

CS141: Intermediate Data Structures and Algorithms

Analysis of Algorithms

Amr Magdy

Analyzing Algorithms

Algorithm Correctness

- a. Termination
- b. Produces the correct output for all possible input.

2. Algorithm Performance

- a. Either runtime analysis,
- b. or storage (memory) space analysis
- c. or both

- Sorting problem
 - Input: an array A of n numbers
 - Output: the same array in ascending sorted order (smallest number in A[1] and largest in A[n])

- Sorting problem
 - Input: an array A of n numbers
 - Output: the same array in ascending sorted order (smallest number in A[1] and largest in A[n])

Insertion Sort

```
INSERTION-SORT (A, n)

for j = 2 to n

key = A[j]

// Insert A[j] into the sorted sequence A[1 ... j - 1].

i = j - 1

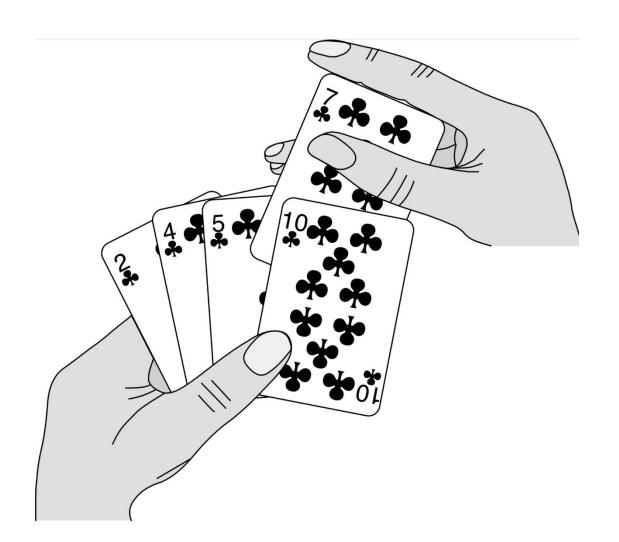
while i > 0 and A[i] > key

A[i + 1] = A[i]

i = i - 1

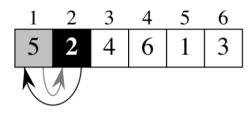
A[i + 1] = key
```


How does insertion sort work?

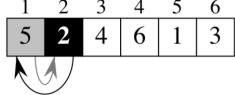


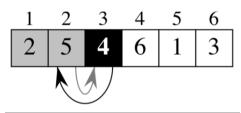
5	2	4	6	1	3
---	---	---	---	---	---

5 2	2 4	6	1	3
-----	-----	---	---	---

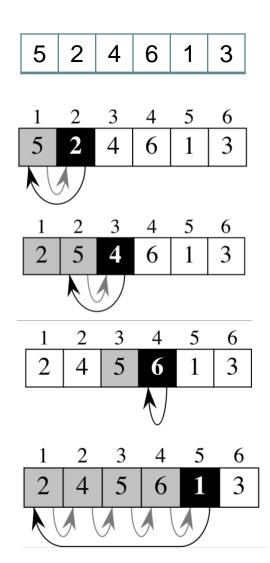


5	2	4	6	1	3
1	2	3	4	5	6

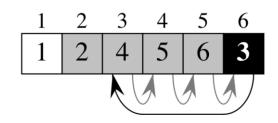


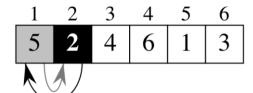


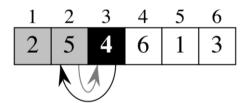
5	2	4	6	1	3
1	2	2	4	_	
1 5	2	4	6	5	6
		4	O	1	3
1	2	3	4	5	6
2	5	4	6	1	3
	V				
1	2	3	4	5	6
2	4	5	6	1	3
	•				•



5	2	4	6	1	3	
1	2	3	4	5	6	
5	2	3 4	6	1	$\begin{bmatrix} 6 \\ 3 \end{bmatrix}$	
1	2	3	4	5	6	
2	5	4	6	1	3	
_1	2	3	4	5	6	
2	4	$\frac{3}{5}$	6	1	3	
1	2	3	4	5	6	
2	4	5	6	1	3	







1	2	3	4	5	6
2	4	5	6	1	3

1	2	3	4	5	6
2	4	5	6	1	3
T					

	1	2	3	4	5	6
	1	2	4	5	6	3
•						

_1	2	3	4	5	6
1	2	3	4	5	6

Is insertion sort a correct algorithm?

