

CS141: Intermediate Data Structures and Algorithms

Greedy Algorithms

Amr Magdy

- Solution Given a set of activities $S = \{a_1, a_2, ..., a_n\}$ where each activity i has a start time s_i and a finish time f_i , where 0 ≤ $s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i]$.

- Siven a set of activities $S = \{a_1, a_2, ..., a_n\}$ where each activity i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i]$.
- Activities compete on a single resource, e.g., CPU

- Siven a set of activities $S = \{a_1, a_2, ..., a_n\}$ where each activity i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i]$.
- Activities compete on a single resource, e.g., CPU
- Two activities are said to be compatible if they do not overlap.

- Siven a set of activities $S = \{a_1, a_2, ..., a_n\}$ where each activity i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i]$.
- Activities compete on a single resource, e.g., CPU
- Two activities are said to be compatible if they do not overlap.
- The problem is to find a maximum-size compatible subset, i.e., a one with the maximum number of activities.

Example


```
a3[0,6)
        a10[2,14)
   a1[1,4)
                                  a9[8,12)
            a5[3,9)
                   a4[5,7)
                                 a8[8,11)
           a2[3,5)
                        a7[6,10)
                                                  a11[12,16)
                    a6[5,9)
```

A Compatible Set


```
a3[0,6)
        a10[2,14)
   a1[1,4)
                                 a9[8,12)
            a5[3,9)
                   a4[5,7)
                                a8[8,11)
           a2[3,5)
                        a7[6,10)
                                                 a11[12,16)
                    a6[5,9)
```

A Better Compatible Set


```
a3[0,6)
        a10[2,14)
   a1[1,4)
                                 a9[8,12)
            a5[3,9)
                   a4[5,7)
                                a8[8,11)
          a2[3,5)
                       a7[6,10)
                                                a11[12,16)
                    a6[5,9)
```

An Optimal Solution


```
a3[0,6)
        a10[2,14)
  a1[1,4)
                                 a9[8,12)
            a5[3,9)
                  a4[5,7)
                                a8[8,11)
          a2[3,5)
                       a7[6,10)
                                                a11[12,16)
                   a6[5,9)
```

Another Optimal Solution


```
a3[0,6)
        a10[2,14)
  a1[1,4)
                                 a9[8,12)
            a5[3,9)
                               a8[8,11)
                   a4[5,7)
          a2[3,5)
                        a7[6,10)
                                                 a11[12,16)
                   a6[5,9)
```


- Solution algorithm?
 - ▶ Brute force (naïve): all possible combinations \rightarrow O(2ⁿ)
 - Can we do better?
 - Divide line for D&C is not clear

- Solution algorithm?
 - > Brute force (naïve): all possible combinations → O(2ⁿ)
 - Can we do better?
 - Divide line for D&C is not clear
- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems
- Assume A is an optimal solution for S
 - Is A' = A-{a_i} an optimal solution for S' = S-{a_i and its incompatible activities}?
 - If A' is not an optimal solution, then there an optimal solution A'' for S' so that |A''| > |A'|
 - Then B=A" U {a_i} is a solution for S, |B|=|A"|+1, |A|=|A'|+1
 - > Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction
 - Then A' must be an optimal solution for S'

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems
- Assume A is an optimal solution for S
 - Is A' = A-{a_i} an optimal solution for S' = S-{a_i and its incompatible activities}?
 - If A' is not an optimal solution, then there an optimal solution A'' for S' so that |A''| > |A'|
 - Then B=A" U {a_i} is a solution for S, |B|=|A"|+1, |A|=|A'|+1
 - > Then |B| > |A|, i.e., |A| is not an optimal solution, contradiction
 - Then A' must be an optimal solution for S'
- Proof by contradiction
 - Assume the opposite of your goal
 - Given that prove a contradiction, then your goal is proved

