

# CS141: Intermediate Data Structures and Algorithms

## **NP-Completeness**

**Amr Magdy** 

#### Why Studying NP-Completeness?



- Two reasons:
  - In almost all cases, if we can show a problem to be NP-complete or NP-hard, the best we can achieve (NOW) is mostly exponential algorithms.
    - This means we cannot solve large problem sizes efficiently
  - 2. If we can solve only one NP-complete problem efficiently, we can solve ALL NP problems efficiently (major breakthrough)
- More details come on what does these mean

#### **Topic Outline**



- Background
  - Decision vs. Optimization Problems
  - Models of Computation
  - Input Encoding
- 2. Complexity Classes
  - P
  - NP
    - > Polynomial Verification
    - > Examples
- 3. NP-hardness
  - Polynomial Reductions
- 4. NP-Complete Problems
  - Definition and Examples
  - Weak vs. Strong NP-Complete Problems



Decision problem: a problem expressed as a yes/no question



- Decision problem: a problem expressed as a yes/no question
  - Examples:
    - Is graph G connected?
    - Is path P:u→v shortest?



- Decision problem: a problem expressed as a yes/no question
  - Examples:
    - Is graph G connected?
    - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
  - In continuous optimization, the answer is real valued objective function (either min or max)



- Decision problem: a problem expressed as a yes/no question
  - Examples:
    - Is graph G connected?
    - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
  - In continuous optimization, the answer is real valued objective function (either min or max)
  - Examples:
    - Find a maximum fully-connected subgraph (clique) size in a graph.
    - Find the least cost of multiplying a chain of matrices.



- Decision problem: a problem expressed as a yes/no question
  - Examples:
    - Is graph G connected?
    - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
  - In continuous optimization, the answer is real valued objective function (either min or max)
  - Examples:
    - > Find a maximum fully-connected subgraph (clique) size in a graph.
    - Find the least cost of multiplying a chain of matrices.
- Converting optimization problem → decision problem?
  - Put a bound on the objective function.



- Decision problem: a problem expressed as a yes/no question
  - Examples:
    - Is graph G connected?
    - Is path P:u→v shortest?
- Optimization problem: finding the best solution from all feasible solutions
  - In continuous optimization, the answer is real valued objective function (either min or max)
  - Examples:
    - Find a maximum fully-connected subgraph (clique) size in a graph.
    - Find the least cost of multiplying a chain of matrices.
- Converting optimization problem → decision problem?
  - Put a bound on the objective function.
    - Does G have a clique of size k? for k= 3, 4, 5,...(finding max clique)

#### **Take Home Messages**



(1) Computation theory focuses on decision problems



MoC: informally a theoretic description of a way to compute



- MoC: informally a theoretic description of a way to compute
- Example: mask model



Mask Model (on paper)



Mask Realization (fabric instance)



- At a low level:
  - Finite State Automata (FSA)
  - Pushdown Automata (PDA)
  - Turing Machine (TM)
  - **>** .....

Focus of other courses (e.g., Theory of Computation, Compilers Design, ...etc)

- At a high level:
  - RAM (Random Access Machine)
  - Pointer Machine
  - **>** ....



- A model of computation determines two things:
  - What are the possible operations
  - What is the cost of each operation



- A model of computation determines two things:
  - What are the possible operations
  - What is the cost of each operation
- w-Random Access Machine (w-RAM) MoC:
  - The one we used throughout the course
  - Possible operations in Θ(1):
    - Access any memory word at random
    - Read variable
    - Write variable
    - > Basic mathematical operations (add, multiply, assign,...etc)
    - Single-command output operations (print, return, ...etc)
    - **>** ....



- A model of computation determines two things:
  - What are the possible operations
  - What is the cost of each operation
- w-Random Access Machine (w-RAM) MoC:
  - The one we used throughout the course
  - Possible operations in Θ(1):
    - Access any memory word at random
    - Read variable
    - Write variable
    - > Basic mathematical operations (add, multiply, assign,...etc)
    - Single-command output operations (print, return, ...etc)
    - > ....
- What the cost of appending to a list in w-RAM model? Sorting? Finding maximum?



