IIIIIIIIIIIIIIIIIIIIII

CS141: Intermediate Data Structures
and Algorithms

Graphs

Amr Magdy

Graph Data Structure

» A set of nodes (vertices) and edges connecting them

L/”\ Edge

R

Graph Applications UCK

» Road network
» Social media networks
» Knowledge bases

-
\g 1%y

Washington Capital-of |

Jerry

‘ Brown vernor-of
|
California State-in
esident-in 3

Graph Representations

» Adjacency matrix
Storage and access efficient when many edges exist

= = 0 O = W
o = © O = N

O H H H O

S N I R v

o = O = O m

Graph Representations

» Adjacency matrix

Storage and access efficient when many edges exist

~

A B C

Graph Representations K

> Incidence Matrix
Expensive storage, not popular

El E2 E3 E4 E5 E6 E7 E8

a ™

1 1 -1 0 0 O O0 O
-1 0 0 1 0 1 0O
O -1 0 0 1 0 OO
o 0 1 -1 -1 0 11
ES g o 0o 0 0 O -1 -10)

Graph Representations

» Adjacency list
Storage efficient when few edges exit (sparse graphs)
Sequential access to edges (vs random access in matrix)

R

Al +—{B] F+—{CX

B| +—{D] F+—{E]
» [3—>DbX

D| +—>{A|l +——{D]| -

EPX

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

N
» Tree/Forest / v, —~
— “ +.|/V2 ﬁ:l
h\\ r /*
l/ ;J \'”-,Id I/f 2 _\ |K
< O/

Directed Graph . Undirected Graph

Types of Graphs

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs --—a\._ﬁ

> Tree/Forest /

\ 74
‘Weighted Graph

R

Unweighted Graph

Types of Graphs K

» Directed and Undirected graphs -~
> Weighted and Unweighted graphs Ll &
4
> Connected graphs // Figlh:
> Bipartite graphs " P crapt
> Acyclic graphs — &
» Tree/Forest
} S (v ®
/\M //
_ » p,
& ORRY

Fig(ii):
Unconnected Graph

There are three component of above
unconnected graph

10

Types of Graphs

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

» Tree/Forest

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs
» Connected graphs

» Bipartite graphs

» Acyclic graphs

» Tree/Forest

12

Types of Graphs K

» Directed and Undirected graphs

» Weighted and Unweighted graphs

» Connected graphs A
» Bipartite graphs

» Acyclic graphs Tree
» Tree/Forest

Tree: directed acyclic graph with max of one path between
any two nodes

Forest: set of disjoint trees

Forest

13

Basic Graph Algorithms

» Graph traversal algorithms
Bread-first Search (BFS)
Depth-first Search (DFS)

» Topological Sort
> Graph Connectivity
» Cycle Detection

14

R

Breadth-first Search (BFS) K

» How to traverse?

Breadth-first Search (BFS) K

» How to traverse?
» Use a queue

Breadth-first Search (BFS) K

» How to traverse? 1 \

> Use a queue /1T,

» Start at a vertex s) 3 W4
Mark s as visited) /' , |\
Enqueue neighbors of s / ? 6) T \ 8)
while Q not empty 9% (10 11 12

Dequeue vertex u
Mark u as visited
Enqueue unvisited neighbors of u

17

R

Breadth-first Search (BFS)

= [| N

=™ =N

- | = e
Al

= | =|on
- | ™ ~ o
N | — = o

Q Q
- (D) =@~
xfe"ex;z"ex
0% 0%
- 00— -@=E-

3 3

18

(1)

Depth-first Search (DFS) K

» How to traverse?

Depth-first Search (DFS)

» How to traverse?
» Use a stack

Gad

Oad

Shls)
=)
t=iltv

Depth-first Search (DFS) K

» How to traverse?