- Is insertion sort a correct algorithm?
 - Does it halt?
 - Does it produce correct output for all possible input?

- Is insertion sort a correct algorithm?
 - Does it halt? Yes
 - Two deterministically bounded loops, no infinite loops involved
 - Does it produce correct output for all possible input?

```
INSERTION-SORT (A, n)

for j = 2 to n

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```


- Is insertion sort a correct algorithm?
 - Does it halt? Yes
 - Does it produce correct output for all possible input?
 - Will check through loop invariants

- Is insertion sort a correct algorithm?
- Loop invariant:
 - It is a property that is true before and after each loop iteration.

- Is insertion sort a correct algorithm?
- Loop invariant:
 - It is a property that is true before and after each loop iteration.
- Insertion sort loop invariant (ISLI):
 - The first (j-1) array elements A[1..j-1] are:
 (a) the original (j-1) elements, and (b) sorted.

```
INSERTION-SORT (A, n)

for j = 2 to n

key = A[j]

// Insert A[j] into the sorted sequence A[1 ... j - 1].

i = j - 1

while i > 0 and A[i] > key

A[i + 1] = A[i]

i = i - 1

A[i + 1] = key
```


- Is insertion sort a correct algorithm?
 - If ISLI correct, then insertion sort is correct
 - How?
 - Halts and produces the correct output after (n-1) iterations

- Is insertion sort a correct algorithm?
 - If ISLI correct, then insertion sort is correct
 - How?
 - Halts and produces the correct output after (n-1) iterations
- Loop invariant (LI) correctness
 - 1. Initialization:

LI is true prior to the 1st iteration.

2. Maintenance:

If LI true before the iteration, it remains true before the next iteration

3. Termination:

After the loop terminates, the output is correct.

- ISLI: The first (j-1) array elements A[1..j-1] are:
 (a) the original (j-1) elements, and (b) sorted.
 - 1. Initialization:

Prior to the 1^{st} iteration, j=2, the first (2-1)=1 elements is sorted.

2. Maintenance:

The (j-1)th iteration inserts the jth element in a sorted order, so after the iteration, the first (j-1) elements remains the same and sorted.

3. Termination:

The loop terminates after (n-1) iterations, j=n+1, so the first n elements are sorted, then the output is correct.

```
INSERTION-SORT (A, n)

for j = 2 to n

key = A[j]

// Insert A[j] into the sorted sequence A[1...j - 1].

i = j - 1

while i > 0 and A[i] > key

A[i + 1] = A[i]

i = i - 1

A[i + 1] = key
```


- ISLI: The first (j-1) array elements A[1..j-1] are:
 (a) the original (j-1) elements, and (b) sorted.
 - 1. Initialization:

Prior to the 1^{st} iteration, j=2, the first (2-1)=1 elements is sorted.

2. Maintenance:

The (j-1)th iteration inserts the jth element in a sorted order, so after the iteration, the first (j-1) elements remains the same and sorted.

A[i+1] = key

3. Termination:

The loop terminates after (n-1) iterations, j=n+1, so the first n elements are sorted, then the output is correct.

Correct