- A model of computation determines two things:
  - What are the possible operations
  - What is the cost of each operation
- Pointer Machine (PM) MoC:
  - A machine with only dynamic allocated memory through pointers
  - Possible operations in Θ(1):
    - Follow pointer (no random memory anymore)
    - Read pointed variable
    - Write pointed location
    - **>** ....



- A model of computation determines two things:
  - What are the possible operations
  - What is the cost of each operation
- Pointer Machine (PM) MoC:
  - A machine with only dynamic allocated memory through pointers
  - Possible operations in Θ(1):
    - Follow pointer (no random memory anymore)
    - Read pointed variable
    - Write pointed location
    - **>** ....
- What the cost of accessing any memory location in PM model? Sorting? Finding maximum?
  - Function of the basic operations

#### **Take Home Messages**



- (1) Computation theory focuses on decision problems
  - (2) Algorithm complexity is affected by the computation model



- Assume multiplying two decimal integers
  - 2 \* 2 = 4(basic operation, single digit op)
  - > 12\*12 = (1\*10+2)\*(1\*10+2)= 1\*10\*1\*10+1\*10\*2+2\*1\*10+2\*2(4 mult ops, 4 add ops, 4 shift ops)
  - O(n²) operations for n-digit number



- Assume multiplying two decimal integers
  - 2 \* 2 = 4(basic operation, single digit op)

> 
$$12*12$$
 =  $(1*10+2)*(1*10+2)$   
=  $1*10*1*10+1*10*2+2*1*10+2*2$   
(4 mult ops, 4 add ops, 4 shift ops)

- O(n²) operations for n-digit number
- Assume multiplying two binary integers

$$(10)_b * (10)_b = (1*2+0)*(1*2+0)$$

$$= 1*2*1*2+1*2*0+0*1*2+0*0$$
(4 mult ops, 4 add ops, 4 shift ops)

O(n²) operations for n-digit number



Assume multiplying two decimal integers

```
2 * 2 = 4(basic operation, single digit op)
```

O(n²) operations for n-digit number

Same input (2x2), different encoding

Assume multiplying two binary integers

$$(10)_b * (10)_b = (1*2+0)*(1*2+0)$$
  
=  $1*2*1*2+1*2*0+0*1*2+0*0$   
(4 mult ops, 4 add ops, 4 shift ops)

O(n²) operations for n-digit number



Assume multiplying two decimal integers

```
2 * 2 = 4(basic operation, single digit op)
```

> O(n²) operations for n-digit number

Same input (2x2), different encoding

Assume multiplying two binary integers

$$(10)_b * (10)_b = (1*2+0)*(1*2+0)$$
  
=  $1*2*1*2+1*2*0+0*1*2+0*0$   
(4 mult ops, 4 add ops, 4 shift ops)

- > O(n²) operations for n-digit number
- Input representation (encoding) affects the amount of computations for same input

#### **Exercise**



 design a divide & conquer algorithm to multiply two n-bits integers in O(n²)

#### Note:

- Multiplying by  $2^n$  for binary numbers is shifting by n bits  $\rightarrow \Theta(n)$
- Multiplying by  $10^n$  for decimal numbers is shifting by n digits  $\rightarrow \Theta(n)$

#### **Take Home Messages**



- (1) Computation theory focuses on decision problems
  - (2) Algorithm complexity is affected by the computation model
  - (3) Algorithm complexity is affected by the input encoding/length

#### **Take Home Messages**



- (1) Computation theory focuses on decision problems
- (2) Algorithm complexity is affected by:
  - (a) the computation model
  - (b) the input encoding/length



Binary strings are the standard encoding for computing now



- Binary strings are the standard encoding for computing now
- Integer  $n \rightarrow binary number (in log_2(n) bits)$ 
  - > Example: 999 (3 digits) → 01111100111 (11 bits)



- Binary strings are the standard encoding for computing now
- Integer  $n \rightarrow binary number (in log_2(n) bits)$ 
  - Example: 999 (3 digits) → 01111100111 (11 bits)
- Array of n integers  $\rightarrow$  sequence of integers (in n\*log<sub>2</sub>(n) bits) Example: 09,15,03 (6 digits)  $\rightarrow$  1001,1111,0011 (12 bits)



