IIIIIIIIIIIIIIIIIIIIII

CS141: Intermediate Data Structures
and Algorithms

Greedy Algorithms

Amr Magdy

Activity Selection Problem

» Given a set of activities S = {ay, a,, ..., a,} where each
activity i has a start time s; and a finish time f, , where O
S5 <fi<e.

» An activity a;, happens in the half-open time interval [s;,,

fo)-

R

Activity Selection Problem

» Given a set of activities S = {ay, a,, ..., a,} where each
activity i has a start time s; and a finish time f, , where O
S5, <f;<e.

» An activity a;, happens in the half-open time interval [s;,,
fo)-

» Activities compete on a single resource, e.g., CPU

R

Activity Selection Problem

» Given a set of activities S = {ay, a,, ..., a,} where each
activity i has a start time s; and a finish time f, , where O
S5, <f; <.

» An activity a;, happens in the half-open time interval [s;,,
fo).

» Activities compete on a single resource, e.g., CPU

> Two activities are said to be compatible if they do not
overlap.

R

Activity Selection Problem

>

Given a set of activities S = {a,, a,, ... , a,} where each
activity i has a start time s; and a finish time f, , where O
S5, <f;<e.

An activity a, happens in the half-open time interval [s;,,
fo).
Activities compete on a single resource, e.g., CPU

Two activities are said to be compatible if they do not
overlap.

The problem is to find a maximum-size compatible
subset, I.e., a one with the maximum number of
activities.

Example K

‘a10[2,14) \
a5[3,9)

|
t 6

A Compatible Set K

‘a10[2,14) \
‘a5[3,9) \

|
t 7

A Better Compatible Set K

‘a1[1,4) \ ‘a9[8,12) \

|a7[6,10) I |a11[12,16) I

a6[5,9)

k

An Optimal Solution K
|a8[8,11) I
rew] [

|
t

Another Optimal Solution K

o]
m ‘a8[8,11) I
a11[12,16) |

|
t

10

Activity Selection Problem

» Solution algorithm?
Brute force (naive): all possible combinations = O(2")
Can we do better?
Divide line for D&C is not clear

11

R

Activity Selection Problem K

» Solution algorithm?
Brute force (naive): all possible combinations = O(2")
Can we do better?
Divide line for D&C is not clear

» Does the problem have optimal substructure?

l.e., the optimal solution of a bigger problem has optimal
solutions for subproblems

12

Activity Selection Problem

» Does the problem have optimal substructure?

l.e., the optimal solution of a bigger problem has optimal
solutions for subproblems

» Assume A is an optimal solution for S
Is A’ = A-{a;} an optimal solution for S’ = S-{a, and its incompatible
activities}?
If A’ is not an optimal solution, then there an optimal solution A”
for S’ so that |A”| > |A]
Then B=A" U {a} is a solution for S, |B|=|A”|+1, |A|=|A’|+1
Then |B| > |A|, I.e., |A| is not an optimal solution, contradiction
Then A’ must be an optimal solution for S’

13

R

Activity Selection Problem

» Does the problem have optimal substructure?

l.e., the optimal solution of a bigger problem has optimal
solutions for subproblems

» Assume A is an optimal solution for S
Is A’ = A-{a;} an optimal solution for S’ = S-{a, and its incompatible
activities}?
If A’ is not an optimal solution, then there an optimal solution A”
for S’ so that |A”| > |A]
Then B=A" U {a} is a solution for S, |B|=|A”|+1, |A|=|A’|+1
Then |B| > |A|, I.e., |A| is not an optimal solution, contradiction
Then A’ must be an optimal solution for S’

> Proof by contradiction

Assume the opposite of your goal
Given that prove a contradiction, then your goal is proved 14

R

Activity Selection Problem

> What does having optimal substructure means?
We can solve smaller problems, then expand to larger
Similar to dynamic programming

15

R

Activity Selection Problem K

> What does having optimal substructure means?
We can solve smaller problems, then expand to larger
Similar to dynamic programming

» Instead, can we make a greedy choice?

l.e., take the best choice so far, reduce the problem size, and
solve a subproblem later

16

Activity Selection Problem

> What does having optimal substructure means?
We can solve smaller problems, then expand to larger
Similar to dynamic programming
» Instead, can we make a greedy choice?
l.e., take the best choice so far, reduce the problem size, and
solve a subproblem later
» Greedy choices
Longest first
Shortest first
Earliest start first

