

CS141: Intermediate Data Structures and Algorithms

Introduction

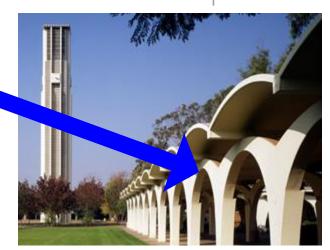
Instructor: Amr Magdy

TAs: Xiaolin Jiang, Samriddhi Singla

Computer Science and Engineering

Welcome to CS 141

Instructor: Amr Magdy


Office: Tomas Rivera Library, 159B

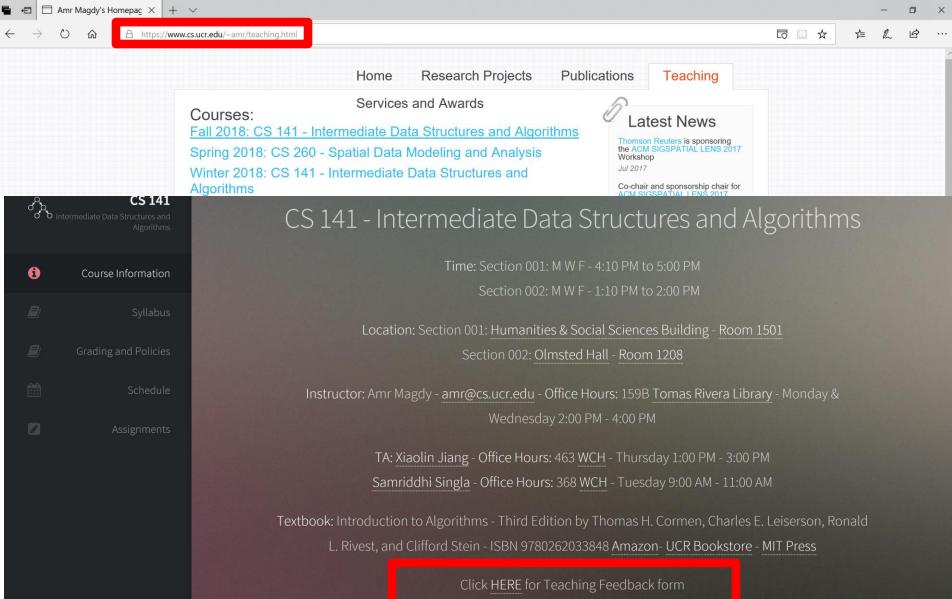
http://www.cs.ucr.edu/~amr/

Email: amr@cs.ucr.edu

(Include [CS141] in the subject)

Office hours: MW: 2:00 - 4:00 PM

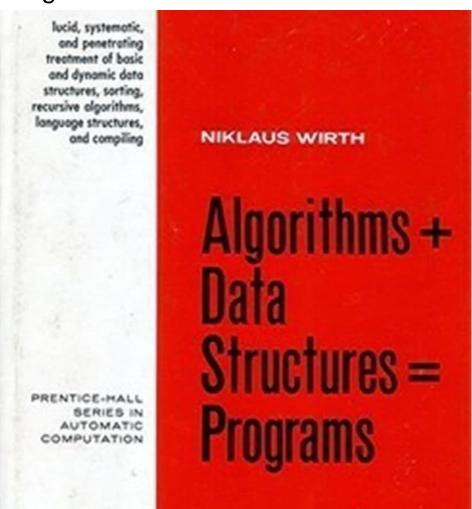
> TAs:


Xiaolin Jiang Office hours: Thursday: 1:00 – 3:00 PM Email: xjian049@ucr.edu Office: Chung Hall, room 463

Samriddhi Singla Office hours: Tuesday: 9:00 – 11:00 AM Email: ssing068@ucr.edu Office: Chung Hall, room 368 (Include [CS141] in the subject)

Course Website: https://www.cs.ucr.edu/~ssing068/18FCS141/

Anonymous Feedback Form



Introduction to Computational Algorithms

Computer Programs

- Algorithms + Data Structures = Programs
 - By Niklaus Wirth, Turing award winner 1984
- Note: this is not the course textbook.
 The textbook is provided later.

- According to Merriam-Webster dictionary
 - a procedure for solving a mathematical problem (as of finding the greatest <u>common divisor</u>) in a finite number of steps that frequently involves repetition of an operation; broadly: a step-by-step procedure for solving a problem or accomplishing some end especially by a computer.

- According to Merriam-Webster dictionary
 - a procedure for solving a mathematical problem (as of finding the greatest <u>common divisor</u>) in a finite number of steps that frequently involves repetition of an operation; broadly: a step-by-step procedure for solving a problem or accomplishing some end especially by a computer.
- The word originates from "Algorism": a mathematical counting technique

- According to Merriam-Webster dictionary
 - a procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an operation;

broadly: a step-by-step procedure for solving a problem or

accomplishing some end especially by a computer.

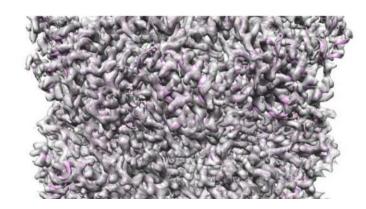
- The word originates from "Algorism": a mathematical counting technique
 - Stemmed from the name of "Muhammad ibn Musa al-Khwarizmi", an influencer mathematician

- According to Merriam-Webster dictionary
 - a procedure for solving a mathematical problem (as of finding the greatest <u>common divisor</u>) in a finite number of steps that frequently involves repetition of an operation; broadly: a step-by-step procedure for solving a problem or

accomplishing some end especially by a computer.