- > Binary strings are the standard encoding for computing now
- > Integer  $n \rightarrow binary number (in log_2(n) bits)$ 
  - Example: 999 (3 digits) → 01111100111 (11 bits)
- > Array of n integers  $\rightarrow$  sequence of integers (in n\*log<sub>2</sub>(n) bits)
  - $\rightarrow$  Example: 09,15,03 (6 digits)  $\rightarrow$  1001,1111,0011 (12 bits)
- String of n chars → sequence of integer codes (in n\*log₂(n) bits), e.g., ASCII codes
  - > Example: Amr (3 chars) → 1000001,1101101,1110010 (21 bits)



- > Binary strings are the standard encoding for computing now
- > Integer  $n \rightarrow binary number (in log_2(n) bits)$ 
  - Example: 999 (3 digits) → 01111100111 (11 bits)
- > Array of n integers  $\rightarrow$  sequence of integers (in n\*log<sub>2</sub>(n) bits)
  - $\rightarrow$  Example: 09,15,03 (6 digits)  $\rightarrow$  1001,1111,0011 (12 bits)
- String of n chars → sequence of integer codes (in n\*log<sub>2</sub>(n) bits), e.g., ASCII codes
  - Example: Amr (3 chars) → 1000001,1101101,1110010 (21 bits)
- Graph G of n vertices and m edges:
  - ► Each vertex with integer id → n integers
  - ► Each edge with integer id and weight → m integers + m floats
  - m is maximum of n²/2, i.e., m=O(n²)



Concrete

input string

- > Binary strings are the standard encoding for computing now
- Integer
  - Example: 999 → 01111100111
- Array of n integers
  - Example: 9,15,3 → 1001,1111,0011
- String of n chars
  - Example: Amr → 1000001,1101101,1110010
- Graph G of n vertices and m edges:

#### **Take Home Messages**



- (1) Computation theory focuses on decision problems
- (2) Algorithm complexity is affected by:
  - (a) the computation model
  - (b) the input encoding/length
- (3) Binary input string (concrete input) is different in length than the algorithm abstract input

#### **Complexity Class**



- Complexity class:
  - A set of problems that share some complexity characteristics
  - Either in time complexity
  - Or in space complexity

#### **Complexity Class**



- Complexity class:
  - A set of problems that share some complexity characteristics
  - Either in time complexity
  - Or in space complexity
- In this course, our discussion is limited to only two time complexity classes: P and NP
  - Other courses cover more content (e.g., Theory of Computation course)

#### P



- P is a complexity class of problems that are decidable in polynomial-time of the concrete input string length, i.e., O(b<sup>k</sup>)
  - where <u>b</u> the binary (concrete) input string length and <u>k</u> is constant
- For simplicity, P is the set of problems that are solvable in polynomial time
  - i.e., has O(b<sup>k</sup>) algorithm to find a solution

### P



- P is a complexity class of problems that are decidable in polynomial-time of the concrete input string length, i.e., O(b<sup>k</sup>)
  - where <u>b</u> the binary (concrete) input string length and <u>k</u> is constant
- For simplicity, P is the set of problems that are solvable in polynomial time
  - i.e., has O(b<sup>k</sup>) algorithm to find a solution
- Examples: (translate the complexity in terms of concrete input length not abstract input length)
  - Shortest paths in graph
  - Matrix chain multiplication
  - Activity scheduling problem

> ....

### P



- As long as the algorithm complexity is polynomial in terms of the concrete input length, it belongs to class P
- Example: Matrix chain multiplication
   Abstract input length a= (n+1) integers
   Concrete input length b= ~(n log n) bits

Algorithm complexity: 
$$O(n^3) = O(a^3) = O(b^3)$$
  
As  $a^3 = \sim n^3$   
 $b^3 = n^3 \log^3 n$ 

### NP



- NP is a complexity class of problems that are verifiable in polynomial-time of input string length (concrete input)
- For simplicity, given a solution of an NP problem, we can verify in polynomial time O(b<sup>k</sup>) if this solution is correct

### NP



- NP is a complexity class of problems that are verifiable in polynomial-time of input string length (concrete input)
- For simplicity, given a solution of an NP problem, we can verify in polynomial time O(b<sup>k</sup>) if this solution is correct
- The problem must be decision (not optimization) problem

#### Examples:

- Is bipartite graph? Given two subsets of nodes, verify it is bipartite
- Max clique: Given a clique and k, verify it is actually a clique of size k
- Shortest path: Given a path of cost C, verify it is a path and of cost C
- > ....

