
CS141: Intermediate Data Structures

and Algorithms

Greedy Algorithms

Amr Magdy

Activity Selection Problem

Given a set of activities 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} where each

activity 𝑖 has a start time 𝑠𝑖 and a finish time 𝑓𝑖 , where 0

≤ 𝑠𝑖 < 𝑓𝑖 < ∞.

An activity 𝑎𝑖 happens in the half-open time interval [𝑠𝑖,
𝑓𝑖).

2

Activity Selection Problem

Given a set of activities 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} where each

activity 𝑖 has a start time 𝑠𝑖 and a finish time 𝑓𝑖 , where 0

≤ 𝑠𝑖 < 𝑓𝑖 < ∞.

An activity 𝑎𝑖 happens in the half-open time interval [𝑠𝑖,
𝑓𝑖).

Activities compete on a single resource, e.g., CPU

3

Activity Selection Problem

Given a set of activities 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} where each

activity 𝑖 has a start time 𝑠𝑖 and a finish time 𝑓𝑖 , where 0

≤ 𝑠𝑖 < 𝑓𝑖 < ∞.

An activity 𝑎𝑖 happens in the half-open time interval [𝑠𝑖,
𝑓𝑖).

Activities compete on a single resource, e.g., CPU

Two activities are said to be compatible if they do not

overlap.

4

Activity Selection Problem

Given a set of activities 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} where each

activity 𝑖 has a start time 𝑠𝑖 and a finish time 𝑓𝑖 , where 0

≤ 𝑠𝑖 < 𝑓𝑖 < ∞.

An activity 𝑎𝑖 happens in the half-open time interval [𝑠𝑖,
𝑓𝑖).

Activities compete on a single resource, e.g., CPU

Two activities are said to be compatible if they do not

overlap.

The problem is to find a maximum-size compatible

subset, i.e., a one with the maximum number of

activities.

5

Example

6

A Compatible Set

7

A Better Compatible Set

8

Participation Exercise

9

An Optimal Solution

10

Another Optimal Solution

11

Activity Selection Problem

Solution algorithm?

Brute force (naïve): all possible combinations → O(2n)

Can we do better?

Divide line for D&C is not clear

12

Activity Selection Problem

Solution algorithm?

Brute force (naïve): all possible combinations → O(2n)

Can we do better?

Divide line for D&C is not clear

Instead, can we make a greedy choice?

i.e., take the best choice so far, reduce the problem size, and

solve a subproblem later

13

Activity Selection Problem

Solution algorithm?

Brute force (naïve): all possible combinations → O(2n)

Can we do better?

Divide line for D&C is not clear

Instead, can we make a greedy choice?

i.e., take the best choice so far, reduce the problem size, and

solve a subproblem later

Greedy choices

Longest first

Shortest first

Earliest start first

Earliest finish first

…?

14

Activity Selection Problem

Greedy choice: shortest length first

Why? To accommodate as much activities as possible

15

Activity Selection Problem

Greedy choice: shortest length first

Why? To accommodate as much activities as possible

Is this choice correct? Does it guarantee an optimal

solution?

16

Activity Selection Problem

Greedy choice: shortest length first

Why? To accommodate as much activities as possible

Is this choice correct? Does it guarantee an optimal

solution?

Can we find a counter example against this choice?

17

Activity Selection Problem

Greedy choice: shortest length first

Why? To accommodate as much activities as possible

Is this choice correct? Does it guarantee an optimal

solution?

Can we find a counter example against this choice?

Yes

18

Activity Selection Problem

Greedy choice: shortest length first

Why? To accommodate as much activities as possible

Is this choice correct? Does it guarantee an optimal

solution?

Can we find a counter example against this choice?

Yes

This greedy choice does not work

19

Activity Selection Problem

Greedy choice: earliest finish first

Why? It leaves as much resource as possible for other tasks

20

Activity Selection Problem

Greedy choice: earliest finish first

Why? It leaves as much resource as possible for other tasks

Is this choice correct? Does it guarantee an optimal

solution?

Can we find a counter example against this choice?

21

Activity Selection Problem

Greedy choice: earliest finish first

Why? It leaves as much resource as possible for other tasks

Is this choice correct? Does it guarantee an optimal

solution?

Can we find a counter example against this choice?

Not clear

Let’s try to prove its correctness, if we cannot, then it is wrong

22

Activity Selection Problem

Is greedy choice enough to get optimal solution?

Greedy choice property

Prove that if am has the earliest finish time, it must be included in

some optimal solution.

23

Activity Selection Problem

Is greedy choice enough to get optimal solution?

Greedy choice property

Prove that if am has the earliest finish time, it must be included in

some optimal solution.

