Definition: The scan operation takes a binary associative operator \oplus (pronounced as circle plus), and an array of n elements $[x_0, x_1, \ldots, x_{n-1}]$, and returns the array $[x_0 \oplus x_1, \ldots, (x_0 \oplus x_1 \oplus \ldots \oplus x_{n-1})]$.

Example: If \oplus is addition, then scan operation on the array would return $[3, 1, 7, 0, 4, 1, 6, 3]$. If \oplus is addition, then scan operation on the array would return $[3, 4, 11, 11, 15, 16, 22]$.
An Inclusive Scan Application Example

- Assume that we have a 100-inch sandwich to feed 10 people
- We know how much each person wants in inches
 - [3 5 2 7 28 4 3 0 8 1]
- How do we cut the sandwich quickly?
- How much will be left?

- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate prefix sum:
 - [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
Typical Applications of Scan

- Scan is a simple and useful parallel building block

- Convert recurrences from sequential:

  ```
  for (j=1; j<n; j++)
      out[j] = out[j-1] + f(j);
  ```

- Into parallel:

  ```
  forall(j) { temp[j] = f(j) };
  scan(out, temp);
  ```

- Useful for many parallel algorithms:
 - Radix sort
 - Quicksort
 - String comparison
 - Lexical analysis
 - Stream compaction
 - Polynomial evaluation
 - Solving recurrences
 - Tree operations
 - Histograms, ….
Other Applications

- Assigning camping spots
- Assigning Farmer’s Market spaces
- Allocating memory to parallel threads
- Allocating memory buffer space for communication channels
- ...
An Inclusive Sequential Addition Scan

Given a sequence \([x_0, x_1, x_2, \ldots]\)
Calculate output \([y_0, y_1, y_2, \ldots]\)

Such that

\[
y_0 = x_0 \\
y_1 = x_0 + x_1 \\
y_2 = x_0 + x_1 + x_2 \\
\ldots
\]

Using a recursive definition

\[
y_i = y_{i-1} + x_i
\]
A Work Efficient C Implementation

\[y[0] = x[0]; \]
\[\text{for } (i = 1; i < \text{Max}_i; i++) \ y[i] = y[i-1] + x[i]; \]

Computationally efficient:

N additions needed for N elements - \(O(N) \)!

Only slightly more expensive than sequential reduction.
A Naïve Inclusive Parallel Scan

- Assign one thread to calculate each y element
- Have every thread to add up all x elements needed for the y element

\[
y_0 = x_0 \\
y_1 = x_0 + x_1 \\
y_2 = x_0 + x_1 + x_2
\]

“Parallel programming is easy as long as you do not care about performance.”
Why is this a naïve parallel implementation? How can we make it better?

Anyone wants to speak up and have comment on this?
A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

- Active threads stride to n-1 (n-stride threads)
- Thread j adds elements j and j-stride from shared memory and writes result into element j in shared memory
- Requires barrier synchronization, once before read and once before write
A Better Parallel Scan Algorithm

1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration.
A Better Parallel Scan Algorithm

1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory
Handling Dependencies

- During every iteration, each thread can overwrite the input of another thread
 - Barrier synchronization to ensure all inputs have been properly generated
 - All threads secure input operand that can be overwritten by another thread
 - Barrier synchronization is required to ensure that all threads have secured their inputs
 - All threads perform addition and write output
A Work-Inefficient Scan Kernel

```c
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {
    __shared__ float XY[SECTION_SIZE];
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < InputSize) {XY[threadIdx.x] = X[i];}
    // the code below performs iterative scan on XY
    for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {
        __syncthreads();
        float in1 = XY[threadIdx.x - stride];
        __syncthreads();
        XY[threadIdx.x] += in1;
    }
    __syncthreads();
    if (i < InputSize) {Y[i] = XY[threadIdx.x];}
}
```
Work Efficiency Considerations

- This Scan executes $\log(n)$ parallel iterations
 - The iterations do $(n-1)$, $(n-2)$, $(n-4)$,...$(n- n/2)$ adds each
 - Total adds: $n \times \log(n)$ - $(n-1) \rightarrow O(n\log(n))$ work

- This scan algorithm is not work efficient
 - Sequential scan algorithm does n adds
 - A factor of $\log(n)$ can hurt: 10x for 1024 elements!

