
 - \(A = \{a_2, a_4, a_8, a_{11}\}, \quad a_m = a_1, \quad a_j = a_2 \)
 - \(A' = \{a_1, a_4, a_8, a_{11}\} \)
 - As \(a_1 \) finishes before \(a_2 \), then \(a_1 \) is compatible with \(a_4, a_8, a_{11} \)
Activity Selection Problem

Solution:
- Include earliest finish activity a_m in solution A
- Remove all a_m’s incompatible activities
- Repeat for the remaining earliest finish activity
Activity Selection Problem: Greedy Solution

- $a_3[0,6)$
- $a_{10}[2,14)$
- $a_1[1,4)$
- $a_9[8,12)$
- $a_5[3,9)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_2[3,5)$
- $a_7[6,10)$
- $a_{11}[12,16)$
- $a_6[5,9)$
Activity Selection Problem: Greedy Solution

- $a_3[0,6)$
- $a_{10}[2,14)$
- $a_1[1,4)$
- $a_9[8,12)$
- $a_5[3,9)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_2[3,5)$
- $a_7[6,10)$
- $a_{11}[12,16)$
- $a_6[5,9)$
Activity Selection Problem: Greedy Solution

a1[1,4] a9[8,12] a11[12,16]

a4[5,7] a8[8,11] a7[6,10]
Activity Selection Problem: Greedy Solution

a1[1,4) a9[8,12)

a4[5,7) a8[8,11)

a7[6,10) a11[12,16)

a6[5,9)
Activity Selection Problem: Greedy Solution
Activity Selection Problem: Greedy Solution

- $a_1[1,4)$
- $a_9[8,12)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_{11}[12,16)$
Activity Selection Problem: Greedy Solution

- $a_1[1,4)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_{11}[12,16)$
Activity Selection Problem: Greedy Solution

- $a_1[1,4)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_{11}[12,16)$
Activity Selection Problem

» Pseudo code?
Activity Selection Problem

- Pseudo code?

findMaxSet(Array a, int n)
{
 - Sort “a” based on earliest finish time
 - result ← {}
 - for i = 1 to n
 validAi = true
 for j = 1 to result.size
 if (a[i] is incompatible with result[j])
 validAi = false
 if (validAi)
 result ← result U a[i]
 - return result
}
Activity Selection Problem

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems
Activity Selection Problem

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

- Assume A is an optimal solution for S
 - Is A' = A-\{a_i\} an optimal solution for S' = S-\{a_i and its incompatible activities\}?
 - If A' is not an optimal solution, then there an optimal solution A'' for S' so that |A''| > |A'|
 - Then B=A'' U \{a_i\} is a solution for S, |B|=|A''|+1, |A|=|A'|+1
 - Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction
 - Then A' must be an optimal solution for S'
Activity Selection Problem

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

- Assume A is an optimal solution for S
 - Is A' = A-{a_i} an optimal solution for S' = S-{a_i and its incompatible activities}?
 - If A’ is not an optimal solution, then there an optimal solution A” for S’ so that |A’”| > |A’|
 - Then B=A” U {a_i} is a solution for S, |B|=|A’”|+1, |A|=|A’|+1
 - Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction
 - Then A’ must be an optimal solution for S’

- Why optimal substructure?
Activity Selection Problem

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

- Assume A is an optimal solution for S
 - Is A' = A-\{a_i\} an optimal solution for S' = S-\{a_i and its incompatible activities\}?
 - If A' is not an optimal solution, then there an optimal solution A’’ for S’ so that |A’’| > |A’|
 - Then B=A’’ U \{a_i\} is a solution for S, |B|=|A’’|+1, |A|=|A’|+1
 - Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction
 - Then A’ must be an optimal solution for S’

- Why optimal substructure?
 - To guarantee it is correct to use solutions of subproblems after applying greedy choice
Elements of a Greedy Algorithm

1. Optimal Substructure
2. Greedy Choice Property
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 - One choice (greedy) vs Multiple possible choices

 - One subproblem
 - A lot of overlapping subproblems
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices

 One subproblem vs A lot of overlapping subproblems

- Both have optimal substructure
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 - One choice (greedy) vs Multiple possible choices

- Both have optimal substructure

- Elements:

<table>
<thead>
<tr>
<th>Greedy</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal substructure</td>
<td>Optimal substructure</td>
</tr>
<tr>
<td>Greedy choice property</td>
<td>Overlapping subproblems</td>
</tr>
</tbody>
</table>

- Elements:
Knapsack Problem

item 1
10
$60

item 2
20
$100

item 3
45
$120

knapsack
50
Knapsack Problem

0-1 Knapsack: Each item either included or not

Greedy choices:
- Take the most valuable → Does not lead to optimal solution
- Take the most valuable per unit → Works in this example
Knapsack Problem

0-1 Knapsack: Each item either included or not

Greedy choices:

- Take the most valuable → Does not lead to optimal solution
- Take the most valuable per unit → Does not work
Knapsack Problem