```
INSERTION-SORT (A, n)

for j = 2 to n

key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1
```

Analyzing Algorithms

Algorithm Correctness

- a. Termination
- b. Produces the correct output for all possible input.

2. Algorithm Performance

- Either runtime analysis,
- b. or storage (memory) space analysis
- c. or both

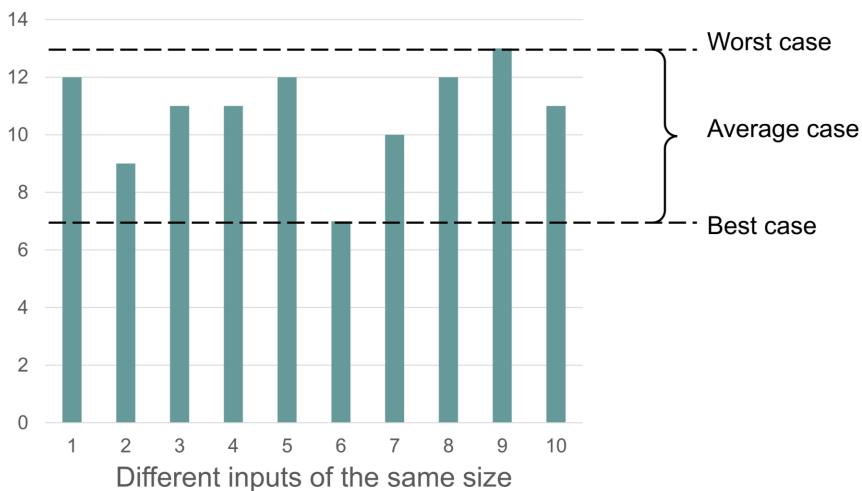
Algorithms Performance Analysis

- Which criteria should be taken into account?
- Running time
- Memory footprint
- Disk IO
- Network bandwidth
- Power consumption
- Lines of codes
- > ...

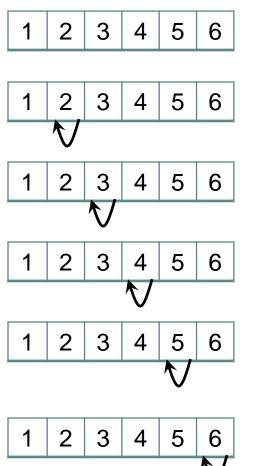
Algorithms Performance Analysis

- Which criteria should be taken into account?
- Running time
- Memory footprint
- Disk IO
- Network bandwidth
- Power consumption
- Lines of codes
- >

Average Case vs. Worst Case



Input array is sorted



Input array is sorted

INSERTION-SORT (A, n)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

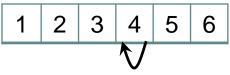
1 2 3 4 5 6

1 2 3 4 5 6

Input array is sorted

1 2 3 4 5 6

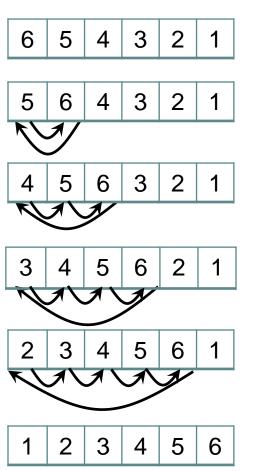
INSERTION-SORT (A, n)



$$T(n) = (n-1)*(c1+c2+0+c3+1*(c4+0)+c5)$$

 $T(n) = cn-c,$ const c=c1+c2+c3+c4+c5

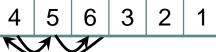
Input array is reversed

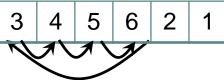


INSERTION-SORT (A, n)

Input array is reversed

6 5 4 3 2 1





Input array is reversed

 $\begin{bmatrix} 5 & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$ INSERTION-SORT(A, n)

$$T(n) = (n-1)^*(c1+c2+0+c3+i^*(c4+c5+c6)+c7)$$

$$T(n) = (n-1)^*(c1+c2+0+c3+c7) + \sum i^*(c4+c5+c6), \text{ for all } 1 <= i < n$$

