IIIIIIIIIIIIIIIIIIIIII

CS141: Intermediate Data Structures
and Algorithms

Graphs

Amr Magdy

Graph Data Structure

» A set of nodes (vertices) and edges connecting them

L/”\ Edge

K

Graph Applications |UCR

» Road network
» Social media networks
» Knowledge basesS

Washington —Carital-of

Jerry

‘ Brown vernor-of .
| . . .
California State-in
esident-in 3

Graph Representations

» Adjacency matrix
Storage and access efficient when many edges exist

= = O O = W
o = O O = N

O B K H O

= = v)

= O = O m

Graph Representations

» Adjacency matrix
Storage and access efficient when many edges exist

A B C

r

D
1
1
1

Graph Representations K

» Incidence Matrix
Expensive storage, not popular

El E2 E3 E4 E5 E6 E7 E8

a ™

1 1 -1 0 0 O O0 O
-1 0 0 1 0 1 0O
O -1 0 0 1 0 OO
o 0 1 -1 -1 0 11
ES g o 0o 0 0 O -1 -10)

Graph Representations

» Adjacency list
Storage efficient when few edges exit (sparse graphs)
Seguential access to edges (vs random access in matrix)

K

Al +—{B] F+—{CTX

B| +—{D] F+—{EX
» [c[J->bX

D| +—>{A| +——{D| -

EPX]

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

N
» Tree/Forest / v,) —~
— - +II/V2 1:l
\\ d /*
|/ ;J \"-:‘ I/f F__.I |(
& O/

Directed Graph . Undirected Graph

Types of Graphs

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs --—a__ﬁ

» Treel/Forest /

\ 74
‘Weighted Graph

K

Unweighted Graph

Types of Graphs K

» Directed and Undirected graphs

'lll

» Weighted and Unweighted graphs - ’/D
s> Connected graphs // - e cted
> Bipartite graphs & & oren

& |

» Acyclic graphs

» Tree/Forest }ﬂ P P
1;’},'—__|k LA | V., | l /’
/&f : //
(v, &S G
A @ ©

Fig(ii):
Unconnected Graph

There are three component of above
unconnected graph

10

Types of Graphs

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

» Tree/Forest

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

» Tree/Forest

12

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs

» Connected graphs A‘\
» Bipartite graphs

» Acyclic graphs Tree
» Tree/Forest

Tree: directed acyclic graph with max of one path between
any two nodes

Forest: set of disjoint trees

Forest

13

Basic Graph Algorithms

» Graph traversal algorithms
Bread-first Search (BFS)
Depth-first Search (DFS)

» Topological Sort
» Graph Connectivity
» Cycle Detection

14

R

Breadth-first Search (BFS) K

» How to traverse?

Breadth-first Search (BFS) K

» How to traverse?
» Use a queue

Breadth-first Search (BFS) K

» How to traverse? * 1‘ |

> Use a queue T\

» Start at a vertex s) 3 W4
Mark s as visited) /l . '\
Enqueue neighbors of s / .‘|3 6 -' T\S |
while Q not empty 9 10 11 12

Dequeue vertex u
Mark u as visited
Enqueue unvisited neighbors of u

17

Breadth flrst Search (B FS)

LB
x y
¥ § t u
=@ (=)
o U 8L
=) @=2 (=
v w X y
¥ \) t u
=0 -G
D P4%
@ @=C
v W x y
¥ \) t u

[u—

18

Depth-first Search (DFS) K

» How to traverse?

Depth-first Search (DFS)

» How to traverse?
» Use a stack

Ga0

@8

Sl
ip Ot
= ®

Depth-first Search (DFS) K

» How to traverse?

