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CS141: Intermediate Data Structures
and Algorithms

Graphs
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Graph Data Structure

» A set of nodes (vertices) and edges connecting them
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Graph Applications |UCR

» Road network
» Social media networks
»  Knowledge basesS

Washington —Carital-of

Jerry

‘ Brown vernor-of .
| . . .
California State-in
esident-in 3




Graph Representations

» Adjacency matrix
Storage and access efficient when many edges exist
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Graph Representations

» Adjacency matrix
Storage and access efficient when many edges exist
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Graph Representations K

» Incidence Matrix
Expensive storage, not popular
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Graph Representations

» Adjacency list
Storage efficient when few edges exit (sparse graphs)
Seguential access to edges (vs random access in matrix)
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Types of Graphs K

» Directed and Undirected graphs

»  Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs
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Types of Graphs

» Directed and Undirected graphs

»  Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs --—a\__ﬁ
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Types of Graphs K

» Directed and Undirected graphs
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Fig(ii):
Unconnected Graph

There are three component of above
unconnected graph
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Types of Graphs K

» Directed and Undirected graphs

»  Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

» Tree/Forest
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Types of Graphs K

» Directed and Undirected graphs

»  Weighted and Unweighted graphs

»  Connected graphs A‘\
» Bipartite graphs

» Acyclic graphs Tree
» Tree/Forest

Tree: directed acyclic graph with max of one path between
any two nodes

Forest: set of disjoint trees

Forest
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Basic Graph Algorithms

» Graph traversal algorithms
Bread-first Search (BFS)
Depth-first Search (DFS)

» Topological Sort
»  Graph Connectivity
» Cycle Detection
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Breadth-first Search (BFS) K

» How to traverse?




Breadth-first Search (BFS) K

» How to traverse?
» Use a queue




Breadth-first Search (BFS) K

» How to traverse? * 1‘ |

> Use a queue T\

» Start at a vertex s ) 3 W4
Mark s as visited ) /l . '\
Enqueue neighbors of s / .‘|3 6 -' T\S |
while Q not empty 9 10 11 12

Dequeue vertex u
Mark u as visited
Enqueue unvisited neighbors of u
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Breadth flrst Search (B FS)
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Depth-first Search (DFS) K

» How to traverse?




Depth-first Search (DFS)

» How to traverse?
» Use a stack
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Depth-first Search (DFS) K

» How to traverse?

> Use a stack ST\

» Start at a vertex s (2) (7) (8)
Mark s as visited S I\
Push neighbors of s 3 (6 9L
while Stack not empty 4/5|) «/1]“0\/1 1

Pop vertex u - - - -
Mark u as visited
Push unvisited neighbors of u
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Complexity of Graph Traversal K

» For G =(V,E), V set of vertices, E set of edges

» BFS
Time: O(|V|+|E|)
Space: O(|V|) (plus graph representation)

» DFS
O(VI+IE])
Space: O(|V|) (plus graph representation)
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Graph Connectivity

»  Checking if graph is connected.:
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Graph Connectivity

»  Checking if graph is connected.:

IsConnected(G)
{
DFS(G)
If any vertex not visited
return false
else
return true

}
Time Complexity: O(|V|+|E]|)
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Graph Connected Components

» Getting the graph connected components

Fig((ii):
Unconnected Graph

There are three component of above
unconnected graph
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Graph Connected Components K

» Getting the graph connected components
» Mark all nodes as unvisited

visitCycle = 1
while( there exists unvisited node n)
{

- Start DFS(G) at n, mark visited node with visitCycle
- Output all nodes with current visitCycle as one
connected component
- visitCycle = visitCycle+1

}
Time Complexity: O(|V|+|E]|)

26



Cycle Detection

» Does a connected graph G contain a cycle?
(non-trivial cycle)

» General idea: if DFS procedure tries to revisit a visited
node, then there is a cycle
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Cycle Detection

» Does a graph G contain a cycle? (non-trivial cycle)
IsAcyclic(G) {
Start at unvisited vertex s
Mark “s” as visited
Push neighbors of s in stack
while stack not empty
Pop vertex u
Mark u as visited
If u has visited neighbors
return true
Push unvisited neighbors of u

return false
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Cycle Detection in Directed Graphs K

visitFlag = 1 @—»
while there exist unvisited node n {
- Call IsAcyclic(G) with start node n b
and visitFlag
- visitFlag = visitFlag + 1

IsAcyclic pseudo code will be modified to have:
If u has visited neighbors marked with visitFlag
return true
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Topological Sort UCR

» Determine a linear order for vertices of a directed acyclic
graph (DAG)
> Mostly dependency/precedence graphs
> If edge (u,v) exists, then u appears before v in the order
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Topological Sort K

L « Empty list
S « Set of all nodes with no incoming edge
while S 1s non-empty do
remove a node n from S
add n to end of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other i1ncoming edges then
insert m into S

return L (a topologically sorted order)
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Spanning Tree

» Given a connected graph G=(V,E), a spanning tree T <
E is a set of edges that “spans” (i.e., connects) all
vertices in V.