- Fractional Knapsack: Part of items can be included
Knapsack Problem

- Fractional Knapsack: Part of items can be included
- Greedy choices:
 - Take the most valuable → Does not lead to optimal solution
 - Take the most valuable per unit → Does work
Fractional Knapsack Problem

- Greedy choice property: take the most valuable per weight unit
Fractional Knapsack Problem

- Greedy choice property: take the most valuable per weight unit

- Proof of optimality:
 - Given the set S ordered by the value-per-weight, taking as much as possible x_j from the item j with the highest value-per-weight will lead to an optimal solution X
 - Assume we have another optimal solution X^\prime where we take less amount of item j, say $x_j^\prime < x_j$.
 - Since $x_j^\prime < x_j$, there must be another item k which was taken with a higher amount in X^\prime, i.e., $x_k^\prime > x_k$.
 - We create another solution $X^{\prime\prime}$ by doing the following changes in X^\prime
 - Reduce the amount of item k by a value z and increase the amount of item j by a value z
 - The value of the new solution $V^{\prime\prime} = V^\prime + z \cdot \frac{v_j}{w_j} - z \cdot \frac{v_k}{w_k}$
 $= V^\prime + z \cdot \left(\frac{v_j}{w_j} - \frac{v_k}{w_k}\right) \Rightarrow \frac{v_j}{w_j} - \frac{v_k}{w_k} \geq 0 \Rightarrow V^{\prime\prime} \geq V^\prime$
Fractional Knapsack Problem

- Optimal substructure
Fractional Knapsack Problem

- Optimal substructure
- Given the problem S with an optimal solution X with value V, we want to prove that the solution $X` = X - x_j$ is optimal to the problem $S` = S - \{j\}$ and the knapsack capacity $W` = W - x_j$
- Proof by contradiction
 - Assume that $X`$ is not optimal to $S`$
 - There is another solution $X``$ to $S`$ that has a higher total value $V`` > V`$
 - Then $X`` U \{x_j\}$ is a solution to S with value $V`` + x_j > V` + x_j > V$
 - Contradiction as V is the optimal value
Fractional Knapsack Problem

Fknapsack (W, S, v’s, w’s) {
 - Sort S based on vi/wi value
 - rw = W
 - result = { }
 - for each si in S
 if(wi <= rw)
 result = result U si
 rw = rw-wi
 else
 result = result U rw/wi * si
 rw = 0
 - return result
}
Huffman Codes

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (in thousands)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>
Huffman Codes

<table>
<thead>
<tr>
<th>Frequency (in thousands)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

- Prefix Codes: No code is allowed to be a prefix of another code
- Prefix codes give optimal data compression
Huffman Codes

Prefix Codes: No code is allowed to be a prefix of another code
Prefix codes give optimal data compression
Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”
Encoded message “110100” Decoding “110100”

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (in thousands)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

Prefix Codes: No code is allowed to be a prefix of another code
Prefix codes give optimal data compression
Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”
Encoded message “110100” Decoding “110100”
Huffman Codes

Prefix Codes: No code is allowed to be a prefix of another code

Prefix codes give optimal data compression

Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”
Encoded message “110100” Decoding “110100”

In the table:
Encoding with fixed-length needs 300K bits
Encoding with variable-length needs 224K bits
Huffman Codes

Fixed-length tree

Variable-length tree
Huffman Codes

We need an algorithm to build the optimal variable-length tree.
Huffman Codes: Tree Construction

\textbf{HUFFMAN}(C)

1. \hspace{1em} n = |C| \\
2. \hspace{1em} Q = C \\
3. \hspace{1em} \textbf{for} i = 1 \textbf{ to } n - 1 \\
4. \hspace{2em} \text{allocate a new node } z \\
5. \hspace{2em} z.\text{left} = x = \text{EXTRACT-MIN}(Q) \\
6. \hspace{2em} z.\text{right} = y = \text{EXTRACT-MIN}(Q) \\
7. \hspace{2em} z.\text{freq} = x.\text{freq} + y.\text{freq} \\
8. \hspace{1em} \text{INSERT}(Q, z) \\
9. \hspace{1em} \textbf{return} \ \text{EXTRACT-MIN}(Q) \quad \text{\textit{// return the root of the tree}}
Huffman Codes: Tree Construction

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45
Huffman Codes: Tree Construction

c:12 b:13 14 d:16 a:45

0 1
f:5 e:9
Huffman Codes: Tree Construction

Diagram showing a Huffman tree with nodes labeled as follows:
- 14
 - 0: f:5
 - 1: e:9
- 25
 - 0: c:12
 - 1: b:13
- d:16
- a:45
Huffman Codes: Tree Construction

25

0 1

c:12 b:13

30

0 1

14

0 1

f:5 e:9

da:16

a:45
Huffman Codes: Tree Construction
Huffman Codes: Tree Construction
Huffman Codes

- Details of optimal substructure and greedy choice property in the text book
Book Readings and Credits

› Book Readings:
 › 16.1 – 16.3

› Credits to:
 › Prof. Ahmed Eldawy notes