
CS141: Intermediate Data Structures

and Algorithms

NP-Completeness

Amr Magdy

Why Studying NP-Completeness?

Two reasons:

1. In almost all cases, if we can show a problem to be NP-complete or

NP-hard, the best we can achieve (NOW) is mostly exponential

algorithms.

• This means we cannot solve large problem sizes efficiently

2. If we can solve only one NP-complete problem efficiently, we can

solve ALL NP problems efficiently (major breakthrough)

More details come on what does these mean

2

Topic Outline

1. Background

Decision vs. Optimization Problems

Models of Computation

Input Encoding

2. Complexity Classes

P

NP

Polynomial Verification

Examples

3. NP-hardness

Polynomial Reductions

4. NP-Complete Problems

Definition and Examples

Weak vs. Strong NP-Complete Problems
3

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

4

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

Examples:

Is graph G connected?

Is path P:uv shortest?

5

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

Examples:

Is graph G connected?

Is path P:uv shortest?

Optimization problem: finding the best solution from all

feasible solutions

In continuous optimization, the answer is real valued objective function

(either min or max)

6

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

Examples:

Is graph G connected?

Is path P:uv shortest?

Optimization problem: finding the best solution from all

feasible solutions

In continuous optimization, the answer is real valued objective function

(either min or max)

Examples:

Find a maximum fully-connected subgraph (clique) size in a graph.

Find the least cost of multiplying a chain of matrices.

7

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

Examples:

Is graph G connected?

Is path P:uv shortest?

Optimization problem: finding the best solution from all

feasible solutions

In continuous optimization, the answer is real valued objective function

(either min or max)

Examples:

Find a maximum fully-connected subgraph (clique) size in a graph.

Find the least cost of multiplying a chain of matrices.

Converting optimization problem  decision problem?

Put a bound on the objective function.

8

Decision vs Optimization Problems

Decision problem: a problem expressed as a yes/no question

Examples:

Is graph G connected?

Is path P:uv shortest?

Optimization problem: finding the best solution from all

feasible solutions

In continuous optimization, the answer is real valued objective function

(either min or max)

Examples:

Find a maximum fully-connected subgraph (clique) size in a graph.

Find the least cost of multiplying a chain of matrices.

Converting optimization problem  decision problem?

Put a bound on the objective function.

Does G have a clique of size k? for k= 3, 4, 5,…(finding max clique)
9

Take Home Messages

10

(1) Computation theory focuses on decision problems

Models of Computation

MoC: informally a theoretic description of a way to compute

11

Models of Computation

MoC: informally a theoretic description of a way to compute

Example: mask model

12

Mask Model (on paper) Mask Realization (fabric instance)

Models of Computation

At a low level:

Finite State Automata (FSA)

Pushdown Automata (PDA)

Turing Machine (TM)

…..

At a high level:

RAM (Random Access Machine)

Pointer Machine

….

13

Focus of other courses

(e.g., Theory of Computation,

Compilers Design, ...etc)

Models of Computation

A model of computation determines two things:

What are the possible operations

What is the cost of each operation

14

Models of Computation

A model of computation determines two things:

What are the possible operations

What is the cost of each operation

w-Random Access Machine (w-RAM) MoC:

The one we used throughout the course

Possible operations in Θ(1):

Access any memory word at random

Read variable

Write variable

Basic mathematical operations (add, multiply, assign,…etc)

Single-command output operations (print, return, …etc)

….

15

Models of Computation

A model of computation determines two things:

What are the possible operations

What is the cost of each operation

w-Random Access Machine (w-RAM) MoC:

The one we used throughout the course

Possible operations in Θ(1):

Access any memory word at random

Read variable

Write variable

Basic mathematical operations (add, multiply, assign,…etc)

Single-command output operations (print, return, …etc)

….

What the cost of appending to a list in w-RAM model?

Sorting? Finding maximum?
16

Models of Computation

A model of computation determines two things:

What are the possible operations

What is the cost of each operation

Pointer Machine (PM) MoC:

A machine with only dynamic allocated memory through pointers

Possible operations in Θ(1):

Follow pointer (no random memory anymore)

Read pointed variable

Write pointed location

….

17

Models of Computation

A model of computation determines two things:

What are the possible operations

What is the cost of each operation

Pointer Machine (PM) MoC:

A machine with only dynamic allocated memory through pointers

Possible operations in Θ(1):

Follow pointer (no random memory anymore)

Read pointed variable

Write pointed location

….