Earliest finish first
.7

17

R

Activity Selection Problem

» Greedy choice: earliest finish first
Why? It leaves as much resource as possible for other tasks

18

R

Activity Selection Problem

» Greedy choice: earliest finish first
Why? It leaves as much resource as possible for other tasks

> Solution:
Include earliest finish activity a,, in solution A
Remove all a,,'s incompatible activities
Repeat for the remaining earliest finish activity

19

R

Activity Selection Problem: Greedy
Solution K

‘a10[2,14) \

|
tzo

Activity Selection Problem: Greedy
Solution K

] [oom]
m ‘a8[8,11) \
‘a7[6,10) | ‘a11[12,16) \

|
t21

Activity Selection Problem: Greedy
Solution K

a4[5,7) as[8,11)
a7[6,10) a11[12,16)

|
t 22

Activity Selection Problem: Greedy
Solution K

a4[5 7) | as[8,11)
a7[6,10) a11[12,16)

|
t 23

Activity Selection Problem: Greedy
Solution K

at[1,4) | | a9[8,12) |

|a4[5,7)| | a8[8,11) I

Activity Selection Problem: Greedy
Solution K

|a4[5,7)| | as[8,11) |

Activity Selection Problem: Greedy
Solution K

[a1(1,4) |

|a4[5,7)| | as[8,11) |

Activity Selection Problem: Greedy
Solution K

| ai[1,4) |

|a4[5,7)| | 28(8,11) |

I a11[12,16) |

=
tz7

Activity Selection Problem

» Pseudo code?

28

R

Activity Selection Problem

» Pseudo code?

findMaxSet(Array a, int n)
{

(1P}

- Sort “a” based on earliest finish time
- result < {}
-fori=1ton
validAi = true
for) = 1 to result.size
If (a[i] is incompatible with result(j])
validAi = false
iIf (validAl)
result < result U a]i]
- return result

29

R

Activity Selection Problem

» |Is greedy choice is enough to get optimal solution?

30

R

Activity Selection Problem

» |Is greedy choice is enough to get optimal solution?

» Greedy choice property

Prove that if a, has the earliest finish time, it must be included in
some optimal solution.

31

R

Activity Selection Problem

» |Is greedy choice is enough to get optimal solution?

» Greedy choice property
Prove that if a, has the earliest finish time, it must be included in
some optimal solution.

» Assume a set S and a solution set A, where a_, & A
Let a is the activity with the earliest finish time in A (not in S)
Compose another set A’ = A —{a} U {a,}}

A’ still have all activities disjoint (as a,, has the global earliest
finish time and A activities are already disjoint), and |A'|=|A|

Then A’ is an optimal solution
Then a,, is always included in an optimal solution

32

R

Elements of a Greedy Algorithm

1. Optimal Substructure
2. Greedy Choice Property

33

R

Greedy vs. Dynamic Programming

» Solving the bigger problem include
One choice (greedy) vs Multiple possible choices

34

R

Greedy vs. Dynamic Programming K

» Solving the bigger problem include
One choice (greedy) vs Multiple possible choices

/ /

One subproblem A lot of overlapping subproblems

35

Greedy vs. Dynamic Programming K

» Solving the bigger problem include
One choice (greedy) vs Multiple possible choices

/ /

One subproblem A lot of overlapping subproblems

> Both have optimal substructure

36

Greedy vs. Dynamic Programming K

>

Solving the bigger problem include
One choice (greedy) vs Multiple possible choices

/ /

One subproblem A lot of overlapping subproblems

Both have optimal substructure

Elements:
. Greedy | DM
Optimal substructure Optimal substructure

Greedy choice property Overlapping subproblems

37

Knapsack Problem

item 1

$60

item 2
Y

20

—

$100

item 3

45

—__/

$120 knapsack

38

Knapsack Problem

item 3
M
1tem 2 50
M)
45

item 1

20
— —

$60 $100 $120 knapsack
» 0-1 Knapsack: Each item either mcluded or not

» Greedy choices:
Take the most valuable - Does not lead to optimal solution
Take the most valuable per unit > Works in this example

39

Knapsack Problem

item 3
M
1tem 2 50
M)
30

item 1

20
— —

$60 $100 $120 knapsack
» 0-1 Knapsack: Each item either mcluded or not

» Greedy choices:
Take the most valuable - Does not lead to optimal solution
Take the most valuable per unit - Does not work

