IIIIIIIIIIIIIIIIIIIIII

CS141: Intermediate Data Structures
and Algorithms

Analysis of Algorithms

Amr Magdy

Analyzing Algorithms

1. Algorithm Correctness
Termination
Produces the correct output for all possible input.

2. Algorithm Performance
Either runtime analysis,
or storage (memory) space analysis
or both

R

Algorithm Correctness

» Sorting problem
Input: an array A of n numbers

Output: the same array in ascending sorted order (smallest
number in A[1] and largest in A[n])

R

Algorithm Correctness

» Sorting problem
Input: an array A of n numbers

Output: the same array in ascending sorted order (smallest
number in A[1] and largest in A[n])

» Insertion Sort

INSERTION-SORT (A, n)

for j =2ton
key = Al]]

// Insert A[j] into the sorted sequence A[l..j — 1].

I =j—1

while i > 0 and A[i] > key
A[l + 1] = Ali]
I =1 —1

Ali + 1] = key

R

Algorithm Correctness

» How does insertion sort work?

R

Algorithm Correctness

5

2

4

6

1

3

R

Algorithm Correctness

@ﬂ
5w
N |

R

Algorithm Correctness

R

R

Algorithm Correctness

5,246 |1 3

6

%94613

2 3 4 5

2 3 4 5 6

245?13

1

Algorithm Correctness

10

Algorithm Correctness

11

Algorithm Correctness

12

Algorithm Correctness

» Is Insertion sort a correct algorithm?

13

R

Algorithm Correctness

>

Is Insertion sort a correct algorithm?
Does it halt?
Does it produce correct output for all possible input?

14

R

Algorithm Correctness

» Is Insertion sort a correct algorithm?
Does it halt? Yes
Two deterministically bounded loops, no infinite loops involved
Does it produce correct output for all possible input?

15

R

Algorithm Correctness K

» Is Insertion sort a correct algorithm?
Does it halt? Yes
Two deterministically bounded loops, no infinite loops involved
Does it produce correct output for all possible input?

INSERTION-SORT (A, n)
— for j =2ton
key = AlJ]
// Insert A[j] into the sorted sequence A[l..j — 1].
=7 —1
= —Whllejl > 0 and Ali] > key
A[z —|— 1] = Ali]

16

Algorithm Correctness K

» Is Insertion sort a correct algorithm?
Does it halt? Yes
Does it produce correct output for all possible input?
Will check through loop invariants for insertion sort

For other algorithms, we can use any systematic logic/steps to
show that, either loop invariants or other methods

17

Algorithm Correctness

>

>

Is Insertion sort a correct algorithm?

Loop invariant:
It is a property that is true before and after each loop iteration.

18

R

Algorithm Correctness

>

>

>

Is Insertion sort a correct algorithm?
Loop invariant:

It is a property that is true before and after each loop iteration.

Insertion sort loop invariant (ISLI):

The first (J-1) array elements A[1..}-1] are:
(a) the original (J-1) elements, and (b) sorted.

INSERTION-SORT (A, n)
for j =2ton
key = AlJ]
// Insert A[j] into the sorted sequence A[l..] — 1].
I =7 —1
while i > 0 and A[i] > key
Ali + 1] = Ali]
I =1 —1
Ali + 1] = key

19

R

Algorithm Correctness

>

Is Insertion sort a correct algorithm?
If ISLI correct, then insertion sort is correct
How?
Halts and produces the correct output after (n-1) iterations

20

R

Algorithm Correctness K

» Is Insertion sort a correct algorithm?
If ISLI correct, then insertion sort is correct
How?
Halts and produces the correct output after (n-1) iterations

» Loop invariant (LI) correctness

Initialization:
LI is true prior to the 15t iteration.

Maintenance:
If LI true before the iteration, it remains true before the
next iteration

Termination:
After the loop terminates, the output is correct.

21

Participation Exercise K

Name: Student ID:

Insertion sort loop invariant (ISLI): The first (j-1) array elements A[1..J-1] are:
(a) the original (j-1) elements, and (b) sorted.

