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Abstract—Convolutional Neural Networks (CNN) have
achieved great success in a large number of applications and
have been among the most powerful and widely used techniques
in computer vision. CNN inference is very computation-intensive
which makes it difficult to be integrated into resource-constrained
embedded devices such as smart phones, smart glasses, and
robots. Along side inference latency, energy-efficiency is also
of great importance when it comes to embedded devices with
limited computational, storage, and energy resources. Embedded
FPGAs, as a fast and energy-efficient solution, are one of widely
used platforms for accelerating CNN inference. However, the
difficulty of programming and their limited hardware resources
have made them a less attractive option to the users.

In this paper, we propose Inf4Edge, an automated framework
for designing CNN inference accelerator on small embedded
FPGAs. The proposed framework seamlessly generates a CNNs
inference accelerator that fits the target FPGA using different
resource-aware optimization techniques. We eliminate the over-
head of transferring the data to/from FPGA back and forth which
introduces latency and energy consumption. To avoid the data
transfer overhead, we keep all of the data on the FPGA on-chip
memory which makes the generated inference accelerator faster
and more energy-efficient.

Given a high-level description of the CNN and a data set,
the framework builds and trains the model, and generates an
optimized CNN inference accelerator for the target FPGA. As a
case study, we use 16-bit fixed-point data in the generated CNN
inference accelerator on a small FPGA and compare it to the
same software model running on the FPGA’s ARM processor.
Using 16-bit fixed-point data type results in ∼ 2% accuracy loss
in the CNN inference accelerator. In return, we get up to 15.86×
speedup performing inference on the FPGA.

Index Terms—CNN inference, Energy-Efficiency, Embedded
FPGA, Accelerator, Edge Computing

I. INTRODUCTION

With the rapid advances in computational power, Convolu-
tional Neural Networks (CNN) have demonstrated the poten-
tial to surpass human-level performance in a variety of fields
including robotics [1], natural language processing (NLP) [2],
biosensing [3], hardware design and optimization [4], and
especially in computer vision applications [5]. CNN models
and architectures are continuing to get more complicated and
larger to achieve higher performance. Higher performance of
CNNs comes at the cost of significant computational and
memory resources demand which makes the deployment of
CNNs on resource-constrained devices a challenge.

As CNNs inference applications are becoming ubiquitous,
the need for moving the processing power to edge devices
has been increasing [6]. Latency and uncertainty of sending
(receiving) the data through a unreliable network to (from)
cloud where powerful servers perform the computations is
the main motivation for moving processing power to edge
devices. When it comes to designing CNNs to run on edge
devices, most of the time the application is latency-sensitive
and real-time which makes the CNN accelerator latency a
critical factor [6]. In addition to real-time nature of CNN
applications on the edge devices, due to battery or temper-
ature restrictions, most of edge devices have a very limited
energy/power budget [7], [8]. Therefore, the edge devices are
designed with minimal computation and storage resources,
which as a result, makes it very difficult to reuse already
designed and implemented applications for them.

Application Specific Integrated Circuits (ASIC), Field Pro-
grammable Gate Arrays (FPGA), and Graphical Processing
Units (GPU) are among the most popular and practical CNN
inference accelerator solutions being widely used on edge
devices. Designed/programmed for a specific application, as
we move from ASIC to FPGA and from FPGA to GPU, overall
design cost and latency decrease, and power/energy con-
sumption and reprogrammability (flexibility) increase. GPUs
provide tens of GOP/sec, which results in high CNN inference
throughput. Although due to power hungry nature of GPUs,
researchers have been trying to make them more energy-
efficient for different applications by several microarchitectural
tweaks [9], [10] as well as system level optimizations [11]–
[13], they are not a good solution for edge devices with
strict power/energy constraints. Furthermore, works like [14],
[15] have demonstrated limitations of using GPUs for CNN
workloads. On the other hand, ASICs’ are designed and pro-
duced for a specific CNN, making them very fast and power-
/energy-efficient, but they are not programmable. Therefore,
FPGAs are placed between ASICs and GPUs when it comes
to power/energy consumption, flexibility, and latency.

A large body of research has been conducted on developing
accelerators specifically customized for FPGA architecture for
different applications such as database sort operations [16] and
AI-based game acceleration [17]. CNN inference acceleration
has also been popular among researchers in the past several



years. Networks with binary weights [18], [19] have shown
accuracy comparable to full precision nets. Binarized neural
networks (BNNs) as an efficient solution for developing CNNs
on FPGA reduce storage and memory bandwidth requirements
and replace floating point operations with binary operations.
BNNs due to their especial architecture have a lot of im-
plementation challenges. Therefore, we do not consider BNN
approaches in this work. In this work, in order to address the
memory bandwidth challenges [20], [21], we try to minimize
the memory transfer overhead by fitting the weights in the
FPGA on-chip memory.