> Use a stack _ / [\

» Start at a vertex s (2) (7) (8)
Mark s as visited 1IN
Push neighbors of s 3 (6 I
while Stack not empty 4/é '/1]0\/1 1)

Pop vertex u < O <
Mark u as visited
Push unvisited neighbors of u

21

Complexity of Graph Traversal K

» For G =(V,E), V set of vertices, E set of edges

» BFS
Time: O(|V|+|E|)
Space: O(|V]) (plus graph representation)

» DFS
O(VI+IE[)
Space: O(|V]) (plus graph representation)

22

Graph Connectivity

» Checking if graph is connected:

23

R

Graph Connectivity

» Checking if graph is connected:

IsConnected(G)
{
DFS(G)
If any vertex not visited
return false
else
return true

}
Time Complexity: O(|V|+|E|)

24

R

Graph Connected Components

» Getting the graph connected components

— - B -
Vl :',___l /V '| II/ v \\‘I '/ V?\I
/ va / _
(v-l \\ I/ » ,/.\"' /
-/ (V / '\‘i“ /l A _!___/"l
Fig(ii):

Unconnected Graph

There are three component of above
unconnected graph

25

Graph Connected Components K

» Getting the graph connected components
» Mark all nodes as unvisited

visitCycle = 1
while(there exists unvisited node n)
{

- Start DFS(G) at n, mark visited node with visitCycle
- Output all nodes with current visitCycle as one
connected component
- visitCycle = visitCycle+1

}
Time Complexity: O(|V|+|E|)

26

Cycle Detection

» Does a connected graph G contain a cycle?
(non-trivial cycle)

» General idea: iIf DFS procedure tries to revisit a visited
node, then there is a cycle

27

R

Cycle Detection K

» Does a graph G contain a cycle? (non-trivial cycle)
IsAcyclic(G) {
Start at unvisited vertex s
Mark “s™ as visited
Push neighbors u of s in stack <node:u, parent.s>
while stack not empty
Pop vertex u
Mark u as visited

If u has a visited neighbor v
& V IS non-parent for u

return true
Push unvisited neighbors v of u <node.v, patent:u>
return false 2

Cycle Detection in Directed Graphs K

IsAcyclicDirected(node s, currPath) {
If s in currPath return true

If s Is visited return false
Mark s as visited 0

Add s to currPath ®—>

for each neighbor u of s
If(IsAcyclicDirected(u, currPath))

return true
remove s from currPath
return false

29

Cycle Detection in Directed Graphs K

while(there is unvisited node s)

{
currPath = {}

If(IsAcyclicDirected(s, currPath)) 0

return true
} (A)—(B;

return false \(

30

Topological Sort UCK

» Determine a linear order for vertices of a directed acyclic
graph (DAG)
> Mostly dependency/precedence graphs
> If edge (u,v) exists, then u appears before v in the order

31

Topological Sort K

L « Empty list
S « Set of all nodes with no incoming edge
while S 1s non—-empty do
remove a node n from S
add n to end of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S

return L (a topologically sorted order)

32

Spanning Tree

» Glven a connected graph G=(V,E), a spanning tree T €
E is a set of edges that “spans” (i.e., connects) all
vertices in V.

> A Minimum Spanning Tree (MST): a spanning tree with
minimum total weight on edges of T

> Application:
The wiring problem in hardware circuit design

33

R

Spanning Tree: Example UCR

Spanning Tree: Not MST

A B
4
D E
4 V4

Total weight = 21

R

Spanning Tree: MST

A B C
4

4 2

D E

Total weight = 16

R

Spanning Tree: Another MST

Total weight = 16

R

Finding MST: Kruskal’s algorithm K

» Sort all the edges by weight

» Scan the edges by weight from lowest to highest
» If an edge introduces a cycle, drop it

» If an edge does not introduce a cycle, pick it

» Terminate when n-1 edges are picked
(n: number of vertices)

38

Finding MST: Kruskal’s algorithm

K

Finding MST: Kruskal’s algorithm

40

K

K

Finding MST: Kruskal’s algorithm

41

K

Finding MST: Kruskal’s algorithm

42

K

Finding MST: Kruskal’s algorithm

43

K

Finding MST: Kruskal’s algorithm

44

K

— i —

4

45

Finding MST: Kruskal’s algorithm

K

— —
~
-

Finding MST: Kruskal’s algorithm

46

Finding MST: Kruskal’s algorithm

—— i — — ——— — — —
—— —
— —_—
— ——
s -

47

K

Finding MST: Kruskal’s algorithm

—
— —

—_————

48

K

Finding MST

» Kruskal's algorithm: greedy
Greedy choice: least weighted edge first
Complexity: O(E log E) — sorting edges by weight
Edge-cycle detection: O(1) using hashing of O(V) space

> Prim’s algorithm: greedy
Complexity: O(E+ V log V) — using Fibonacci heap data structure

49

R

Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)

