
CS 141: Intermediate Data
Structures and Algorithms

Discussion - Week 6, Winter 2018

Dynamic Programming

● General idea
● Examples

General idea

● Applicable when subproblems are not independent :
Subproblems share sub-subproblems.

● A divide and conquer approach would repeatedly solve
the common subproblems

● Dynamic programming solves every subproblem just
once and stores the answer in a table.

Elements of Dynamic Programming
● Optimal Substructure

○ An optimal solution to a problem contains within it an
optimal solution to subproblems

○ Optimal solution to the entire problem is build in a
bottom-up manner from optimal solutions to
subproblems

● Overlapping Subproblems

○ If a recursive algorithm revisits the same subproblems
over and over ⇒ the problem has overlapping
subproblems

Dynamic Programming Algorithm

1. Characterize the structure of an optimal
solution

2. Recursively define the value of an optimal
solution

3. Compute the value of an optimal solution in a
bottom-up fashion

4. Construct an optimal solution from computed
information

Example 1: Find nth Fibonacci number
F(0) = 0
F(1) = 1
F(2) = 1+0 = 1
 …
F(n-2) =
F(n-1) =
F(n) = F(n-1) + F(n-2)

Efficiency in time?
What if we solve it
recursively?

Example 2: Matrix chain multiplication
 A1 ⋅ A2 ⋅ A3

• A1: 10 x 100
• A2: 100 x 5
• A3: 5 x 50
1. ((A1 ⋅ A2) ⋅ A3): A1 ⋅ A2 = 10 x 100 x 5 = 5,000 (10 x 5)

 ((A1 ⋅ A2) ⋅ A3) = 10 x 5 x 50 = 2,500
Total: 7,500 scalar multiplications

2. (A1 ⋅ (A2 ⋅ A3)): A2 ⋅ A3 = 100 x 5 x 50 = 25,000 (100 x 50)
 (A1 ⋅ (A2 ⋅ A3)) = 10 x 100 x 50 = 50,000

Total: 75,000 scalar multiplications

Example 2: Matrix chain multiplication
m[i, j] = 0 if i = j
m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj} if i

< j
i≤k<j

Example 2: Group activity

A1A2A3A4
A1: 10x5
A2: 5x20
A3: 20x4
A4: 4x25