INSERTION-SORT (A, n)

for j = 2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j — 1].
i =j—1

while i > 0 and A[i] > key
Alil + 1] = AJi]
I =1i—1

Ali + 1] = key

Loop invariant (LI) correctness:

1. Initialization: Is LI true prior to the 1*' iteration?

2. Maintenance: If LI true before iteration j, does it remain true after iteration j and before iteration (j+1)?
3. Termination: After the loop terminates, 1s the output correct?

Answer the three questions for ISLI.
22

Algorithm Correctness K

» ISLI: The first (J-1) array elements A[1..}-1] are:
(a) the original (j-1) elements, and (b) sorted.

Initialization:
Prior to the 1stiteration, j=2, the first (2-1)=1 elements is sorted.

Maintenance:
The (j-1)™" iteration inserts the j" element in a sorted order, so after

the iteration, the first (J-1) elements remains the same and sorted.

Termination:
The loop terminates after (n-1) iterations, j=n+1, so the first n

elements are sorted, then the output is correct.
INSERTION-SORT (A, n)
for j =2ton
key = A[j]
// Insert A[j] into the sorted sequence A[l..j — 1].
i=j—1
Whil(,{i > 0 and A[i] > key
Ali + 1] = A[i]
i =1i—1
Ali + 1] = key

Algorithm Correctness K

» ISLI: The first (J-1) array elements A[1..}-1] are:
(a) the original (j-1) elements, and (b) sorted.

Initialization:
Prior to the 1stiteration, j=2, the first (2-1)=1 elements is sorted.

Maintenance:
The (j-1)™" iteration inserts the j" element in a sorted order, so after

the iteration, the first (J-1) elements remains the same and sorted.

Termination:
The loop terminates after (n-1) iterations, j=n+1, so the first n
elements are sorted, then the output is correct.
INSERTION-SORT (A, n)

for j =2ton
key = A[/]
// Insert A[j] into the sorted sequence A[l..j — 1].

Correct
Ali + 1] = A[i]

i =1i—1
Ali + 1] = key

Analyzing Algorithms

1. Algorithm Correctness
a. Termination
b. Produces the correct output for all possible input.

2. Algorithm Performance
a. Either runtime analysis,
h. or storage (memory) space analysis
c. orboth

25

R

Algorithms Performance Analysis K

> Which criteria should be taken into account?

> Running time

> Memory footprint
» Disk IO

> Network bandwidth
> Power consumption
» Lines of codes

26

Algorithms Performance Analysis K

> Which criteria should be taken into account?

> Running time

> Memory footprint
» Disk IO
> Network bandwidth

> Power consumption
» Lines of codes

27

Average Case vs. Worst Case UCR

Running Time
14

_______________________ ~—- Worst case

12
1 . Average case
| — Il —=—————- Bestcase
1 2 3 4 5 6 7 8 9 10

Different inputs of the same size
28

o

oo

(@)

N

N

o

Insertion Sort Best Case

29

R

Insertion Sort Best Case

» Input array is sorted

30

Insertion Sort Best Case

» Input array is sorted

[NSERTION-SORT (4, n)
for j = 26071 c1 |
key = A[J] oo c2
// Insert A[] into the sorted sequence A[l..j —1].......... 0
[= =1 e c3
while i > 0 and A > kgy c4
Ali +1] 1 A[l]} do not execute 0 1
[=1-
Afi 4 1] = Koy vveeermemmeeesseeeeee C5_/

31

R

(n-1)

Insertion Sort Best Case K

» Input array is sorted

2|34 |5 |6 [NSERTION-SORT(4,n)

for j = 26071 c1 |
2|3|415]6 key = A[J] oo c2
Y // Insert A[] into the sorted sequence A[l..j —1].......... 0
21314156 [= =1 e c3 (n-1)

N/ while 7 > 0 and A > ey «oeveeeii c4 o
2/3/4/5]6 Ali +1] A[l]} do not execute 0 11
N/ i=i-1
... co
2(3/4|5/|6 Ali +1] = key _
\/
>l 3lals5]6 T(n) = (n-1)*(c1+c2+0+c3+1*(c4+0)+ch)
‘V T(n) = cn-c, const c=c1l+c2+c3+c4+ch