50

Shortest Paths in Graphs K

» Given graph G=(V,E), find shortest paths from a given node
source to all nodes in V. (Single-source All Destinations)

» If negative weight cycle exist from s—>t, shortest is undefined
Can always reduce the cost by navigating the negative cycle

» If graph with all +ve weights = Dijkstra’s algorithm

» If graph with some -ve weights = Bellman-Ford’s algorithm

51

Dijkstra’s Algorithm

Initialize:

S 4}

Prev: {A,U,U,U,U}

Dijkstra’s Algorithm -

0: | B

Dijkstra’s Algorithm

S: {4}
Prev: {AAAU,U}

Dijkstra’s Algorithm ‘ K

S: {4, C}
Prev: {AAAU,U}

Dijkstra’s Algorithm

S: {4, C}
Prev: {A,C,AC,C}

Dijkstra’s Algorithm

S:{A, C E}
Prev: {A,C,AC,C}

Dijkstra’s Algorithm

O: | B (D
0 o o0

10 o0

7 11

11

7
(B,
| 4
G

3

S:{A, C E}
Prev: {A,C,AC,C}

Dijkstra’s Algorithm

8

8

11
1]

7
B,
| 4
G

3

S:{A, C E B}
Prev: {A,C,AC,C}

Dijkstra’s Algorithm ‘ K

5 3 5

9 S:{A, C E, B}
Prev: {A,C,AB,C}

Dijkstra’s Algorithm ‘ K

w 8
8

E— — 8 ¢

S:{A, C E B D}
Prev: {A,C,AB,C}

Dijkstra’s Algorithm

0:
il oo o
10 B
7
1
9 S:{4A CEBD)
Prev: {A,C,AB,C}
A:A2A
B:A>C =B
C:A—>C

D:A->C>B->D
E:A=>C2E

Dijkstra’s Algorithm K

1 function Dijkstra (Graph, source):
2
3 create vertex set Q
4
5 for each vertex v in Graph: //Initialization
0 Dist[v] « INFINITY //Unknown distance from source to v
7 Prev[v] « UNDEFINED //Previous node in path from source to v
8 add v to Q //All nodes initially unvisited (in Q)
9
10 Dist[source] « O // Distance from source to source = 0
11 Prev|[source] « source
12 while QO is not empty:
13 u « vertex in Q with min Dist[u] //Node with the least distance
14 // will be selected first
15 remove u from O
16
17 for each neighbor v of u in O: //v is still in Q.
18 tmp « Dist[u]+edge length(u, v) //trying u as “source->u->v”
19 if tmp < Dist[v]: //A shorter path to v has been found
20 Dist[v] « tmp
21 Prev([v] « u
22

23 return Dist[], SI[] 63

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

o8
Vq
Vancouver 16

A

20 Winnipeg

Calgary Regina

64

Network Max Flow R

> What the maximum amount we can ship from Vancouver
to Winnipeg?
» Pseudo code
MaxFlow(G, s, t) {
max_flow =0
while (3 a simple path p:s>1){
curr_flow = min weight in p
max_flow = max_flow + curr_flow
for each (edge e € p) {
e.weight = e.weight - curr_flow

}
}

return max_flow

65

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

Vancouver 1/67

Calgary Regina

66

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow =12

16-12
Vancouver /

20-12
Winnipeg

Calgary Regina

67

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

max_flow =12 @
Vancouver 4

Winnipeg

Calgary Regina

68

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

max_flow = 16 @
Vancouver 4

Winnipeg

Calgary Regina

69

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Van(:ouverA'/Y X

O
NG
V2 10 V4

Calgary Regina

Winnipeg

70

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 16 @
Vancouver4/7 yY

Winnipeg

Calgary Regina

71

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon

max_flow = 23 @
Vancouver 4

Winnipeg

10-7
Calgary Regina

72

Network Max Flow R

» What the maximum amount we can ship from Vancouver
to Winnipeg?

Edmonton Saskatoon
max_flow = 23 @
Vancouver4/7 yY

Winnipeg

Calgary Regina

73

Book Readings & Credits

» Book Readings:
Ch. 22, 23.2,24.3, 26.1, 26.2

» Credits:
Figures:
Wikipedia
btechsmartclass.com

https://www.codingeek.com/data-structure/graph-introductions-
explanations-and-applications/

Prof. Ahmed Eldawy notes
Laksman Veeravagu and Luis Barrera

74

R