Assume a set S and a solution set A, where am ∉ A

Let aj is the activity with the earliest finish time in A (not in S)

Compose another set A’ = A – {aj} U {am}

A’ still have all activities disjoint (as am has the global earliest

finish time and A activities are already disjoint), and |A’|=|A|

Then A’ is an optimal solution

Then am is always included in an optimal solution

24

Activity Selection Problem

Is greedy choice enough to get optimal solution?

Greedy choice property

Prove that if am has the earliest finish time, it must be included in

some optimal solution.

Assume a set S and a solution set A, where am ∉ A

Let aj is the activity with the earliest finish time in A (not in S)

Compose another set A’ = A – {aj} U {am}

A’ still have all activities disjoint (as am has the global earliest

finish time and A activities are already disjoint), and |A’|=|A|

Then A’ is an optimal solution

Then am is always included in an optimal solution

In the example:

A ={a2, a4, a8, a11}, am= a1, aj= a2

A’={a1, a4, a8, a11}

As a1 finishes before a2, then a1 is compatible with a4, a8, a11
25

Activity Selection Problem

Solution:

Include earliest finish activity am in solution A

Remove all am’s incompatible activities

Repeat for the remaining earliest finish activity

26

Activity Selection Problem: Greedy

Solution

27

Activity Selection Problem: Greedy

Solution

28

Activity Selection Problem: Greedy

Solution

29

Activity Selection Problem: Greedy

Solution

30

Activity Selection Problem: Greedy

Solution

31

Activity Selection Problem: Greedy

Solution

32

Activity Selection Problem: Greedy

Solution

33

Activity Selection Problem: Greedy

Solution

34

Activity Selection Problem

Pseudo code?

35

Activity Selection Problem

Pseudo code?

findMaxSet(Array a, int n)

{

- Sort “a” based on earliest finish time

- result  {}

- for i = 1 to n

validAi = true

for j = 1 to result.size

if (a[i] is incompatible with result[j])

validAi = false

if (validAi)

result  result U a[i]

- return result

}
36

Activity Selection Problem

Does the problem have optimal substructure?

i.e., the optimal solution of a bigger problem has optimal

solutions for subproblems

37

Activity Selection Problem

Does the problem have optimal substructure?

i.e., the optimal solution of a bigger problem has optimal

solutions for subproblems

Assume A is an optimal solution for S

Is A’ = A-{ai} an optimal solution for S’ = S-{ai and its incompatible

activities}?

If A’ is not an optimal solution, then there an optimal solution A’’

for S’ so that |A’’| > |A’|

Then B=A’’ U {ai} is a solution for S, |B|=|A’’|+1, |A|=|A’|+1

Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction

Then A’ must be an optimal solution for S’

38

Activity Selection Problem

Does the problem have optimal substructure?

i.e., the optimal solution of a bigger problem has optimal

solutions for subproblems

Assume A is an optimal solution for S

Is A’ = A-{ai} an optimal solution for S’ = S-{ai and its incompatible

activities}?

If A’ is not an optimal solution, then there an optimal solution A’’

for S’ so that |A’’| > |A’|

Then B=A’’ U {ai} is a solution for S, |B|=|A’’|+1, |A|=|A’|+1

Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction

Then A’ must be an optimal solution for S’

Why optimal substructure?

39

Activity Selection Problem

Does the problem have optimal substructure?

i.e., the optimal solution of a bigger problem has optimal

solutions for subproblems

Assume A is an optimal solution for S

Is A’ = A-{ai} an optimal solution for S’ = S-{ai and its incompatible

activities}?

If A’ is not an optimal solution, then there an optimal solution A’’

for S’ so that |A’’| > |A’|

Then B=A’’ U {ai} is a solution for S, |B|=|A’’|+1, |A|=|A’|+1

Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction

Then A’ must be an optimal solution for S’

Why optimal substructure?

To guarantee it is correct to use solutions of subproblems after

applying greedy choice 40

Elements of a Greedy Algorithm

1. Optimal Substructure

2. Greedy Choice Property

41

Greedy vs. Dynamic Programming

Solving the bigger problem include

One choice (greedy) vs Multiple possible choices

42

Greedy vs. Dynamic Programming

Solving the bigger problem include

One choice (greedy) vs Multiple possible choices

One subproblem A lot of overlapping subproblems

43

Greedy vs. Dynamic Programming

Solving the bigger problem include

One choice (greedy) vs Multiple possible choices

One subproblem A lot of overlapping subproblems

Both have optimal substructure

44

Greedy vs. Dynamic Programming

Solving the bigger problem include

One choice (greedy) vs Multiple possible choices

One subproblem A lot of overlapping subproblems

Both have optimal substructure

Elements:

45

Greedy DM

Optimal substructure Optimal substructure

Greedy choice property Overlapping subproblems

Knapsack Problem

46

45

Knapsack Problem

47

0-1 Knapsack: Each item either included or not

Greedy choices:

Take the most valuable → Does not lead to optimal solution

Take the most valuable per unit →Works in this example

45

Knapsack Problem

48

0-1 Knapsack: Each item either included or not

Greedy choices:

Take the most valuable → Does not lead to optimal solution

Take the most valuable per unit → Does not work

30

Knapsack Problem

49

Fractional Knapsack: Part of items can be included

30

Knapsack Problem

50

Fractional Knapsack: Part of items can be included

Greedy choices:

Take the most valuable → Does not lead to optimal solution

Take the most valuable per unit → Does work

30

Fractional Knapsack Problem

Greedy choice property: take the most valuable per

weight unit

51

Fractional Knapsack Problem

Greedy choice property: take the most valuable per

weight unit

Proof of optimality:

Given the set 𝑆 ordered by the value-per-weight, taking as much

as possible 𝑥𝑗 from the item 𝑗 with the highest value-per-weight

will lead to an optimal solution 𝑋

Assume we have another optimal solution 𝑋` where we take less

amount of item 𝑗, say 𝑥𝑗` < 𝑥𝑗 .

Since 𝑥𝑗` < 𝑥𝑗, there must be another item 𝑘 which was taken with

a higher amount in 𝑋`, i.e., 𝑥𝑘` > 𝑥𝑘.

We create another solution 𝑋`` by doing the following changes in

𝑋`

Reduce the amount of item 𝑘 by a value 𝑧 and increase the

amount of item 𝑗 by a value 𝑧

The value of the new solution 𝑉`` = 𝑉` + 𝑧 𝑣𝑗/𝑤𝑗 − 𝑧 𝑣𝑘/𝑤𝑘

= 𝑉` + 𝑧 (𝑣𝑗/𝑤𝑗−𝑣𝑘/𝑤𝑘) → 𝑣𝑗/𝑤𝑗−𝑣𝑘/𝑤𝑘 ≥ 0 → 𝑉`` ≥ 𝑉` 52

Fractional Knapsack Problem

Optimal substructure

53

Fractional Knapsack Problem

Optimal substructure

Given the problem 𝑆 with an optimal solution 𝑋 with

value 𝑉, we want to prove that the solution 𝑋` = 𝑋 − 𝑥𝑗 is

optimal to the problem 𝑆` = 𝑆 - {𝑗} and the knapsack

capacity 𝑊` = 𝑊 − 𝑥𝑗
Proof by contradiction

Assume that 𝑋` is not optimal to 𝑆`

There is another solution 𝑋`` to 𝑆` that has a higher total value 𝑉``

> 𝑉`

Then 𝑋`` U {𝑥𝑗} is a solution to 𝑆 with value 𝑉``+ 𝑥𝑗> 𝑉`+ 𝑥𝑗 > 𝑉

Contradiction as 𝑉 is the optimal value

54

Fractional Knapsack Problem

Fknapsack (W, S, v’s, w’s) {

- Sort S based on vi/wi value

- rw = W

- result = { }

- for each si in S

if(wi <= rw)

result = result U si

rw = rw-wi

else

result = result U rw/wi * si

rw = 0

- return result

}
55

Huffman Codes

56

Huffman Codes

Prefix Codes: No code is allowed to be a prefix of

another code

Prefix codes give optimal data compression

57

Huffman Codes

Prefix Codes: No code is allowed to be a prefix of

another code

Prefix codes give optimal data compression

Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”

Encoded message “110100” Decoding “110100”

58

Huffman Codes

Prefix Codes: No code is allowed to be a prefix of

another code

Prefix codes give optimal data compression

Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”

Encoded message “110100” Decoding “110100”

In the table:

Encoding with fixed-length needs 300K bits

Encoding with variable-length needs 224K bits

59

Huffman Codes

Fixed-length tree Variable-length tree

60

Huffman Codes

Fixed-length tree Variable-length tree

We need an algorithm to build the optimal variable-length tree

61

Huffman Codes: Tree Construction

62

Huffman Codes: Tree Construction

63

Huffman Codes: Tree Construction

64

Huffman Codes: Tree Construction

65

Huffman Codes: Tree Construction

66

Huffman Codes: Tree Construction

67

Huffman Codes: Tree Construction

68

Huffman Codes

Details of optimal substructure and greedy choice

property in the text book

69

Book Readings and Credits

Book Readings:

16.1 – 16.3

Credits to:

Prof. Ahmed Eldawy notes

70