32

Insertion Sort Worst Case

33

R

Insertion Sort Worst Case

(o))

5

5

6

¢

N

4

5

6

S

N

5

L

3 4
2

3

4

6
5

AP

1

2

3

4

>

Input array Is reversed

34

Insertion Sort Worst Case

6

5

5

6

\A

N4

4

5

6

\ 4

N

3
2

L

6
5

4|5
314
\ A

MM

1

2

3

4

» Input array is reversed

[NSERTION-SORT(A4, 1)
for j = 26071 c1 |
key = A[J] oo c2
// Insert A[] into the sorted sequence A[l..j —1].......... 0
[= =1 e c3
while 7 > 0 and A[l] > kgy c4
Al H 1] = A[i] coeeeeremmemm, 05}_
I =0 =1 oo c6 !
Afi 4 1] = Koy vveeermemmeeesseeeeee c7/

35

R

(n-1)

Insertion Sort Worst Case

» Input array is reversed

[NSERTION-SORT(A4, 1)

R

for j = 26071 c1 |

key = A[J] oo c2

// Insert A[] into the sorted sequence A[l..j —1].......... 0

[= =1 e c3 (n-1)

while 7 > 0 and A[l] > kgy c4 -
Al H 1] = A[i] coeeeeremmemm, 05}_
I =0 =1 oo c6 !

Alf 1] = ke wooerremmeeeeee c7/

T(n) = (n-1)*(c1+c2+0+c3+i*(c4+c5+c6)+c7)

T(n) = (n-1)*(c1+c2+0+c3+c7) + > i*(c4+c5+c6), forall L <=i<n

T(n) = (cn-c) + > i*d, c & d are constants

Yi*d = 1*d+2*d+3*d+....+(n-1)*d=d *(1+2+3+...(n-1))= d*n(n-1)/2
T(n) = (cn-c) + dn?/2-dn/2 = d*n?+cll*n+cl2, c’s & d are consts

36

Insertion Sort Average Case

» Average = (Best + Worst)/2
> T(n) = cn?+dn+e, c, d, e are consts

37

R

Which case we consider?

38

R

Which case we consider?

» The worst case

39

R

Which case we consider?

» The worst case
Why?

40

R

Which case we consider?

» The worst case
Why?
It gives guarantees on the upper bound performance

41

R

Growth of Functions R

>

It is hard to compute the actual running time for more
complex algorithms

The cost of the worst-case is a good measure

The growth of the cost function is what interests us
(when input size is large)

We are more concerned with comparing two cost
functions, I.e., two algorithms.

42

Growth of Functions

T 2000

43

O-notation UCR

cg(n)
dc > 0nyg >0
f(n) 0<f(n) <cg(n)
n =ng

g(n) is an

asymptotic upper-
n bound for f(n)

Mo

J(n) = 0(g(n))

Q-notation UCR

f(n)

dc > 0,nyg >0

0<cg(n)<f(n)

cgm) 05¢
= Ny

g(n) is an

asymptotic lower-
& bound for f(n)

No

J(n) = Q(gn))

®-notation UCR

c28(n)

) d¢cy,c0 > 0,n5 >0
0<cg(n) <f(n) <cgn)
cig(n) n=mng

g(n) is an

n asymptotic tight-

f(n) = ©(g(n)) bound for f(n)

o-notation

UCR

cg(n) ano >0

c« 0 < f(n) < cg(n)
cjg(n) n> n,

f(n)

f(n) =o(g(n))

= J(Nn) is a non-tight

asymptotic upper-
bound for f(n)

w-notation

UCR

dny, > 0

0 <cgn(n) < f(n)
n =n

Jm)

cg(n)

c:g(n)
c;g(n)

g(n) is a non-tight

asymptotic lower-

f(n) = w(gn))

» bound for f(n)

Comparing Two Functions K
o)
e
O: f(n) = o(g(n))
c>0: f(n) = ©(g(n))
0! f(n) = w(g(n))

