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Dynamic Programming

● General idea
● Examples



General idea

● Applicable when subproblems are not independent : 
Subproblems share sub-subproblems.

● A divide and conquer approach would repeatedly solve 
the common subproblems

● Dynamic programming solves every subproblem just 
once and stores the answer in a table.



Elements of Dynamic Programming
● Optimal Substructure

○ An optimal solution to a problem contains within it an 
optimal solution to subproblems

○ Optimal solution to the entire problem is build in a 
bottom-up manner from optimal solutions to 
subproblems

● Overlapping Subproblems

○ If a recursive algorithm revisits the same subproblems 
over and over ⇒ the problem has overlapping 
subproblems



Dynamic Programming Algorithm

1. Characterize the structure of an optimal 
solution 

2. Recursively define the value of an optimal 
solution 

3. Compute the value of an optimal solution in a 
bottom-up fashion 

4. Construct an optimal solution from computed 
information



Example 1: Find nth Fibonacci number
F(0) = 0
F(1) = 1 
F(2) = 1+0 = 1
  …    
F(n-2) = 
F(n-1) = 
F(n) = F(n-1) + F(n-2)

Efficiency in time?
What if we solve it 
recursively?



Example 2: Matrix chain multiplication
 A1 ⋅ A2 ⋅ A3 

• A1: 10 x 100
• A2: 100 x 5
• A3: 5 x 50
1.  ((A1 ⋅ A2) ⋅ A3): A1 ⋅ A2 = 10 x 100 x 5 = 5,000  (10 x 5)

 ((A1 ⋅ A2) ⋅ A3) = 10 x 5 x 50 = 2,500
Total: 7,500 scalar multiplications

2. (A1 ⋅ (A2 ⋅ A3)):  A2 ⋅ A3 = 100 x 5 x 50 = 25,000 (100 x 50)
 (A1 ⋅ (A2 ⋅ A3)) = 10 x 100 x 50 = 50,000

Total: 75,000 scalar multiplications



Example 2: Matrix chain multiplication
m[i, j] =  0 if i = j
m[i, j] =  min {m[i, k] + m[k+1, j] + pi-1pkpj}     if i 

< j
i≤k<j



Example 2: Group activity

A1A2A3A4
A1: 10x5
A2: 5x20
A3: 20x4
A4: 4x25


