

CS 141: Intermediate Data Structures and Algorithms

Discussion - Week 4, Winter 2018

Master Theorem

- Motivation
- Master Theorem
- Examples
- Group activities

Motivation

- We only care about asymptotic behavior when analyzing algorithms.
- Rather than analyzing exactly the recurrence relation, we only need to find asymptotic behavior.
- Master Theorem is a great tool to do that!

Master theorem

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n), where a > 1, b > 1, and f is asymptotically positive.

Master theorem

$$T(n) = \begin{cases} \Theta(n^{\log_{b} a}) & f(n) = O(n^{\log_{b} a - \varepsilon}) \\ \Theta(n^{\log_{b} a} \log n) & f(n) = \Theta(n^{\log_{b} a}) \\ \Theta(f(n)) & f(n) = \Omega(n^{\log_{b} a + \varepsilon}) \text{ AND} \\ af(n/b) < cf(n) & \text{for large } n \end{cases} \begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

a = 4, b = 2 =>
$$n^{\log b(a)} = n^2$$
; f(n) = n.
CASE 1: f (n) = O($n^{2-\epsilon}$) for ϵ = 1.
→ T(n) = (n^2).

a = 4, b = 2 =>
$$n^{\log b(a)} = n^2$$
; f(n) = n^2 .
CASE 2: f (n) = $\Theta(n^2)$.
→ T(n) = ($n^2 \log n$).

a = 4, b = 2 =>
$$n^{\log b(a)} = n^2$$
; f(n) = n^3 .
CASE 3: f (n) = $\Omega(n^{2 + \varepsilon})$ for $\varepsilon = 1$.
and $4(n/2)^3 \le cn^3$ for $c = 1/2$.
 $\rightarrow T(n) = (n^3)$.

$T(n) = 4T(n/2) + n^2 / \log n$

 $T(n) = 4T(n/2) + n^2 / \log n$

$$a = 4$$
, $b = 2 => n^{logb(a)} = n^2$; $f(n) = n^2 / log n$.

Master theorem does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

Group activities

Solve and discuss several recurrence relations.