- A parallel algorithm can be slower than a sequential one when execution resources are saturated from low work efficiency
Improving Efficiency

- **Balanced Trees**
 - Form a balanced binary tree on the input data and sweep it to and from the root
 - Tree is not an actual data structure, but a concept to determine what each thread does at each step

- For scan:
 - Traverse down from leaves to the root building partial sums at internal nodes in the tree
 - The root holds the sum of all leaves
 - Traverse back up the tree building the output from the partial sums
Parallel Scan - Reduction Phase

\[
\sum x_0..x_1 \\
\sum x_2..x_3 \\
\sum x_4..x_5 \\
\sum x_6..x_7 \\
\sum x_0..x_3 \\
\sum x_4..x_5 \\
\sum x_6..x_7
\]

In-place calculation

Time

Value after reduce
Reduction Phase Kernel Code

```c
// XY[2*BLOCk_SIZE] is in shared memory
for (unsigned int stride = 1; stride <= BLOCK_SIZE; stride *= 2) {
    int index = (threadIdx.x+1)*stride*2 - 1;
    if(index < 2*BLOCk_SIZE)
        XY[index] += XY[index-stride];
    __syncthreads();
}
```

- threadIdx.x+1 = 1, 2, 3, 4, …
- stride = 1,
- index = 1, 3, 5, 7, …
Parallel Scan - Post Reduction Reverse Phase

Move (add) a critical value to a central location where it is needed
Parallel Scan - Post Reduction Reverse Phase
Putting it Together
for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
 __syncthreads();
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index+stride < 2*BLOC

First iteration for 16-element section
threadIdx.x = 0
stride = BLOCK_SIZE/2 = 8/2 = 4
index = 8-1 = 7
Work Analysis of the Work Efficient Kernel

- The work efficient kernel executes log(n) parallel iterations in the reduction step
 - The iterations do n/2, n/4, ... 1 adds
 - Total adds: (n-1) \(\Rightarrow \) O(n) work

- It executes log(n)-1 parallel iterations in the post-reduction reverse step
 - The iterations do 2-1, 4-1, ..., n/2-1 adds
 - Total adds: (n-2) – (log(n)-1) \(\Rightarrow \) O(n) work

- Both phases perform up to no more than 2x(n-1) adds

- The total number of adds is no more than twice of that done in the efficient sequential algorithm
 - The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware
Some Tradeoffs

- The work efficient scan kernel is normally more desirable
 - Better Energy efficiency
 - Less execution resource requirement
- However, the work inefficient kernel could be better for absolute performance due to its single-phase nature (forward phase only)
 - There is sufficient execution resource
Handling Large Input Vectors

- Build on the work efficient scan kernel
- Have each section of 2*blockDim.x elements assigned to a block
 - Perform parallel scan on each section
- Have each block write the sum of its section into a Sum[] array indexed by blockIdx.x
- Run the scan kernel on the Sum[] array
- Add the scanned Sum[] array values to all the elements of corresponding sections
- Adaptation of work inefficient kernel is similar.
Overall Flow of Complete Scan
<table>
<thead>
<tr>
<th>X:</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>1</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>0</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y:</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>S:</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>14</td>
<td>20</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>V:</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>28</td>
<td>29</td>
<td>31</td>
</tr>
</tbody>
</table>
Exclusive Scan Definition

Definition: *The exclusive scan operation takes a binary associative operator \oplus, and an array of n elements $[x_0, x_1, ..., x_{n-1}]$ and returns the array $[0, x_0, (x_0 \oplus x_1), ..., (x_0 \oplus x_1 \oplus ... \oplus x_{n-2})]$.*

Example: If \oplus is addition, then the exclusive scan operation on the array $[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3]$, would return $[0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22]$.
Why Use Exclusive Scan?

- To find the beginning address of allocated buffers
- Inclusive and exclusive scans can be easily derived from each other; it is a matter of convenience

```
[3 1 7 0 4 1 6 3]
Exclusive [0 3 4 11 11 15 16 22]
Inclusive [3 4 11 11 15 16 22 25]
```
A Simple Exclusive Scan Kernel

- Adapt an inclusive, work inefficient scan kernel

- Block 0:
 - Thread 0 loads 0 into XY[0]
 - Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

- All other blocks:
 - All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into XY[threadIdx.x]

- Similar adaption for work efficient scan kernel but ensure that each thread loads two elements
 - Only one zero should be loaded
 - All elements should be shifted to the right by only one position