- The word originates from "Algorism": a mathematical counting technique
 - Stemmed from the name of "Muhammad ibn Musa al-Khwarizmi", an influencer mathematician
- * "Al-khorezmi his background, his personality his work and his influence" by Heinz Zemanek, Springer LNCS, 1979, Algorithms in Modern Mathematics and Computer Science, pp 1-81

(https://link.springer.com/chapter/10.1007/3-540-11157-3_25)





Home » Chemistry » Biochemistry » February 6, 2017

New algorithms may revolutionize drug discoveries—and our understanding of life

search

NEWS OPINION BUSINESS REVIEW NATIONAL AFFAIRS SPORT LIFE TECH ARTS TRAVEL HIGHER ED MEDIA PROPERTY

LIFE

Robo-advice using algorithms are replacing financial planners

FOLLOW US

NEWS OPINION BUSINESS REVIEW NATIONAL AFFAIRS SPORT LIFE TECH ARTS TRAVEL HIGHER ED MEDIA PROPERTY

LIFE

Robo-advice using algorithms are replacing financial planners

FOLLOW US

PROCESS AUTOMATION DESK By Aaron Hand, Executive Editor, on July 7, 2016 **FOLLOW FOLLOW**

Big Data Algorithms Optimize Oil Wells

Ambyint has added a new product to a lineup geared toward taking the analysis out of data analytics, reducing labor costs associated with operating oil wells.

MIT Technology Review Log in / Register Search Q

bics+ The Download Magazine Events More+

Subscribe

Sinkhole becomes museum piece.

Business Impact

Algorithms Probably Caused a Flash Crash of the British Pound

Trading software may have overreacted to tweets about the French president's comments on Brexit.

by Jamie Condliffe October 7, 2016

f

Overnight, the British pound dropped by 6 percent, to \$1.13. Analysts are pointing the finger at an increasingly familiar financial scapegoat: the algorithm.

Scope of Computational Algorithms

Computability

Complexity

Scope of Computational Algorithms

Computability

Decide on problem computability:

- What problems can be solved by a computer?
- Can a computer solve any problem, given enough time and storage space?

Complexity

A computationally infeasible problem


```
input n assume n>1 while (n != 1) { if (n is even) n = n/2 else n = 3*n+1 }
```

A computationally infeasible problem


```
input n
assume n>1
while (n != 1) {
    if (n is even) n = n/2
    else    n = 3*n+1
}
```

Is this problem terminates for all possible n>1?

A computationally infeasible problem


```
input n
assume n>1
while (n != 1) {
    if (n is even) n = n/2
    else    n = 3*n+1
}
```

- Is this problem terminates for all possible n>1?
 - We cannot write a computational algorithm to answer this question

Scope of Computational Algorithms

Computability

Decide on problem computability:

- What problems can be solved by a computer?
- Can a computer solve any problem, given enough time and storage space?

Complexity

Analyze a computational algorithm performance:

- How fast can we solve a problem using a computer?
- How little storage space can we use to solve a problem?
- Design better algorithms.

Scope of Computational Algorithms

Computability

Decide on problem computability:

- What problems can be solved by a computer?
- Can a computer solve any problem, given enough time and storage space?

Complexity

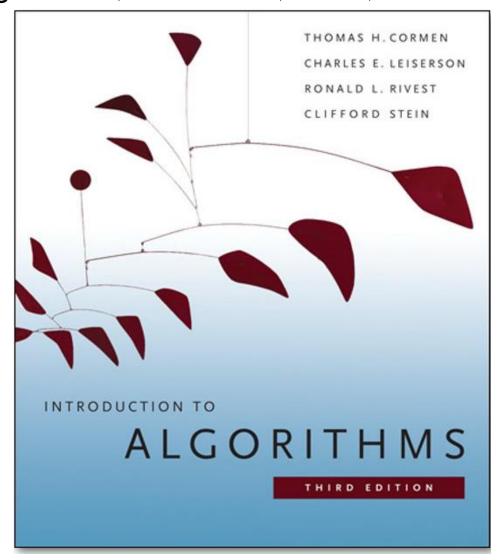
Analyze a computational algorithm performance:

- How fast can we solve a problem using a computer?
- How little storage space can we use to solve a problem?
- Design better algorithms.

Correct Algorithm

- A correct algorithm has two conditions:
 - Halts/terminates
 - Produces a correct output set for all possible input sets
- Will detail later on analyzing correctness of algorithms.

Grading and Policies


- Course work
 - Five homework assignments (33%)
 - Two quizzes (33%)
 - Final inclusive exam (34%)
- Delivery policies:
 - The default late policy: submission allowed for 20% penalty for a calendar day.
 - Assignments should be computer-typed.
- Cheating is not allowed and will be reported
 - If you are using any external source, you must cite it and clarify what exactly got out of it.
 - You are expected to understand any source you use and solve problems in your own.

Reference Book

Introduction to Algorithms, 3rd Edition, 2009, Thomas

Cormen et. al.

Course Content

- Introduction to Computational Algorithms
- Analysis of Algorithms
- Design of Algorithms
 - Divide and Conquer
 - Greedy Algorithms
 - Dynamic Programming
- Advanced Data Structures: Graphs
- Introduction to Advanced Topics: NP-Completeness

Credits

- Prof. Guy Blelloch notes
 - https://www.cs.cmu.edu/~guyb/papers/Qatar17.pdf
- Prof. Donald Knuth book
 - The Art of Computer Programming, Volume 1
- Prof. Madhusudan Parthasarathy notes
 - https://courses.engr.illinois.edu/cs373/sp2010/lectures/slideslec1.pdf