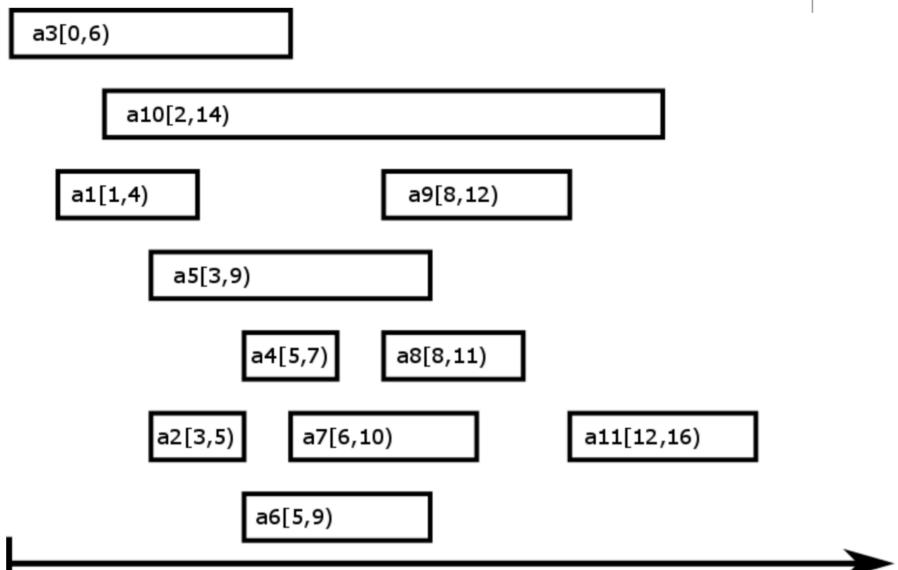
- What does having optimal substructure means?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming

- What does having optimal substructure means?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming
- Instead, can we make a greedy choice?
 - i.e., take the best choice so far, reduce the problem size, and solve a subproblem later

- What does having optimal substructure means?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming
- Instead, can we make a greedy choice?
 - i.e., take the best choice so far, reduce the problem size, and solve a subproblem later
- Greedy choices
 - Longest first
 - Shortest first
 - Earliest start first
 - Earliest finish first
 - **>** ...?

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
- Solution:
 - Include earliest finish activity a_m in solution A
 - Remove all a_m's incompatible activities
 - Repeat for the remaining earliest finish activity




```
a3[0,6)
        a10[2,14)
  a1[1,4)
                                  a9[8,12)
            a5[3,9)
                   a4[5,7)
                                 a8[8,11)
           a2[3,5)
                        a7[6,10)
                                                  a11[12,16)
                    a6[5,9)
```


a1[1,4)

a9[8,12)

a4[5,7)

a8[8,11)

a7[6,10)

a11[12,16)

a6[5,9)

a1[1,4) a9[8,12) a4[5,7) a8[8,11) a7[6,10) a11[12,16) a6[5,9)

a1[1,4)

a9[8,12)

a4[5,7)

a8[8,11)

a1[1,4)

a9[8,12)

a4[5,7)

a8[8,11)

a1[1,4)

a4[5,7)

a8[8,11)

a1[1,4)

a4[5,7)

a8[8,11)

> Pseudo code?


```
Pseudo code?
findMaxSet(Array a, int n)
       - Sort "a" based on earliest finish time
       - result ← {}
       - for i = 1 to n
               validAi = true
                for j = 1 to result.size
                      if (a[i] is incompatible with result[j])
                              validAi = false
               if (validAi)
                      result ← result U a[i]
       - return result
```


Is greedy choice is enough to get optimal solution?

- Is greedy choice is enough to get optimal solution?
- Greedy choice property
 - Prove that if a_m has the earliest finish time, it must be included in some optimal solution.

- Is greedy choice is enough to get optimal solution?
- Greedy choice property
 - Prove that if a_m has the earliest finish time, it must be included in some optimal solution.
- Assume a set S and a solution set A, where a_m ∉ A
 - Let a_i is the activity with the earliest finish time in A (not in S)
 - Compose another set A' = A − {a_i} U {a_m}
 - A' still have all activities disjoint (as a_m has the global earliest finish time and A activities are already disjoint), and |A'|=|A|
 - Then A' is an optimal solution
 - Then a_m is always included in an optimal solution

Elements of a Greedy Algorithm

- Optimal Substructure
- 2. Greedy Choice Property

Greedy vs. Dynamic Programming

Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices

Greedy vs. Dynamic Programming

Solving the bigger problem include

One choice (greedy) vs Multiple possible choices

One subproblem

A lot of overlapping subproblems

Greedy vs. Dynamic Programming

- Both have optimal substructure

Greedy vs. Dynamic Programming

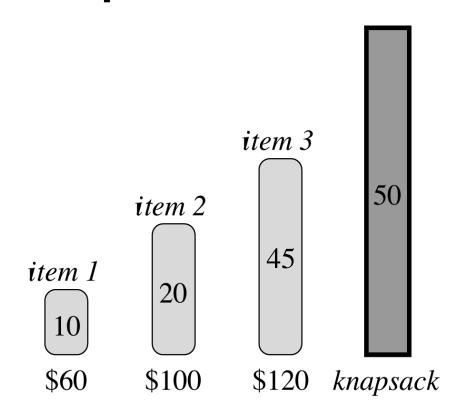
Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices

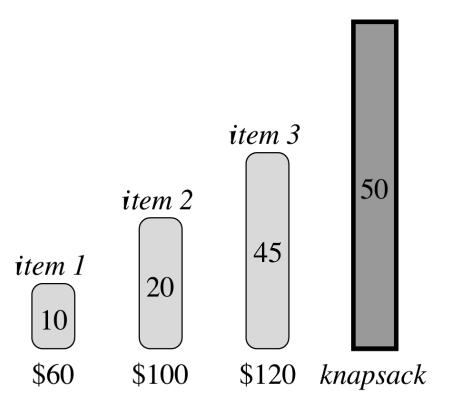
One subproblem

A lot of overlapping subproblems

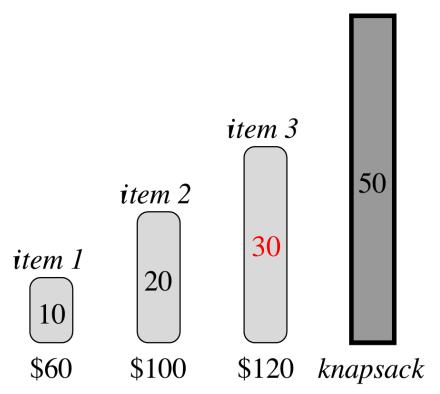
- Both have optimal substructure
- Elements:

Greedy	DM
Optimal substructure	Optimal substructure
Greedy choice property	Overlapping subproblems

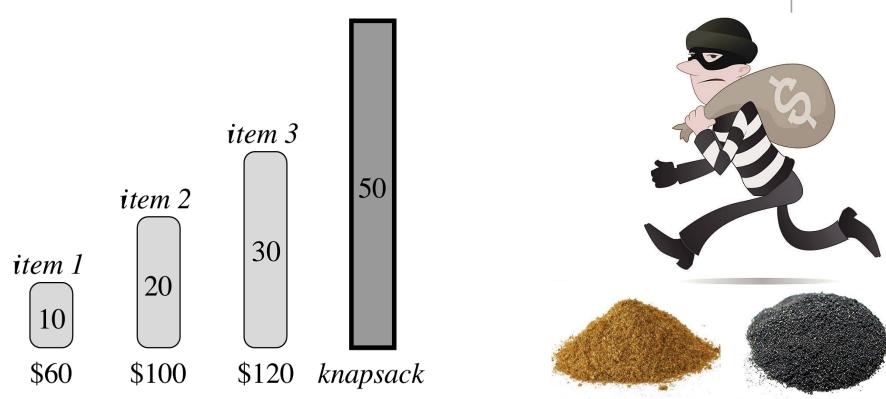




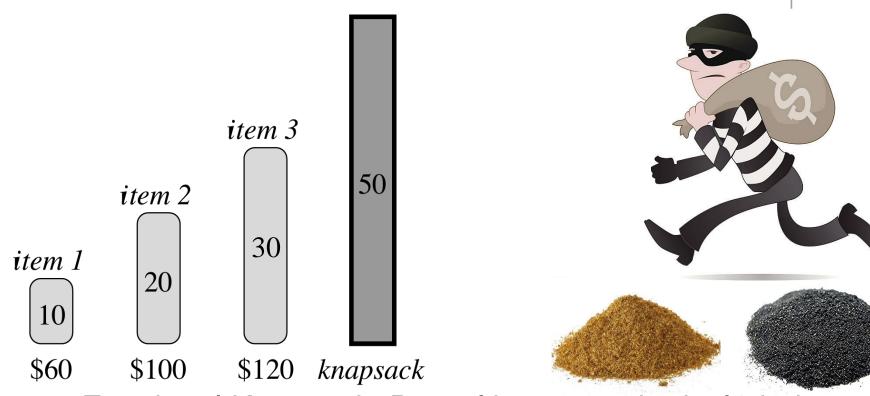
- > 0-1 Knapsack: Each item either included or not
- Greedy choices:
 - ➤ Take the most valuable → Does not lead to optimal solution
 - ➤ Take the most valuable per unit → Works in this example



- > 0-1 Knapsack: Each item either included or not
- Greedy choices:
 - ➤ Take the most valuable → Does not lead to optimal solution
 - ➤ Take the most valuable per unit → Does not work



Fractional Knapsack: Part of items can be included



- Fractional Knapsack: Part of items can be included
- Greedy choices:
 - ➤ Take the most valuable → Does not lead to optimal solution
 - ➤ Take the most valuable per unit → Does work