## Is $P \subset NP$ ?



## Is $P \subset NP$ ?



- Yes
- What does this mean?

### Is $P \subset NP$ ?



- Yes
- What does this mean?
  - > Every problem that is solvable in polynomial time is verifiable in polynomial time as well



What does this mean?



- What does this mean?
  - > There are polynomial time algorithms to solve NP problems



- What does this mean?
  - > There are polynomial time algorithms to solve NP problems
- Nobody yet knows
  - The question posed in 1971





- What does this mean?
  - There are polynomial time algorithms to solve NP problems
- Nobody yet knows
  - The question posed in 1971
  - You think it is old?
    - Check Alhazen's problem then





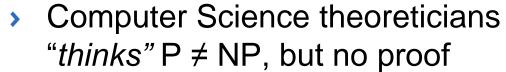
- What does this mean?
  - There are polynomial time algorithms to solve NP problems
- Nobody yet knows
  - The question posed in 1971
  - You think it is old?
    - Check Alhazen's problem then

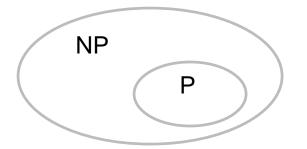
Computer Science theoreticians "thinks" P ≠ NP, but no proof



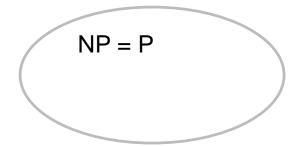


- What does this mean?
  - There are polynomial time algorithms to solve NP problems
- Nobody yet knows
  - The question posed in 1971
  - You think it is old?
    - Check Alhazen's problem then





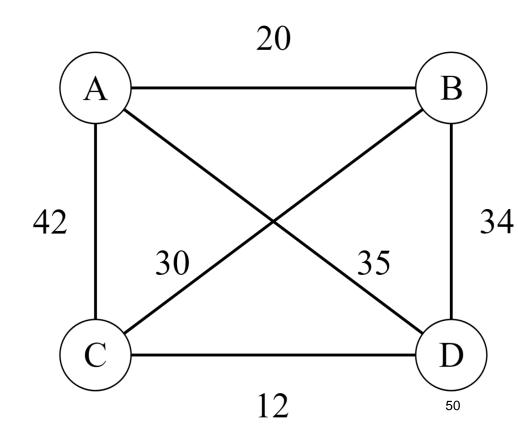






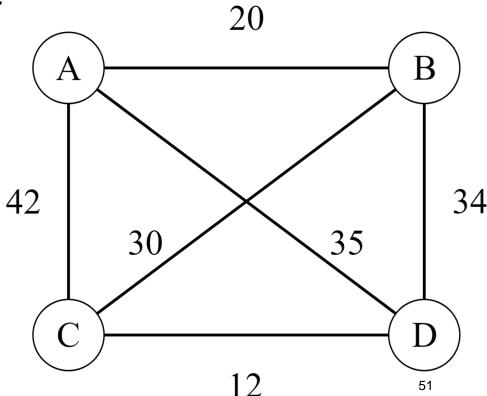
Example: Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?



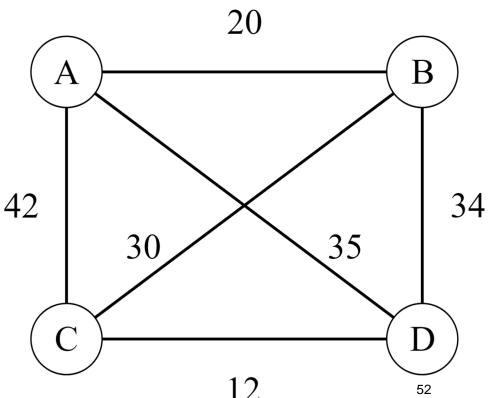


- > Example: Travelling Salesman Problem
  - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
- How to solve this problem?