In addition, designing hardware accelerators for CNN in-
ference on FPGAs requires significant investment and time to
develop. However, the ML/DL community constantly keeps
to develop new complicated CNN models or improve exist-
ing ones for better accuracy and performance which makes
designing new FPGA implementations or upgrading the exist-
ing solutions to recent proposed models. Therefore, showing
the necessity of having a framework that can automate the
CNN inference accelerator design and development on FP-
GAs. High-level synthesis (HLS) tools such as Xilinx Vivado
HLS [22] and LegUp [23] enable designers to write code
in a high-level programming language (such as C/C++), then
the tool compiles it to a register-transfer level (RTL) design
specification. More recent tools such as Intel FPGA SDK for
OpenCL [24] and Xilinx SDSoC [25] offer further automation
features for generating the hardware-software interface and on-
chip memory network. The existing HLS tools and frameworks
target general algorithms which is not very optimized when
it comes to a very specific applications, i.e. CNN inference
accelerator for very small embedded FPGAs in our case. Over-
lay processors such as Xilinx Deep Learning Processor Unit
(DPU) allow deployment of CNNs on a user-programmable
dedicated engine by translating a high level description of
the model [26]. However, these tools have shown to suffer
from shortcomings such as limited function support and extra
configuration time overhead [27]

This work proposes an automated resource-aware frame-
work for CNN inference accelerators on small embedded
FPGAs. Our framework automatically generates an optimized
hardware for a CNN architecture. The framework consists of
three main components that correspond to our contributions:

• Hardware Generation Pipeline: a pipeline to generate
the hardware for a given high-level description of a
CNN. This pipeline build the model from the description,
generates the HDL for the CNN inference accelerator, and
synthesizes the generated HDL to produce the bitstream
for the target FPGA. In Section II-A we go through
details of this pipeline.

• Precision Adjustment Loop: we target very small em-
bedded FPGAs in this work so we use fixed-point data
in the generated accelerator. Using a model-in-the-loop
concept, we adjust the precision of the fixed-point data
produced by each layer of the CNN to reduce impact of
the quantization error propagation in the network. This
loop will be explained in Section II-B
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Fig. 1: Inf4Edge framework. Grey boxes with dashed borders
illustrate the framework inputs provided by the designer as a
high-level JSON description. Grey boxes with solid borders are
the framework outputs, i.e., bitstream and generated hardware
accuracy report. Stages to produce the output are shown by
circles with dashed border, where PA is Precision Adjustment,
HG is Hardware Generation, and RO is Resource-aware
Optimization.

• Resource-aware Optimization Loop: in case the gener-
ated CNN inference accelerator does not fit into the target
FPGA, this optimization loop first, trades speed for less
hardware resource usage, and then trades a little model
accuracy drop for less hardware resource usage. We will
elaborate on this loop in Section II-C.

The rest of this paper is organized as follows; we first describe
the framework’s overall structure, then go into details for each
component of the framework. Finally, we provide the results
discussing different aspects of the generated CNN for our
target FPGA.

II. INF4EDGE FRAMEWORK

Figure 1 shows the overall flow of the inference for edge
(Inf4Edge) framework. There are different pipelines by which
for a given input I a CNN inference hardware is generated
and is optimized for the target embedded FPGA. Hardware
Generation pipeline HG generates the CNN inference acceler-
ator HDL H . Hardware generation is resource agnostic which
means it does not take the target FPGA hardware resources
into account. However, it provides different knobs to trade the
accelerator’s inference latency for hardware resources.

We use fixed-point data types in the hardware. Therefore,
we need to accurately adjust the precision of the intermediate
data in the hardware. Precision Adjustment stage PA fine-tunes
the data precision between different CNN accelerator layers. In
case the generated hardware does not fit in the target FPGA,
Resource-aware Optimization stage RO minimizes the CNN
hardware resource usage with minimum accuracy degradation.

In the following subsections, each stage of the framework
is explained in details.

A. Hardware Generation (HG)

Hardware generation includes a pipeline of procedures
performed to generate the bitstream to be programmed on
the target embedded FPGA from a given CNN high-level
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Fig. 2: a) Convolution data dependencies. b) Designed convolution unit’s Data Flow and State Machine for FILT SIZE = 3

and COL STRIDE = 1. The DSPs are wired to input elements based on COL STRIDE which is 1 in here.

specification. Hardware generation pipeline does not include
any optimization; However, different knobs are provided by
different components of this pipeline to control resource usage
of the generated hardware. This pipeline is shown by HG in
Figure 1. In the following subsections, different components
of this pipeline are explained.