> Use a stack ST\

» Start at a vertex s (2) (7) (8)
Mark s as visited S I\
Push neighbors of s 3 (6 9L
while Stack not empty 4/5|) «/1]“0\/1 1

Pop vertex u - - - -
Mark u as visited
Push unvisited neighbors of u

21

Complexity of Graph Traversal K

» For G =(V,E), V set of vertices, E set of edges

» BFS
Time: O(|V|+|E|)
Space: O(|V|) (plus graph representation)

» DFS
O(VI+IE])
Space: O(|V|) (plus graph representation)

22

Graph Connectivity

» Checking if graph is connected.:

23

R

Graph Connectivity

» Checking if graph is connected.:

IsConnected(G)
{
DFS(G)
If any vertex not visited
return false
else
return true

}
Time Complexity: O(|V|+|E]|)

24

R

Graph Connected Components

» Getting the graph connected components

Fig((ii):
Unconnected Graph

There are three component of above
unconnected graph

25

Graph Connected Components K

» Getting the graph connected components
» Mark all nodes as unvisited

visitCycle = 1
while(there exists unvisited node n)
{

- Start DFS(G) at n, mark visited node with visitCycle
- Output all nodes with current visitCycle as one
connected component
- visitCycle = visitCycle+1

}
Time Complexity: O(|V|+|E]|)

26

Cycle Detection

» Does a connected graph G contain a cycle?
(non-trivial cycle)

» General idea: if DFS procedure tries to revisit a visited
node, then there is a cycle

27

R

Cycle Detection

» Does a graph G contain a cycle? (non-trivial cycle)
IsAcyclic(G) {
Start at unvisited vertex s
Mark “s” as visited
Push neighbors of s in stack
while stack not empty
Pop vertex u
Mark u as visited
If u has visited neighbors
return true
Push unvisited neighbors of u

return false

28

R

Cycle Detection in Directed Graphs K

visitFlag = 1 @—»
while there exist unvisited node n {
- Call IsAcyclic(G) with start node n b
and visitFlag
- visitFlag = visitFlag + 1

IsAcyclic pseudo code will be modified to have:
If u has visited neighbors marked with visitFlag
return true

29

Topological Sort UCR

» Determine a linear order for vertices of a directed acyclic
graph (DAG)
> Mostly dependency/precedence graphs
> If edge (u,v) exists, then u appears before v in the order

30

Topological Sort K

L « Empty list
S « Set of all nodes with no incoming edge
while S 1s non-empty do
remove a node n from S
add n to end of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other i1ncoming edges then
insert m into S

return L (a topologically sorted order)

31

Spanning Tree

» Given a connected graph G=(V,E), a spanning tree T <
E is a set of edges that “spans” (i.e., connects) all
vertices in V.

> A Minimum Spanning Tree (MST): a spanning tree with
minimum total weight on edges of T

> Application:
The wiring problem in hardware circuit design

32

R

Spanning Tree: Example UCR

Spanning Tree: Not MST

A B
4
D E
4 V4

Total weight = 21

R

Spanning Tree: MST

A B C
4

4 2

D E

Total weight = 16

R

Spanning Tree: Another MST

Total weight = 16

R

Finding MST: Kruskal’s algorithm K

» Sort all the edges by weight

» Scan the edges by weight from lowest to highest
» If an edge introduces a cycle, drop it

» If an edge does not introduce a cycle, pick it

» Terminate when n-1 edges are picked
(n: number of vertices)

37

Finding MST: Kruskal’s algorithm UCR

Finding MST: Kruskal’s algorithm

39

Finding MST: Kruskal’s algorithm

Finding MST: Kruskal’s algorithm

Finding MST: Kruskal’s algorithm

42

Finding MST: Kruskal’s algorithm

43

Finding MST: Kruskal’s algorithm

44

Finding MST: Kruskal’s algorithm

45

Finding MST: Kruskal’s algorithm K

—— — — — — — — — — — —
—— ——
—_—
-

AT Ay . aEy T T ———— N
[1 \
| \
A B c
I \
\ \
) \
/
N |
| |
[I
| I
/ |
I 2 3 |
/ |
[I
I I
I [
I /
D E F
\ //
\\ 7 /
AN TN ,/
—— ~ N ——,—, e T ———

46

Finding MST: Kruskal’s algorithm K

— — -
—

P

[1 A

[\

: B c
‘ \
\ \
\ \

! 1
N

| |

| |

| I

/ |
I 2 3 I
/ !
[|
| |
[[
I /
D E F
{ /
\ 4

/
\\ _I< 7
— — — \ T e " — —

47

Finding MST

» Kruskal's algorithm: greedy
Greedy choice: least weighted edge first
Complexity: O(E log E) — sorting edges by weight
Edge-cycle detection: O(1) using hashing of O(V) space