>y limy_ 00 —=

v v

v

49

Analogy to Real Numbers K

Functions Real numbers
f(n) = 0(g(n)) a<bh
f(n) = Q(g(n)) a=b
f(n) =06(gn)) a=bh
f(n) =o(g(n)) a<b

f(n) = w(gn)) a>b

Simple Rules K

» We can omit constants

» We can omit lower order terms

» O(an?+bn+c) becomes O(n?), a, b, c are constants

» O(cl) and ©(c2) become O(1), c's are constants

» ©(log,,n) and O(log,,n) become O(log n), k's are constants
» O(log(n*)) becomes O(log n), k is constant

51

Popular Classes of Functions K

Constant: f(n) =06(1)

Logarithmic: f(n) = 0(g(n))

Sublinear. f(n) = o(n)

Linear: f(n) =0(Mn)

Super-linear: f(n) = w(n)

Quadratic: f(n) = 0(n?)

Polynomial: f(n) = 0(n®); kis a constant
Exponential: f(n) = 0(k™); k is a constant

Insertion Sort Worst Case (Revisit)

6

5

5

6

\A

N4

4

5

6

\ 4

N

3
2

L

6
5

4|5
314
\ A

MM

1

2

3

4

» Input array is reversed

[NSERTION-SORT(A4, 1)
for j =2ton
key = Al]]
// Tnsert A[;] into the sorted sequence A[l..j —1].
i=j-1

while i > 0 and A[i] > key
Ali + 1] = Ali] e
i =i-1

Ali + 1] = key

T(n) = (n-1)*n = O(n?)

53

R

(n-1)

Comparing two algorithms

» T1(n) =2n+1000000
» T2(n) =200n + 1000

> Which is better? Why?
In terms of order of growth?

R

54

Comparing two algorithms

» T1(n) =2n+1000000
» T2(n) =200n + 1000

> Which is better? Why?
In terms of order of growth? Same

R

55

Comparing two algorithms

» T1(n) =2n+1000000
» T2(n) =200n + 1000

> Which is better? Why?
In terms of order of growth? Same
In terms of actual runtime?

R

56

Comparing two algorithms

» T1(n) =2n+1000000
» T2(n) =200n + 1000

> Which is better? Why?
In terms of order of growth? Same

In terms of actual runtime?
For n <= 5045, T2 is faster, otherwise T1 is faster

R

57

Comparing two algorithms

» T1(n) =2n+1000000
» T2(n) =200n + 1000

> Which is better? Why?
In terms of order of growth? Same

In terms of actual runtime?
For n <= 5045, T2 is faster, otherwise T1 is faster

> What is the main usage of asymptotic notation analysis?

R

58

Participation Exercise

Name:

Student ID:

Analyze the growth function in O notation for the following algorithms:

R

Algorithm 1 Algorithm 2
fori=1ton fori=1ton/2 {
j — D% pl‘il’lt i
forj=1ton/2 forj=1tqn,§t§pj=j*2
. print i*]
print j !
Algorithm 3 Algorithm 4
fori=1ton/2 input x (+ve integer)
print i while x>0
forj=1ton, step j = j*2 print x
print i*j x = |x/5]

59

Analyzing Algorithms

» Algorithm 1
fori=1ton
] = 2%

forj=1ton/2
print |

60

R

Analyzing Algorithms

» Algorithm 2
fori=1ton/2{
print i
forj=1ton, stepj=j*2

print 1*j

61

R

Analyzing Algorithms

» Algorithm 3
fori=1ton/2
print i

forj=1ton, stepj=j*2
print 1*j

62

R

Analyzing Algorithms

» Algorithm 4
Input x (+ve integer)
while x > 0
print x
x = [x/5]

63

R

Credits & Book Readings

» Book Readings
2.1,2.2,3.1,3.2

» Credits
Prof. Ahmed Eldawy notes

Online websites

64

R

http://www.cs.ucr.edu/~eldawy/17WCS141/slides/CS141-1-09-17.pdf
https://commons.wikimedia.org/wiki/File:Exponential.svg