1) Software Backend: the software backend provides an
API that accepts a JSON file containing high-level specifi-
cations of the CNN, including its architecture (number and
type of the layers, their connections), hyperparameters, and
the data set. Abstracting the CNN specifications eliminates the
need for designers to deal with the programming part of the
CNN design. As a result, the design process will be faster and
less error-prone. This backend performs two main operations,
which are essential for the next steps:

1.1) CNN designing, training, and model generation:
given a high-level CNN specifications by the designer,
the software backend first splits the data set into training,
validation, and test data sets. Then, based on the CNN
architecture, the software model of the CNN is built using
Python library [28]. The software backend uses several
techniques (Dropout, regularization, and data augmentation)
to prevent model over-fitting [29], [30].

After training the CNN using the provided data set, the
weights of the most accurate model are quantized to 16-bit
fixed-point data. The quantized weights W , as well as the
CNN model architecture M , will be passed to the hardware
generation backend to produce the hardware for the model and
to initialize the weights into the FPGA BRAMs.

1.2) Verification (inter-layer) data: after training the model,
the software backend feeds a portion of random samples
from test data to the trained model and saves the output of
all layers of the CNN model for each sample. We call the
collected data as verification (inter-layer) data denoted by V in
Figure 1. Verification data are passed to precision adjustment
stage PA for precision adjustment and verification of difference
accelerator’s components.

2) Hardware Generation Backend: this backend generates
the hardware description H of the CNN model M generated
by software backend. We have implemented configurable

templates of all of the widely-used hardware components
required to implement CNNs on FPGAs. This backend is
developed in CHISEL, a powerful, well-known hardware con-
struction language that enables the designers to implement
advanced hardware components using highly parameterized
generators [31].

The implemented hardware components templates are mod-
ular and parameterized. The components can be configured
based on the CNN specifications, including data bit-width,
shared or exclusive components (convolution unit), and the
number of DSPs used for components (convolution and fully
connected units). Furthermore, all of the implemented hard-
ware components are modular, which means we can put them
together with few lines of code, similar to designing CNNs in a
deep learning software framework. Since hardware generation
backend is a part of several pipeline/loops, the generate
hardware components parameters are set at this backend based
on inputs from two other framework stages:

1) The model specification inputted to this stage by soft-
ware backend M (Section II-A1).

2) Hardware optimization PH stage (Section II-C1).

The generation of the CNN accelerator based on the model
architecture is automated in the hardware generation back-
end, which is completely transparent from the designer. The
following subsections contain the design and implementation
details of each hardware component used in generating CNN
accelerator:

2.1) Convolution unit: convolution operation consists of
several multiplies and accumulate (MAC) operations. In order
to design a highly parallel convolution unit, we need to find
the pattern by which the data is being accessed for consec-
utive convolution operations. Figure 2.a illustrates the access
pattern for three convolution operations with a filter with size
FILT SIZE = 3 and stride size COL STRIDE = 1. Based
on Figure 2.a, in order to compute each element of the output,
we need FILT SIZE rows and FILT SIZE columns of the
input fmap. A filter is applied on a FILT SIZE × FILT SIZE

region of the input fmap and pointwise product is computed.
The results of all of the multiply operations are added together



by a summation reduction operation. Equation 1 shows the
data access for one single convolution to produce an output
element of output fmap (or,c).

or,c = ir−1,c−1 ∗ f1 + ir−1,c ∗ f2 + ir−1,c+1 ∗ f3
+ ir,c−1 ∗ f4 + ir,c ∗ f5 + ir,c+1 ∗ f6
+ ir+1,c−1 ∗ f7 + ir+1,c ∗ f8 + ir+1,c+1 ∗ f9

(1)

To compute the convolution of the next output element
of the same row (or,c+1), the same filter is shifted by one
on the input fmap, the convolution is performed, and after
the reduction operation, the result will a single scalar value.
Different window colors in Figure 2.a show this. Therefore,
in order to produce one row of the output fmap, the same
filter is slid and applied to FILT SIZE rows of the input
fmap resulting in reusing one element of each row FILT SIZE

times. We leveraged this access pattern in the data flow design
of the convolution unit.

Figure 2.b illustrates the data flow and state machine of the
generated convolution unit by the framework. To compute the
convolution of each row of the output fmap, FILT SIZE = 3

rows of the input fmap are fed to this unit alongside the filter
to be convolved with the input.