Greedy choice property: take the most valuable per weight unit

- Greedy choice property: take the most valuable per weight unit
- Proof of optimality:
 - Given the set S ordered by the value-per-weight, taking as much as possible x_j from the item j with the highest value-per-weight will lead to an optimal solution X
 - Assume we have another optimal solution X where we take less amount of item j, say $x_i < x_j$.
 - Since x_j ` < x_j , there must be another item k which was taken with a higher amount in X`, i.e., x_k ` > x_k .
 - We create another solution X`` by doing the following changes in X`
 - Reduce the amount of item k by a value z and increase the amount of item j by a value z
 - The value of the new solution $V`` = V` + z v_j/w_j z v_k/w_k$ = $V` + z (v_i/w_i-v_k/w_k) \rightarrow v_i/w_i-v_k/w_k \ge 0 \rightarrow V`` \ge V`$

Optimal substructure

- Optimal substructure
- Given the problem S with an optimal solution X with value V, we want to prove that the solution $X = X x_j$ is optimal to the problem $S = S \{j\}$ and the knapsack capacity $W = W x_j$
- > Proof by contradiction
 - Assume that X` is not optimal to S`
 - There is another solution X`` to S` that has a higher total value V`` > V`
 - > Then X`` U $\{x_j\}$ is a solution to S with value V``+ $x_j > V$ `+ $x_j > V$
 - Contradiction as V is the optimal value


```
Fknapsack (W, S, v's, w's) {
       - Sort S based on vi/wi value
       - rw = W
       - result = { }
       - for each si in S
              if(wi \le rw)
                      result = result U si
                      rw = rw-wi
               else
                      result = result U rw/wi * si
                      rw = 0
       - return result
```


	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

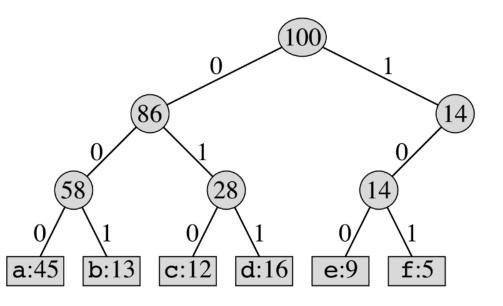
- Prefix Codes: No code is allowed to be a prefix of another code
 - Prefix codes give optimal data compression

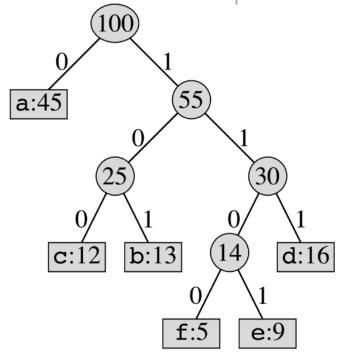
	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Prefix Codes: No code is allowed to be a prefix of another code
 - Prefix codes give optimal data compression
- Example: Message 'JAVA' a = "0", j = "11", v = "10" Encoded message "110100" Decoding "110100"

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

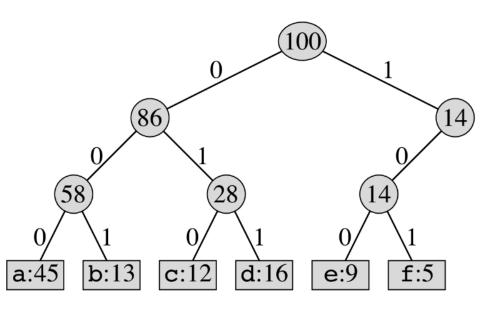
- Prefix Codes: No code is allowed to be a prefix of another code
 - Prefix codes give optimal data compression
- Example: Message 'JAVA' a = "0", j = "11", v = "10" Encoded message "110100" Decoding "110100"
- In the table: Encoding with fixed-length needs 300K bits Encoding with variable-length needs 224K bits

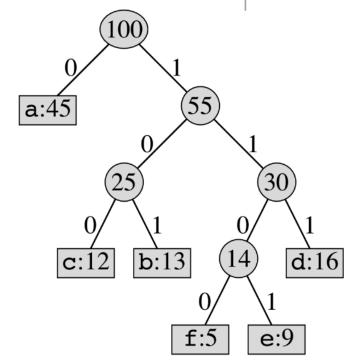




Fixed-length tree

Variable-length tree





Fixed-length tree

Variable-length tree

We need an algorithm to build the optimal variable-length tree


```
\operatorname{Huffman}(C)
```

```
n = |C|
Q = C
3 for i = 1 to n - 1
       allocate a new node z
       z.left = x = EXTRACT-MIN(Q)
       z.right = y = EXTRACT-MIN(Q)
       z.freq = x.freq + y.freq
       INSERT(Q,z)
   return EXTRACT-MIN(Q) // return the root of the tree
```