40

Knapsack Problem

item 3
)
1tem 2
M
30

item 1

20
— —

$60 $100 $120 knapsack
» Fractional Knapsack: Part of items can be Included

41

Knapsack Problem

item 3
M
1tem 2
M
30

item 1

20
— -

$60 $100 $120 knapsack o ,
» Fractional Knapsack: Part of items can be included

» Greedy choices:
Take the most valuable - Does not lead to optimal solution
Take the most valuable per unit - Does work

42

Fractional Knapsack Problem

» Greedy choice property: take the most valuable per
weight unit

43

R

Fractional Knapsack Problem

» Greedy choice property: take the most valuable per
weight unit

» Proof of optimality:

Given the set S ordered by the value-per-weight, taking as much
as possible x; from the item j with the highest value-per-weight
will lead to an optimal solution X
Assume we have another optimal solution X~ where we take less
amount of item j, say x; <x; .
Since x; < x;, there must be another item k which was taken with
a higher amountin X', i.e., x, > x,.
We create another solution X by doing the following changes in
¥
Reduce the amount of item k by a value z and increase the
amount of item j by a value z

The value of the new solution V" =V" + z viw, - z v\ /w,
=V +z@wilw~-viw,) 2 viw-vw, 20>V 2V 44

R

Fractional Knapsack Problem

» Optimal substructure

45

R

Fractional Knapsack Problem

» Optimal substructure

» Given the problem S with an optimal solution X with
value V, we want to prove that the solution X™ = X — x; is
optimal to the problem S = § - {j} and the knapsack
capacity W =W - x;

> Proof by contradiction

Assume that X is not optimal to S

There is another solution X " to S that has a higher total value V™
>V

Then X U {x} is a solution to S with value V"' + x>V '+ x;> V
Contradiction as V is the optimal value

46

R

Fractional Knapsack Problem

Fknapsack (W, S, v's, w’'s) {
- Sort S based on vi/wi value

-tw =W
- result ={ }
-foreach siin S
If(wi <= rw)
result = result U si
r'W = rw-wi
else

result = result U rw/wi * si
rw=20
- return result

47

R

Huffman Codes K

a b C d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 OI1 100 101
Variable-length codeword 0 101 100 111 1101 1100

48

Huffman Codes K

a b C d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 OI1 100 101
Variable-length codeword 0 101 100 111 1101 1100

» Prefix Codes: No code is allowed to be a prefix of
another code
Prefix codes give optimal data compression

49

Huffman Codes K

a b C d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 OI1 100 101
Variable-length codeword 0 101 100 111 1101 1100

» Prefix Codes: No code is allowed to be a prefix of
another code
Prefix codes give optimal data compression
» Example: Message ‘JAVA’a ="0",j="“11", v ="10"
Encoded message “110100” Decoding “110100"

50

Huffman Codes K

a b C d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 OI1 100 101
Variable-length codeword 0 101 100 111 1101 1100

» Prefix Codes: No code is allowed to be a prefix of
another code
Prefix codes give optimal data compression
» Example: Message ‘JAVA’a ="0",j="“11", v ="10"
Encoded message “110100” Decoding “110100"
» In the table:

Encoding with fixed-length needs 300K bits
Encoding with variable-length needs 224K bits

51

Huffman Codes

Fixed-length tree Variable-length tree

52

Huffman Codes

Fixed-length tree Variable-length tree

We need an algorithm to build the optimal variable-length tree

53

Huffman Codes: Tree Construction R

HUFFMAN(C)

1 n=|C|

2 0 =C

3 fori =1ton—1

4 allocate a new node 7

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 Z.freq = x.freq + y.freq

8 INSERT(Q, 2)

9 return EXTRACT-MIN(Q) // return the root of the tree

54

Huffman Codes: Tree Construction

f:5

e:9

c:12

b:13

d:16

a:45

55

R

Huffman Codes: Tree Construction

c:12

b:13

d:16

a:45

f:5

e:9

56

R

Huffman Codes: Tree Construction

d:16

f:5

e:9

%l

a:45

c:12

b:13

57

R

Huffman Codes: Tree Construction

%l

a:45

c:12

b:13

58

R

Huffman Codes: Tree Construction K

a:45

59

Huffman Codes: Tree Construction K

60

Huffman Codes

» Detalls of optimal substructure and greedy choice
property in the text book

61

R

Book Readings and Credits

» Book Readings:
16.1 - 16.3

» Credits to:
Prof. Ahmed Eldawy notes

62

R