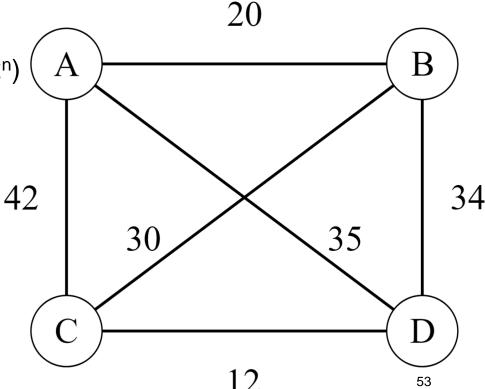


- > Example: Travelling Salesman Problem
  - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
- How to solve this problem?
  - Brute force: O(n!)





- Example: Travelling Salesman Problem
  - Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
- How to solve this problem?
  - Brute force: O(n!)
  - Dynamic programming: O(n2<sup>n</sup>)



# **Travelling Salesman Movie**



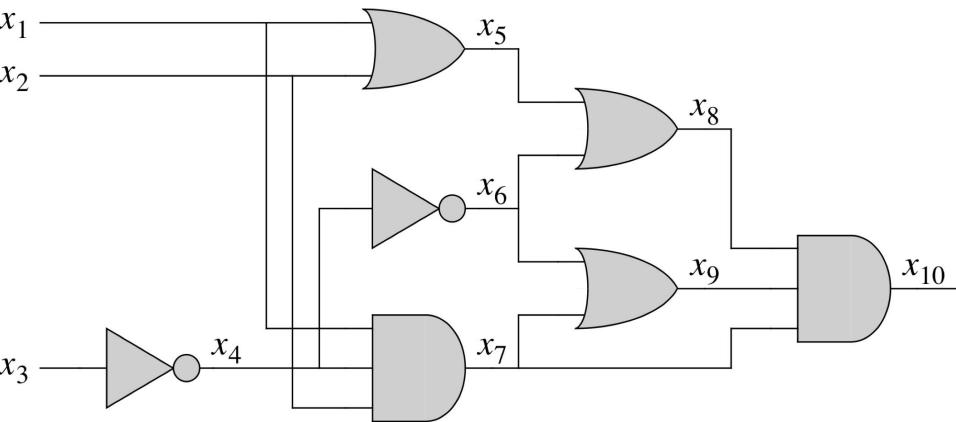
https://www.youtube.com/watch?v=6ybd5rbQ5rU





> Example: **SAT Problem** 

Given a Boolean circuit S, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

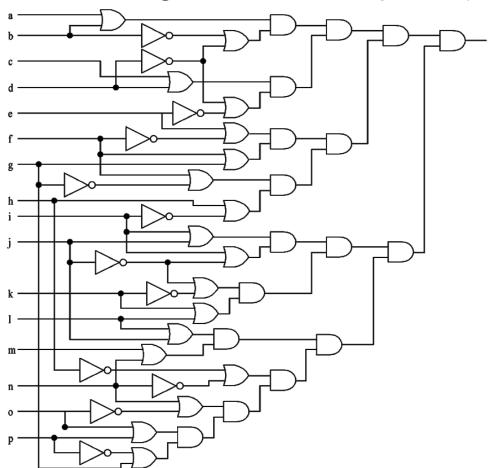


J



Example: SAT Problem

Given a Boolean circuit S, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)





- > Example: **3-CNF Problem**
- Given a Boolean circuit S in 3-CNF form, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)
- 3-CNF formula: a set ANDed Boolean clauses, each with 3 ORed literals (Boolean variables)
- Example: V = OR, A = AND, T = NOT (x1 V Tx2 V Tx3) A (Tx1 V x2 V x3) A (x1 V x2 V x3)



> Example: **3-CNF Problem** 

Given a Boolean circuit S in 3-CNF form, is there a satisfying assignment for S? (i.e., variable assignment that outputs 1)

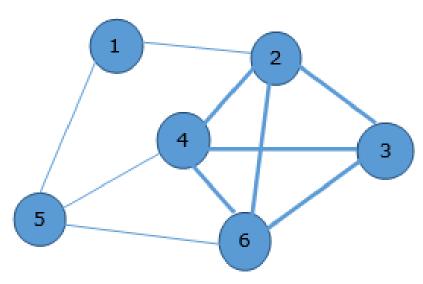
- 3-CNF formula: a set ANDed Boolean clauses, each with 3 ORed literals (Boolean variables)
- Example: V = OR, A = AND, T = NOT (x1 V Tx2 V Tx3) A (Tx1 V x2 V x3) A (x1 V x2 V x3)
- Solution: O(k2<sup>n</sup>) for k clauses and n variables



Example: (Max) Clique Problem

Given a graph G=(V,E), find the clique of maximum size.