What the cost of accessing any memory location in PM

model? Sorting? Finding maximum?

Function of the basic operations

18

Take Home Messages

19

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by the

computation model

Input / Output Encoding

Assume multiplying two decimal integers

2 * 2 = 4

(basic operation, single digit op)

12*12 = (1*10+2)*(1*10+2)

= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

20

Input / Output Encoding

Assume multiplying two decimal integers

2 * 2 = 4

(basic operation, single digit op)

12*12 = (1*10+2)*(1*10+2)

= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

Assume multiplying two binary integers

(10)b * (10) b = (1*2+0)*(1*2+0)

= 1*2*1*2+1*2*0+0*1*2+0*0

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

21

Input / Output Encoding

Assume multiplying two decimal integers

2 * 2 = 4

(basic operation, single digit op)

12*12 = (1*10+2)*(1*10+2)

= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

Assume multiplying two binary integers

(10)b * (10) b = (1*2+0)*(1*2+0)

= 1*2*1*2+1*2*0+0*1*2+0*0

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

22

Same input (2x2),

different encoding

Input / Output Encoding

Assume multiplying two decimal integers

2 * 2 = 4

(basic operation, single digit op)

12*12 = (1*10+2)*(1*10+2)

= 1*10*1*10+1*10*2+2*1*10+2*2

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

Assume multiplying two binary integers

(10)b * (10) b = (1*2+0)*(1*2+0)

= 1*2*1*2+1*2*0+0*1*2+0*0

(4 mult ops, 4 add ops , 4 shift ops)

O(n2) operations for n-digit number

Input representation (encoding) affects the amount of

computations for same input
23

Same input (2x2),

different encoding

Exercise

design a divide & conquer algorithm to multiply two n-bits

integers in O(n2)

Note:

Multiplying by 2n for binary numbers is shifting by n bits  Θ(n)

Multiplying by 10n for decimal numbers is shifting by n digits  Θ(n)

24

Take Home Messages

25

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by the

computation model

(3) Algorithm complexity is affected by the input

encoding/length

Take Home Messages

26

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:

(a) the computation model

(b) the input encoding/length

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

27

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

Integer n  binary number (in log2(n) bits)

Example: 999  01111100111

28

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

Integer n  binary number (in log2(n) bits)

Example: 999  01111100111

Array of n integers  sequence of integers (in n*log2(n) bits)

Example: 9,15,3  1001,1111,0011

29

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

Integer n  binary number (in log2(n) bits)

Example: 999  01111100111

Array of n integers  sequence of integers (in n*log2(n) bits)

Example: 9,15,3  1001,1111,0011

String of n chars  sequence of integer codes (in n*log2(n)

bits), e.g., ASCII codes

Example: Amr  1000001,1101101,1110010

30

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

Integer n  binary number (in log2(n) bits)

Example: 999  01111100111

Array of n integers  sequence of integers (in n*log2(n) bits)

Example: 9,15,3  1001,1111,0011

String of n chars  sequence of integer codes (in n*log2(n)

bits), e.g., ASCII codes

Example: Amr  1000001,1101101,1110010

Graph G of n vertices and m edges:

Each vertex with integer id  n integers

Each edge with integer id and weight  m integers + m floats

m is maximum of n2/2, i.e., m=O(n2)

Example: 01101010000011101101111001000011101011110010000

1110011010100000111011011110010000111010111111001001…
31

Encoding Examples in Binary Strings

Binary strings are the standard encoding for computing now

Integer

Example: 999  01111100111

Array of n integers

Example: 9,15,3  1001,1111,0011

String of n chars

Example: Amr  1000001,1101101,1110010

Graph G of n vertices and m edges:

Example: 01101010000011101101111001000011101011110010000

1110011010100000111011011110010000111010111111001001…

32

Input string

Take Home Messages

33

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:

(a) the computation model

(b) the input encoding/length

(3) Binary input string (concrete input) is different

in length than the algorithm abstract input

Complexity Class

Complexity class:

A set of problems that share some complexity characteristics

Either in time complexity

Or in space complexity

34

Complexity Class

Complexity class:

A set of problems that share some complexity characteristics

Either in time complexity

Or in space complexity

In this course, our discussion is limited to only two time

complexity classes: P and NP

Other courses cover more content (e.g., Theory of Computation

course)

35

P

P is a complexity class of problems that are decidable in

polynomial-time of input string length, i.e., O(mk)

where m the input string length and k is constant

For simplicity, P is the set of problems that are solvable in

polynomial time

i.e., has O(mk) algorithm to find a solution

36

P

P is a complexity class of problems that are decidable in

polynomial-time of input string length, i.e., O(mk)

where m the input string length and k is constant

For simplicity, P is the set of problems that are solvable in

polynomial time

i.e., has O(mk) algorithm to find a solution

Examples:

Shortest paths in graph

Matrix chain multiplication

Activity scheduling problem

….

37

NP

NP is a complexity class of problems that are verifiable

in polynomial-time of input string length

For simplicity, given a solution of an NP problem, we can

verify in polynomial time O(mk) if this solution is correct

38

Is P ⊂ NP?

39

Is P ⊂ NP?

Yes

What does this mean?

40

Is P ⊂ NP?

Yes

What does this mean?

Every problem that is solvable in polynomial time is verifiable in

polynomial time as well

41

Is P ⊆ NP? or Is P = NP?

What does this mean?

42

Is P ⊆ NP? or Is P = NP?

What does this mean?

There are polynomial time algorithms to solve NP problems

43

Is P ⊆ NP? or Is P = NP?

What does this mean?

There are polynomial time algorithms to solve NP problems

Nobody yet knows

The question posed in 1971

44

Is P ⊆ NP? or Is P = NP?

What does this mean?

There are polynomial time algorithms to solve NP problems

Nobody yet knows

The question posed in 1971

You think it is old?

Check Alhazen’s problem then

45

Is P ⊆ NP? or Is P = NP?

What does this mean?

There are polynomial time algorithms to solve NP problems

Nobody yet knows

The question posed in 1971

You think it is old?

Check Alhazen’s problem then

Computer Science theoreticians

“thinks” P ≠ NP, but no proof

46

Is P ⊆ NP? or Is P = NP?

What does this mean?

There are polynomial time algorithms to solve NP problems

Nobody yet knows

The question posed in 1971

You think it is old?

Check Alhazen’s problem then

Computer Science theoreticians

“thinks” P ≠ NP, but no proof

47

NP

P

NP = P

NP Problems

Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city and returns to

the origin city?

48

NP Problems

Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city and returns to

the origin city?

How to solve this problem?

49

NP Problems

Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city and returns to

the origin city?

How to solve this problem?

Brute force: O(n!)

50

NP Problems

Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities,

what is the shortest possible route that visits each city and returns to

the origin city?

How to solve this problem?

Brute force: O(n!)

Dynamic programming: O(n2n)

51

Travelling Salesman Movie

https://www.youtube.com/watch?v=6ybd5rbQ5rU

52

https://www.youtube.com/watch?v=6ybd5rbQ5rU
https://www.youtube.com/watch?v=6ybd5rbQ5rU

NP Problems

Example: SAT Problem

Given a Boolean circuit S, is there a satisfying assignment

for S? (i.e., variable assignment that outputs 1)

53

NP Problems

Example: SAT Problem

Given a Boolean circuit S, is there a satisfying assignment

for S? (i.e., variable assignment that outputs 1)

54

NP Problems

Example: 3-CNF Problem

Given a Boolean circuit S in 3-CNF form, is there a

satisfying assignment for S? (i.e., variable assignment that

outputs 1)

3-CNF formula: a set ANDed Boolean clauses, each with

3 ORed literals (Boolean variables)

Example: ˅ = OR, ˄ = AND, ¬ = NOT

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

55

NP Problems

Example: 3-CNF Problem

Given a Boolean circuit S in 3-CNF form, is there a

satisfying assignment for S? (i.e., variable assignment that

outputs 1)

3-CNF formula: a set ANDed Boolean clauses, each with

3 ORed literals (Boolean variables)

Example: ˅ = OR, ˄ = AND, ¬ = NOT

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

Solution: O(k2n) for k clauses and n variables

56

NP Problems

Example: (Max) Clique Problem

Given a graph G=(V,E), find the clique of maximum size.

Clique: fully connected subgraph.

57

NP Problems

Example: (Max) Clique Problem

Given a graph G=(V,E) of n vertices, find the clique of

maximum size.