> A Minimum Spanning Tree (MST): a spanning tree with
minimum total weight on edges of T

> Application:
The wiring problem in hardware circuit design
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Spanning Tree: Example UCR




Spanning Tree: Not MST
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Spanning Tree: MST

A B C
4

4 2

D E

Total weight = 16
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Spanning Tree: Another MST

Total weight = 16
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Finding MST: Kruskal’s algorithm K

» Sort all the edges by weight

» Scan the edges by weight from lowest to highest
» If an edge introduces a cycle, drop it

» If an edge does not introduce a cycle, pick it

» Terminate when n-1 edges are picked
(n: number of vertices)
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Finding MST: Kruskal’s algorithm UCR




Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm




Finding MST: Kruskal’s algorithm




Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm
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Finding MST: Kruskal’s algorithm K
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Finding MST: Kruskal’s algorithm K
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Finding MST

» Kruskal's algorithm: greedy
Greedy choice: least weighted edge first
Complexity: O(E log E) — sorting edges by weight
Edge-cycle detection: O(1) using hashing of O(V) space

>  Prim’s algorithm: greedy
Complexity: O(E+ V log V) — using Fibonacci heap data structure
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Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)
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Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)

» If negative weight cycle exist from s—=>t, shortest is undefined
Can always reduce the cost by navigating the negative cycle

» If graph with all +ve weights = Dijkstra’s algorithm

» If graph with some -ve weights = Bellman-Ford’s algorithm
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Dijkstra’s Algorithm

Initialize:

S0 4}
Prev: {A,U,U,U,U}



Dijkstra’s Algorithm -

O: ! B




Dijkstra’s Algorithm

S:{A}
Prev: {AAAU,U}



Dijkstra’s Algorithm

S: {4, C}
Prev: {A,AA,U,U}



Dijkstra’s Algorithm

S: {4, C}
Prev: {A,C,A,C,C}



Dijkstra’s Algorithm

S:{A, C E}
Prev: {A,C,A,C,C}



Dijkstra’s Algorithm
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S:{A,C E}
Prev: {A,C,A,C,C}



Dijkstra’s Algorithm

11 B
7 11 S.’ { A, (w, E, B }
Prev: {A,C,A,C,C}



Dijkstra’s Algorithm ‘ K

3 3 5

9 S:{A C E B}
Prev: {A,C,A,B,C}



Dijkstra’s Algorithm ‘ K
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Dijkstra’s Algorithm

0:
0 oo
10 B
7
7
9 S:{A, CE B D}
Prev: {A,C,AB,C}
A: A 2A
B:A=>C —>B
C:A=>C

D:A->C>B-=>D
E:A>C 2E




Dijkstra’s Algorithm K

1 function Dijkstra (Graph, source):
2
3 create vertex set O
4
5 for each vertex v in Graph: //Initialization
6 Dist[v] « INFINITY //Unknown distance from source to v
7 Prev[v] « UNDEFINED //Previous node in path from source to v
8 add v to Q //All nodes initially unvisited (in Q)
9
10 Dist[source] < 0 // Distance from source to source = 0
11 Prev[source] « source
12 while QO is not empty:
13 U « vertex in Q with min Dist([u] //Node with the least distance
14 // will be selected first
15 remove u from Q
16
17 for each neighbor v of u in O: //v 1s still in O.
18 tmp < Dist[u]+edge length(u, v) //trying u as “source->u->v”
19 if tmp < Dist[v]: //A shorter path to v has been found
20 Dist[v] « tmp
21 Prev([v] « u
22

23 return Dist[], SI] ®



Network Max Flow

R

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Vancouver

Edmonton

Saskatoon

16 L

A

20 Winnipeg

Calgary

Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?
» Pseudo code
MaxFlow(G, s, t) {
max_flow =0
while (3 a simple path p:s>1){
curr_flow = min weight in p
max_flow = max_flow + curr_flow
for each (edge e € p) {
e.weight = e.weight - curr_flow

}
}

return max_flow
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

Vancouver y 20 Winnipeg

Calgary Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 12

16-12
Vancouver / 5

20-12 .
Winnipeg

Calgary Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 12 @
Vancouver4/7 Y

Winnipeg

Calgary Regina

67



Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 Y

Winnipeg

Calgary Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton  Saskatoon
max_flow = 16 @
Vancouver4/7 3

O QI
9\Q v
V2 10 V4

Calgary Regina

Winnipeg
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 Y

Winnipeg

Calgary Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 23 @
Vancouver4/7 Y

Winnipeg

10-7
Calgary Regina
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Network Max Flow K

»  What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton  Saskatoon
max_flow = 23
L _—
Vancouver / y Winnipeg

Calgary Regina
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Book Readings & Credits

» Book Readings:
Ch. 22, 23.2, 24.3, 26.1, 26.2

» Credits:
Figures:
Wikipedia
btechsmartclass.com

https://www.codingeek.com/data-structure/graph-introductions-
explanations-and-applications/

Prof. Ahmed Eldawy notes
Laksman Veeravagu and Luis Barrera
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