$$T(n) = (cn-c) + \sum i^*d, c \& d \text{ are constants}$$

$$\sum i^*d = 1^*d+2^*d+3^*d+....+(n-1)^*d=d *(1+2+3+...(n-1))=d^*n(n-1)/2$$

$$T(n) = (cn-c) + dn^2/2-dn/2 = d^*n^2+c11^*n+c12, c's \& d \text{ are consts}$$

Insertion Sort Average Case

- Average = (Best + Worst)/2
- > $T(n) = cn^2 + dn + e$, c, d, e are consts

Which case we consider?

Which case we consider?

The worst case

Which case we consider?

- The worst case
 - Why?

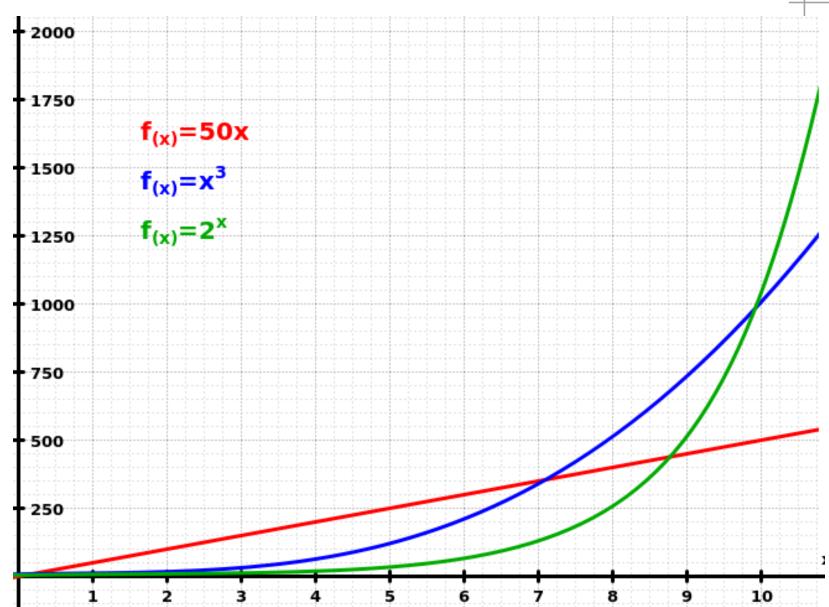
Which case we consider?

- The worst case
 - Why?
 - > It gives guarantees on the upper bound performance

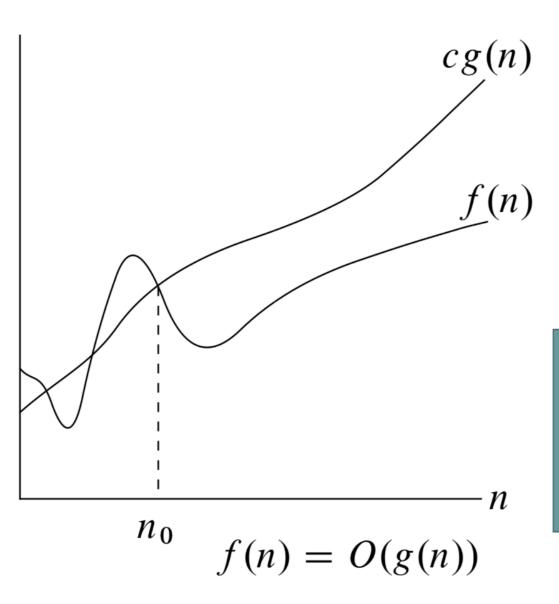
Growth of Functions

- It is hard to compute the actual running time for more complex algorithms
- > The cost of the worst-case is a good measure
- The growth of the cost function is what interests us (when input size is large)
- We are more concerned with comparing two cost functions, i.e., two algorithms.

Growth of Functions



O-notation



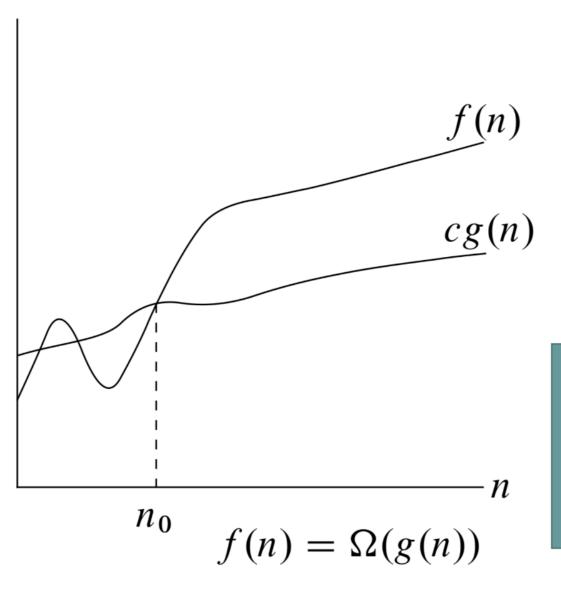
$$\exists c > 0, n_0 > 0$$

$$0 \le f(n) \le cg(n)$$

$$n \ge n_0$$

g(n) is an asymptotic upper-bound for f(n)

Ω-notation



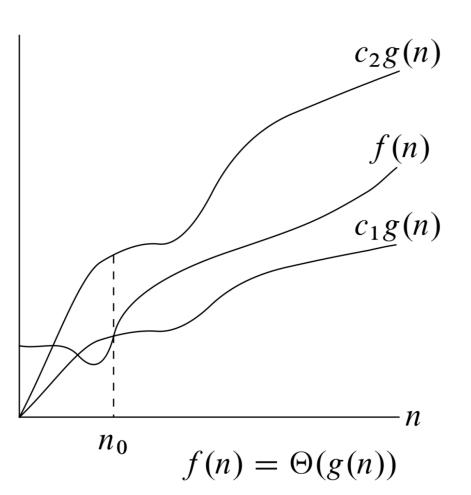
$$\exists c > 0, n_0 > 0$$

$$0 \le cg(n) \le f(n)$$

$$n \ge n_0$$

g(n) is an asymptotic lower-bound for f(n)

O-notation

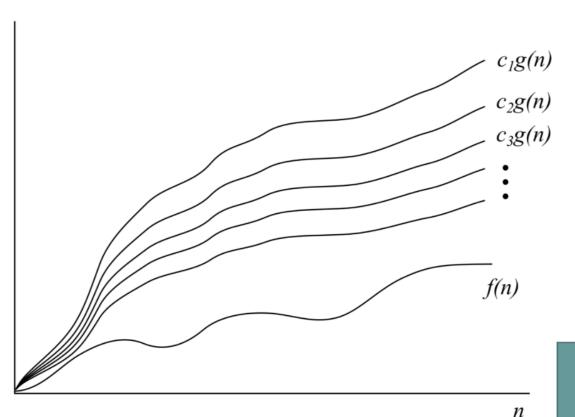


$$\exists c_1, c_2 > 0, n_0 > 0$$

 $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$
 $n \ge n_0$

g(n) is an asymptotic tight-bound for f(n)

o-notation



$$\forall c > 0$$

$$\exists n_0 > 0$$

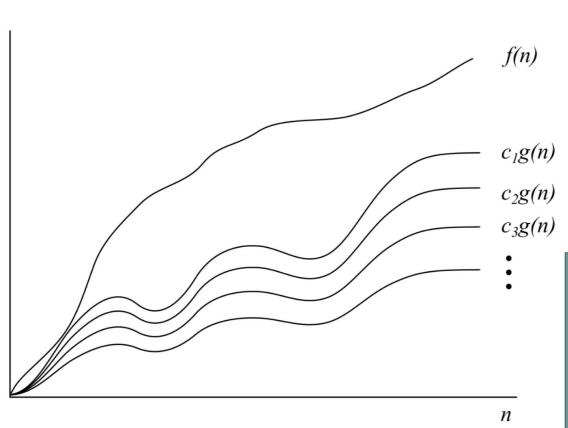