f:5

e:9

c:12

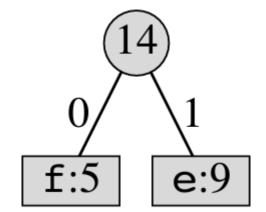
b:13

d:16

a:45

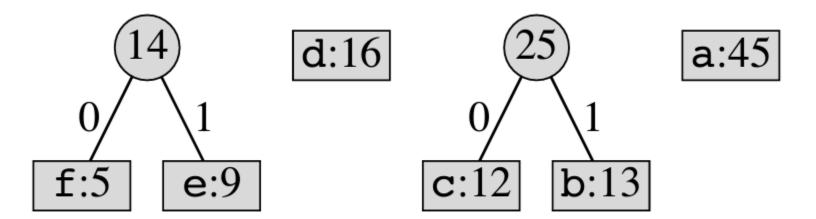
c:12

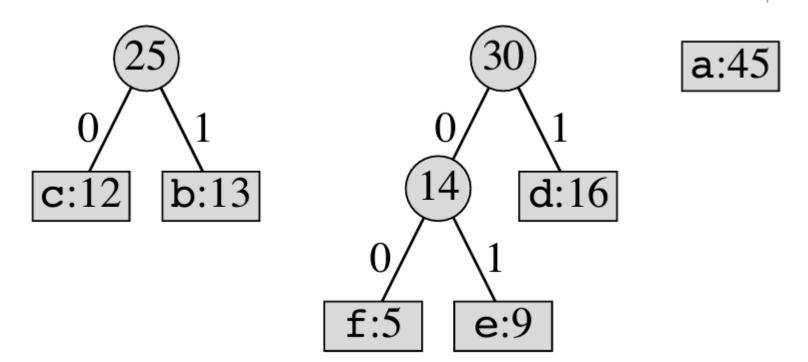
b:13

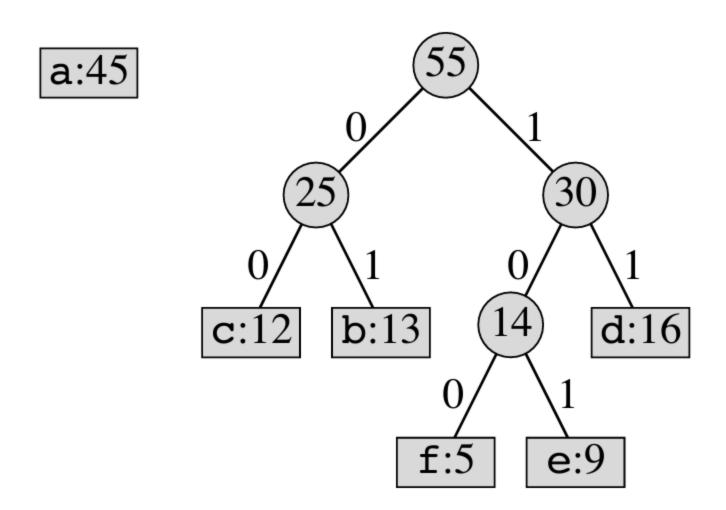


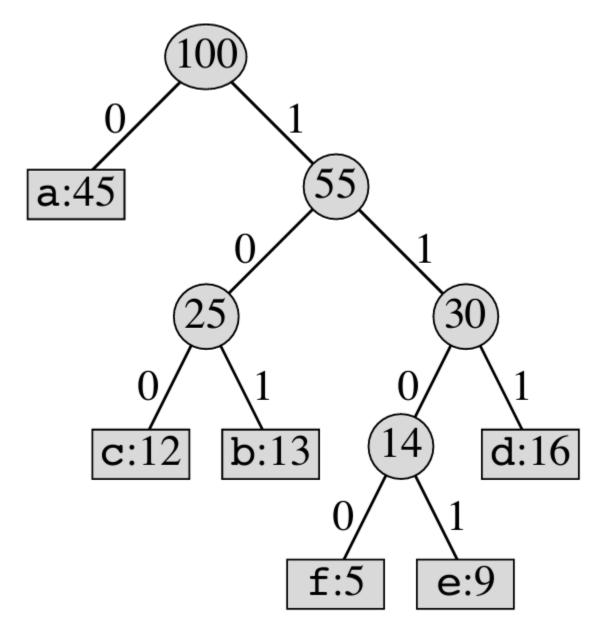
d:16

a:45









Details of optimal substructure and greedy choice property in the text book

Book Readings and Credits

- Book Readings:
 - **→** 16.1 − 16.3
- > Credits to:
 - Prof. Ahmed Eldawy notes