Clique: fully connected subgraph.





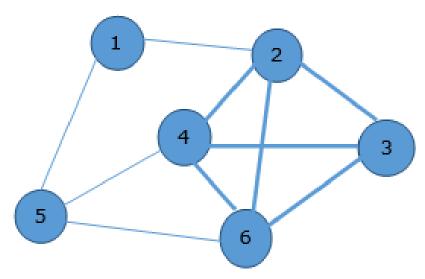
Example: (Max) Clique Problem

Given a graph G=(V,E) of n vertices, find the clique of maximum size.

Clique: fully connected subgraph.

#### Solution:

- Assume max clique size k and |V| = n
- Brute force: O(n2<sup>n</sup>)
- Combinations of k: O(nk k²)
  - > Try for k=3,4,5,...
  - k is not constant, so this is not polynomial



# **NP Problems: Polynomial Verification**



- Given a solution, can I verify if it is correct in polynomial time?
- TSP Problem: Yes (the decision version)
  - Is there a tour with weight W?
- SAT Problem: Yes
- 3-CNF Problem: Yes
- Max Clique Problem: Yes (the decision version)
  - Is there a clique of size k?

#### **NP-hard Problems**



#### Informally:

an NP-hard problem B is a problem that is at least as hard as the hardest problems in NP class

#### Formally:

B is NP-hard if  $\forall$  A  $\in$  NP, A  $\leq_P$  B (i.e., A is polynomially reducible to B)

# **Polynomial Reductions**



Polynomial reduction  $A \leq_P B$  is converting an instance of A into an instance of B in polynomial time.

# **Polynomial Reductions**

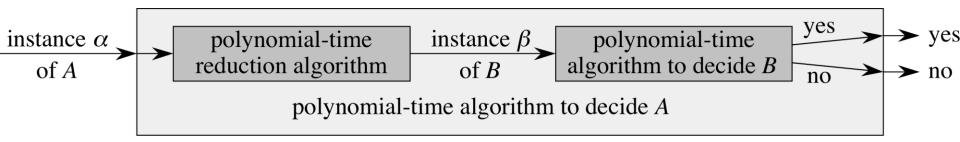


- Polynomial reduction  $A \leq_P B$  is converting an instance of A into an instance of B in polynomial time.
- How to solve A given a solver to B?

# **Polynomial Reductions**



- Polynomial reduction  $A \leq_P B$  is converting an instance of A into an instance of B in polynomial time.
- How to solve A given a solver to B?



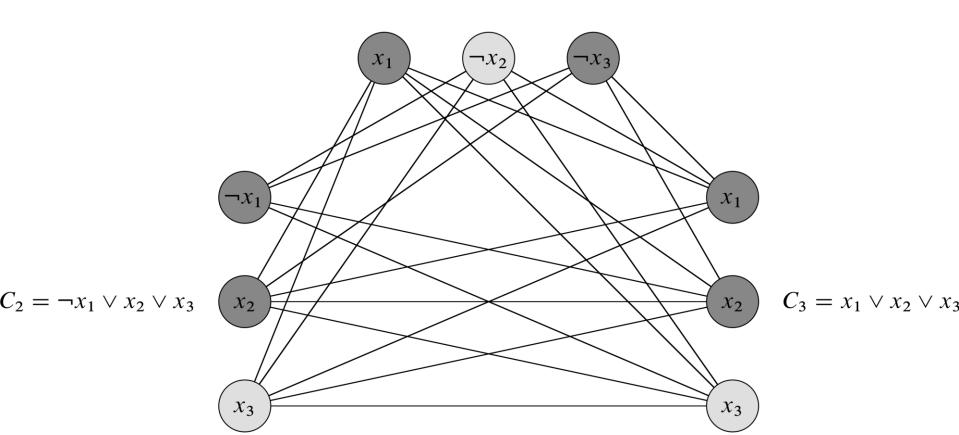


- Reduce k-clause 3-CNF problem to k-size Clique problem
- Example: three 3-CNF clauses
   (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)