> Prim’s algorithm: greedy
Complexity: O(E+ V log V) — using Fibonacci heap data structure

48

R

Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)

49

Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)

» If negative weight cycle exist from s—=>t, shortest is undefined
Can always reduce the cost by navigating the negative cycle

» If graph with all +ve weights = Dijkstra’s algorithm

» If graph with some -ve weights = Bellman-Ford’s algorithm

50

Dijkstra’s Algorithm

Initialize:

S0 4}
Prev: {A,U,U,U,U}

Dijkstra’s Algorithm -

O: ! B

Dijkstra’s Algorithm

S:{A}
Prev: {AAAU,U}

Dijkstra’s Algorithm

S: {4, C}
Prev: {A,AA,U,U}

Dijkstra’s Algorithm

S: {4, C}
Prev: {A,C,A,C,C}

Dijkstra’s Algorithm

S:{A, C E}
Prev: {A,C,A,C,C}

Dijkstra’s Algorithm

O: ' B (D
0 oo o0

10 o0

7 11

11

7
(B,
| 4
&

3

S:{A,C E}
Prev: {A,C,A,C,C}

Dijkstra’s Algorithm

11 B
7 11 S.’ { A, (w, E, B }
Prev: {A,C,A,C,C}

Dijkstra’s Algorithm ‘ K

3 3 5

9 S:{A C E B}
Prev: {A,C,A,B,C}

Dijkstra’s Algorithm ‘ K

0:
0 oo o o
10 Bl oo
7 11
7 1
9 S-{A CEBD)

Prev: {A,C,A,B,C}

Dijkstra’s Algorithm

0:
0 oo
10 B
7
7
9 S:{A, CE B D}
Prev: {A,C,AB,C}
A: A 2A
B:A=>C —>B
C:A=>C

D:A->C>B-=>D
E:A>C 2E

Dijkstra’s Algorithm K

1 function Dijkstra (Graph, source):
2
3 create vertex set O
4
5 for each vertex v in Graph: //Initialization
6 Dist[v] « INFINITY //Unknown distance from source to v
7 Prev[v] « UNDEFINED //Previous node in path from source to v
8 add v to Q //All nodes initially unvisited (in Q)
9
10 Dist[source] < 0 // Distance from source to source = 0
11 Prev[source] « source
12 while QO is not empty:
13 U « vertex in Q with min Dist([u] //Node with the least distance
14 // will be selected first
15 remove u from Q
16
17 for each neighbor v of u in O: //v 1s still in O.
18 tmp < Dist[u]+edge length(u, v) //trying u as “source->u->v”
19 if tmp < Dist[v]: //A shorter path to v has been found
20 Dist[v] « tmp
21 Prev([v] « u
22

23 return Dist[], SI] ®

Network Max Flow

R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Vancouver

Edmonton

Saskatoon

16 L

A

20 Winnipeg

Calgary

Regina

63

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?
» Pseudo code
MaxFlow(G, s, t) {
max_flow =0
while (3 a simple path p:s>1){
curr_flow = min weight in p
max_flow = max_flow + curr_flow
for each (edge e € p) {
e.weight = e.weight - curr_flow

}
}

return max_flow

64

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

Vancouver y 20 Winnipeg

Calgary Regina

65

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 12

16-12
Vancouver / 5

20-12 .
Winnipeg

Calgary Regina

66

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 12 @
Vancouver4/7 Y

Winnipeg

Calgary Regina

67

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 Y

Winnipeg

Calgary Regina

68

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 3

O QI
9\Q v
V2 10 V4

Calgary Regina

Winnipeg

69

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 Y

Winnipeg

Calgary Regina

70

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 23 @
Vancouver4/7 Y

Winnipeg

10-7
Calgary Regina

71

Network Max Flow K

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 23
L _—
Vancouver / y Winnipeg

Calgary Regina

72

Book Readings & Credits

» Book Readings:
Ch. 22, 23.2, 24.3, 26.1, 26.2

» Credits:
Figures:
Wikipedia
btechsmartclass.com

https://www.codingeek.com/data-structure/graph-introductions-
explanations-and-applications/

Prof. Ahmed Eldawy notes
Laksman Veeravagu and Luis Barrera

73

R