$$0 \le f(n) \le cg(n)$$

$$n \ge n_0$$

$$f(n) = o(g(n))$$

g(n) is a non-tight asymptotic upperbound for f(n)

ω-notation



$$\forall c > 0$$

$$\exists n_0 > 0$$

$$0 \le cgn(n) \le f(n)$$

$$n \ge n_0$$

$$f(n) = \omega(g(n))$$

g(n) is a non-tight asymptotic lower-bound for f(n)

Comparing Two Functions

$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$

- > 0: f(n) = o(g(n))
- \rightarrow c > 0: $f(n) = \Theta(g(n))$
- \rightarrow ∞ : $f(n) = \omega(g(n))$

Analogy to Real Numbers

Functions	Real numbers
f(n) = O(g(n))	$a \leq b$
$f(n) = \Omega(g(n))$	$a \geq b$
$f(n) = \Theta(g(n))$	a = b
f(n) = o(g(n))	a < b
$f(n) = \omega(g(n))$	a > b

Simple Rules

- We can omit constants
- We can omit lower order terms
- $\Theta(an^2+bn+c)$ becomes $\Theta(n^2)$, a, b, c are constants
- $\Theta(c1)$ and $\Theta(c2)$ become $\Theta(1)$, c's are constants
- $\Theta(\log_{k1} n)$ and $\Theta(\log_{k2} n)$ become $\Theta(\log n)$, k's are constants
- $\Theta(\log(n^k))$ becomes $\Theta(\log n)$, k is constant

Popular Classes of Functions

Constant:
$$f(n) = \Theta(1)$$

Logarithmic:
$$f(n) = \Theta(\lg(n))$$

Sublinear:
$$f(n) = o(n)$$

Linear:
$$f(n) = \Theta(n)$$

Super-linear:
$$f(n) = \omega(n)$$

Quadratic:
$$f(n) = \Theta(n^2)$$

Polynomial:
$$f(n) = \Theta(n^k)$$
; k is a constant

Exponential:
$$f(n) = \Theta(k^n)$$
; k is a constant

Insertion Sort Worst Case (Revisit)

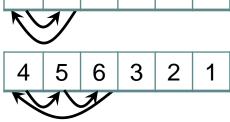
INSERTION-SORT (A, n)

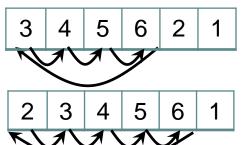
(n-1)

Input array is reversed

 6
 5
 4
 3
 2
 1

 5
 6
 4
 3
 2
 1





for
$$j = 2$$