- Reduce k-clause 3-CNF problem to k-size Clique problem
- Example: three 3-CNF clauses(x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)

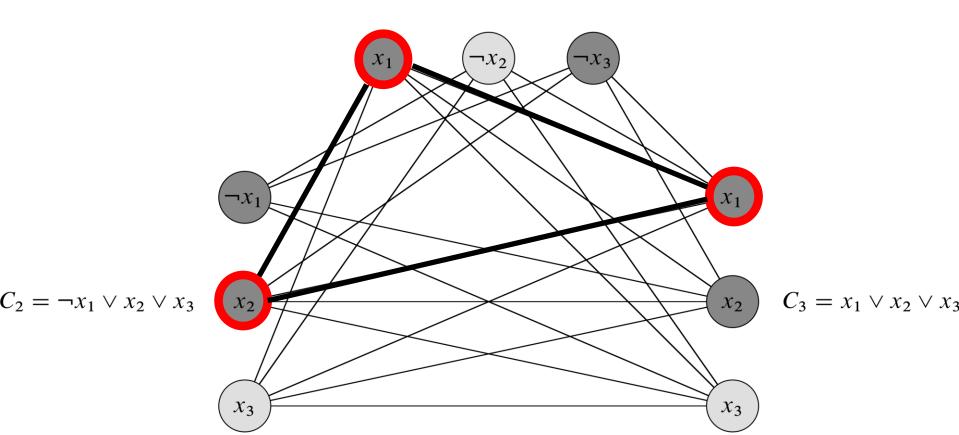
$$C_1 = x_1 \vee \neg x_2 \vee \neg x_3$$





- Reduce k-clause 3-CNF problem to k-size Clique problem
- Example: three 3-CNF clauses(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

$$C_1 = x_1 \vee \neg x_2 \vee \neg x_3$$





- Reduce k-clause 3-CNF problem to k-size Clique problem
- Example: three 3-CNF clauses
   (x1 v ¬x2 v ¬x3) ^ (¬x1 v x2 v x3) ^ (x1 v x2 v x3)
- Given: S: k-clause 3-CNF formula
- Reduction Algorithm:
  - Compose a graph G of k sets of vertices, each set has three vertices
  - Connect all pairs of vertices (u,v) such that:
    - u and v belong to two different sets
    - If u=xi, then v ≠ ¬xi
  - If there is k-size clique in G, there is a satisfying assignment to S
    (assign 1 to each vertex in the clique).

### **NP-hard Proofs**



- To prove B an NP-hard problem:
  - Show a polynomial time reduction algorithm from ONE of the existing NP-hard problems, say B', to B. i.e., B'  $\leq_P$  B