Clique: fully connected subgraph.

Solution:

Assume max clique size k and

|V| = n

Brute force: O(n2n)

Combinations of k: O(nk k2)

Try for k=3,4,5,…

k is not constant, so this is not

polynomial

58

NP Problems: Polynomial Verification

Given a solution, can I verify if it is correct in polynomial

time?

TSP Problem: Yes (the decision version)

Is there a tour with weight W?

SAT Problem: Yes

3-CNF Problem: Yes

Max Clique Problem: Yes (the decision version)

Is there a clique of size k?

59

NP-hard Problems

Informally:

an NP-hard problem B is a problem that is at least as hard

as the hardest problems in NP class

Formally:

B is NP-hard if ∀ A ∈ NP, A ≤𝑃 B

(i.e., A is polynomial reducible to B)

60

Polynomial Reductions

Polynomial reduction A ≤𝑃 B is converting an instance of

A into an instance of B in polynomial time.

61

Polynomial Reductions

Polynomial reduction A ≤𝑃 B is converting an instance of

A into an instance of B in polynomial time.

How to solve A given a solver to B?

62

Polynomial Reductions

Polynomial reduction A ≤𝑃 B is converting an instance of

A into an instance of B in polynomial time.

How to solve A given a solver to B?

63

Polynomial Reductions: Example

Reduce 3-CNF to k-size Clique

Example: three 3-CNF clauses

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

64

Polynomial Reductions: Example

Reduce 3-CNF to k-size Clique

Example: three 3-CNF clauses

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

65

Polynomial Reductions: Example

Reduce 3-CNF to k-size Clique

Example: three 3-CNF clauses

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

66

Polynomial Reductions: Example

Reduce 3-CNF to k-size Clique

Example: three 3-CNF clauses

(x1 ˅ ¬x2 ˅ ¬x3) ˄ (¬x1 ˅ x2 ˅ x3) ˄ (x1 ˅ x2 ˅ x3)

Given: S: k-clause 3-CNF formula

Reduction Algorithm:

Compose a graph G of k sets of vertices, each set has three vertices

Connect all pairs of vertices (u,v) such that:

u and v belong to two different sets

If u=xi, then v ≠ ¬xi

If there is k-size clique in G, there is a satisfying assignment to S

(assign 1 to each vertex in the clique).

67

NP-hard Proofs

To prove B an NP-hard problem:

Show a polynomial time reduction algorithm from B to ONE of the

existing NP-hard problems.

68

NP-Complete Problems

B is NP-complete problem if:

1. B ∈ NP

2. B is NP-hard

69

NP-Complete Problems

70

NP-Complete Problems: Examples

71

NP-Complete Problems: Examples

Hamiltonian Cycle Problem: Given an undirected or

directed graph G, is there a cycle in G that visits each

vertex exactly once?

72

Take Home Messages: Remember?

73

(1) Computation theory focuses on decision problems

(2) Algorithm complexity is affected by:

(a) the computation model

(b) the input encoding/length

(3) Binary input string (concrete input) is different

in length than the algorithm abstract input

Strong vs Weak NP-Completeness

Abstract input vs Concrete input:

Input array of n integers:

Abstract input size: a = n (# of integers)

Concrete input size in binary: b = n log n (# of bits of the array)

Weak NP-complete problem:

An NP-complete problem that has a known polynomial solution in

terms of the abstract input size.

Strong NP-complete problem:

An NP-complete problem that does not have a known polynomial

solution in terms of either abstract or concrete input size.

74

Weak NP-Completeness: Examples

Subset-Sum Problem:

Given set S of n integers and integer T

Dynamic Programming solution: O(nT)

Abstract input: a1 = n (integers of S) a2= 1 (integer T)

Concrete input: b1 = n log n b2 = log T

O(nT) = O(b1 2b2)  exponential in concrete input but polynomial

in abstract input  weak NP-complete

Partition Problem:

Given set S of n integers, divide S into two disjoint subsets of

equal sum

Same solution (and complexity) as Subset-Sum

0-1 Knapsack Problem

Similar solution to subset-sum (O(nW) for knapsack of weight W)75

Weak NP-Completeness

For weak NP-complete problems, we are able to solve

many instances in practical input sizes.

76

Book Readings

Ch. 34

77