 to n
 $key = A[j]$
// Insert $A[j]$ into the sorted sequence $A[1..j-1]$.
 $i = j-1$
while $i > 0$ and $A[i] > key$
 $A[i+1] = A[i]$
 $i = i-1$ max n

$$T(n) = (n-1)*n = O(n^2)$$

A[i+1] = key

- T1(n) = 2n+1000000
- T2(n) = 200n + 1000
- Which is better? Why?
 - In terms of order of growth?

- T1(n) = 2n+1000000
- T2(n) = 200n + 1000
- Which is better? Why?
 - In terms of order of growth? Same

- T1(n) = 2n+1000000
- T2(n) = 200n + 1000
- Which is better? Why?
 - In terms of order of growth? Same
 - In terms of actual runtime?

- T1(n) = 2n+1000000
- T2(n) = 200n + 1000
- Which is better? Why?
 - In terms of order of growth? Same
 - In terms of actual runtime?
 - For n <= 5045, T2 is faster, otherwise T1 is faster</p>

- T1(n) = 2n+1000000
- T2(n) = 200n + 1000
- Which is better? Why?
 - In terms of order of growth? Same
 - In terms of actual runtime?
 - For n <= 5045, T2 is faster, otherwise T1 is faster</p>
- What is the main usage of asymptotic notation analysis?

Algorithm 1 for i = 1 to

for
$$i = 1$$
 to n
 $j = 2*i$
for $j = 1$ to $n/2$
print j


```
Algorithm 2
  for i = 1 to n/2 {
      print i
      for j = 1 to n, step j = j*2
           print i*j
    }
```


Algorithm 3

```
for i = 1 to n/2

print i

for j = 1 to n, step j = j*2

print i*j
```


Algorithm 4
input x (+ve integer)
while x > 0print x $x = \lfloor x/5 \rfloor$

Credits & Book Readings

- Book Readings
 - **>** 2.1, 2.2, 3.1, 3.2
- Credits
 - Prof. Ahmed Eldawy notes
 - http://www.cs.ucr.edu/~eldawy/17WCS141/slides/CS141-1-09-17.pdf
 - Online websites
 - https://commons.wikimedia.org/wiki/File:Exponential.svg