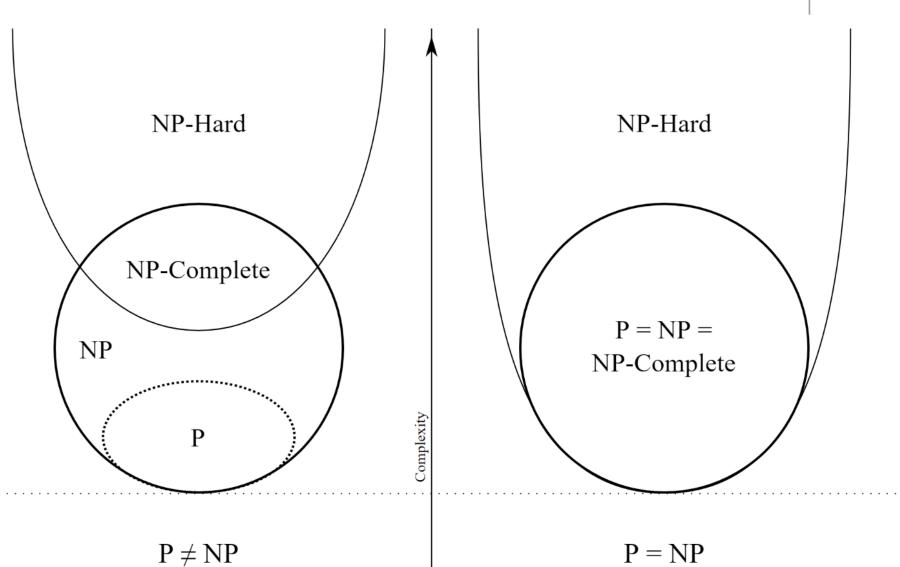
# **NP-Complete Problems**



- B is NP-complete problem if:
  - 1. B ∈ NP
  - 2. B is NP-hard

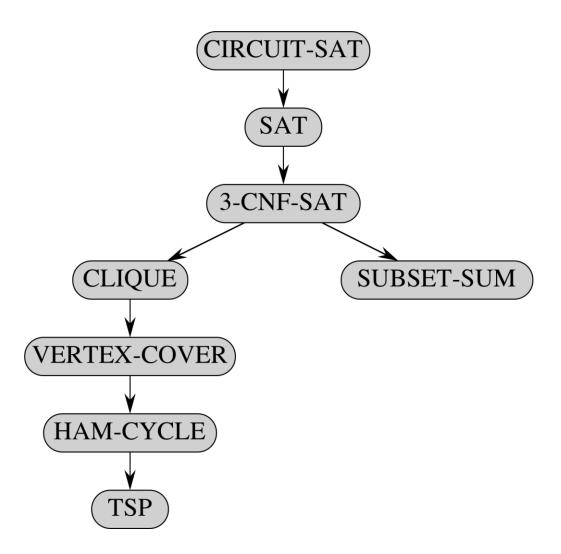
# **NP-Complete Problems**





# **NP-Complete Problems: Examples**

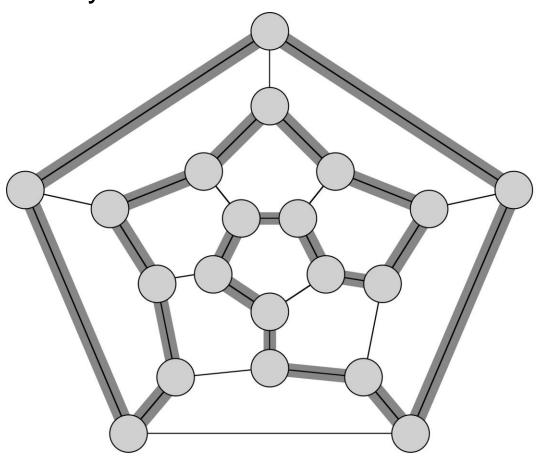




# **NP-Complete Problems: Examples**



Hamiltonian Cycle Problem: Given an undirected or directed graph G, is there a cycle in G that visits each vertex exactly once?



# Take Home Messages: Remember?



- (1) Computation theory focuses on decision problems
- (2) Algorithm complexity is affected by:
  - (a) the computation model
  - (b) the input encoding/length
- (3) Binary input string (concrete input) is different in length than the algorithm abstract input

# Strong vs Weak NP-Completeness



- Abstract input vs Concrete input:
  - Input array of n integers:
    - Abstract input size: a = n (# of integers)
    - Concrete input size in binary: b = n log n (# of bits of the array)
- Weak NP-complete problem:
  - An NP-complete problem that has a known polynomial solution in terms of the abstract input size.
- Strong NP-complete problem:
  - An NP-complete problem that does not have a known polynomial solution in terms of either abstract or concrete input size.

# Weak NP-Completeness: Examples



- Subset-Sum Problem:
  - Given set S of n integers and integer T
  - Dynamic Programming solution: O(nT)
  - Abstract input: a<sub>1</sub> = n (integers of S) a<sub>2</sub>= 1 (integer T)
  - > Concrete input:  $b_1 = n \log n$   $b_2 = \log T$
  - O(nT) = O(b<sub>1</sub> 2<sup>b2</sup>) → exponential in concrete input but polynomial in abstract input → weak NP-complete

#### Partition Problem:

- Given set S of n integers, divide S into two disjoint subsets of equal sum
- Same solution (and complexity) as Subset-Sum

#### > 0-1 Knapsack Problem

Similar solution to subset-sum (O(nW) for knapsack of weight W)<sup>7</sup>

# **Weak NP-Completeness**



For weak NP-complete problems, we are able to solve many instances in practical input sizes.

# **Book Readings**

UCR

> Ch. 34