As shown in the data flow part of Figure 2.b, the filter
gets flattened in the generated convolution unit data flow,
and its first element is wired to one input of all DSPs
(MAC) units. One row of the input fmap is also wired to
their corresponding DSP based on the COL STRIDE value.
In Figure 2, COL STRIDE is equal to 1, so consecutive
input elements are wired to the neighboring DSPs. In case
COL STRIDE is set to 2 by the designer, every other input
element would be wired to the neighboring DSPs.

As illustrated in Figure 2.b., the generated state machine for
the convolution unit performs FILT SIZE = 3 shifts on the
input columns and filter, then it shifts rows by 1. This process
is performed FILT SIZE times to compute the convolution
for FILT SIZE rows. The output of this hardware unit is
one row with the size equal to ”input fmap width divided by
COL STRIDE”. The output goes through an activation layer,
a max-pooling layer, and a precision adjustment layer to get
to the next FeedForward layer.

We use built-in FPGA DSPs for MAC operations. A chal-
lenge of using the DSPs (compared to other resources) is
that they are very limited in quantity. Therefore, the imple-
mented convolution unit hardware is parameterized so that
the number of DSPs for this unit can be specified, and the
hardware generation backend generates the convolution unit’s
state machine in a way that it uses only the specified number
of DSPs. The more DSPs we allocate to this hardware unit,
the higher throughput we get. The maximum number of DSPs
is the input picture’s width (input fmap of the first convolution
layer), and the minimum is one. For the sake of simplicity, in
Figure 2, the illustrated data flow and the state machine use
DSPs equal to the input picture’s width. This parameter will
be fine-tuned by the resource-aware optimization stage, which
will be explained later.
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to layer(i+2)
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...
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Fig. 3: Exclusive vs. Shared mode for convolution unit. Red
dashed lines specify the CNN convolutional layers.

Furthermore, the framework allows selecting from two
hardware generation modes for this unit; exclusive mode and
shared mode.

• Exclusive mode: as illustrated in Figure 3, choosing
the exclusive mode, for each convolution layer in the
designed CNN model, a convolution unit hardware is
generated. This mode of hardware generation results in
higher throughput and higher FPGA resource usage. This
mode is enabled by default in the framework.

• Shared mode: using this mode, the convolution unit
is shared among all layers of CNN. Sharing this unit
results in using less FPGA hardware resources, but it
introduces throughput degradation. Figure 3 illustrates
this mode. By enabling this mode, a wrapper is generated
automatically by the hardware generation backend. The
wrapper acts as a resource access manager for this
unit by arbitrating different layers requesting the shared
convolution unit. Since the input elements are wired to the
DSPs in the convolution unit, for the layers with the same
COL STRIDEs, one convolution unit has to be generated
and shared. Therefore, the number of shared convolution
units in the generated CNN hardware depends on the
number of different COL STRIDEs in the CNN, which
is specified by the hyper parameters I .

The accuracy of the generated CNN is independent of
either of these modes. The provided generation modes
enable the framework to trade latency/throughput for
hardware resource usage for very small embedded FPGAs.
Similar to the number of allotted DSPs for the convolution
unit, the resource-aware optimization stage determines the
exclusive or shared generation mode.
2.2) Activation and Max pooling units: in the proposed
framework, we implemented a max-pooling unit and an
activation hardware unit. The activation unit performs
a Rectified Linear (ReLU) function. The max-pooling
unit is parameterized and is generated to perform
MP SIZE × MP SIZE max-pooling where MP SIZE

is the size of max pooling window (a hyper parameter).
2.3) Inter-layer precision adjustment unit: As mentioned be-
fore, we are using 16-bit fixed-point data in our framework.
Using fixed-point instead of floating-point introduces quantiza-
tion error to the layers’ output. This error propagates through
the network and affects the final results adversely, resulting in
accuracy degradation. Since the size of the integer/fraction part
of the 16-bit fixed-point data propagated through the network
varies from one layer to another, we need to adjust the size of
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the integer part and fraction part at the end of each layer of the
network as illustrated in Figure 3. For doing so, we insert an
Inter-layer precision adjustment unit at the end of each layer.
This unit is responsible for adjusting the integer and fractional
part of the output data of each layer before it is fed to the next
layer of the network. The adjustment of this unit is performed
by Precision Adjustment (PA) stage (Section II-B).

2.4) FeedForward unit: this unit is responsible for buffering
and performing accumulation of the input fmaps in a buffer
(BRAM). It is also responsible for feeding the previous layer’s
accumulated fmaps to the convolution unit (FILT SIZE rows
at a time with ROW STRIDE strides) in conjunction with the
filter that is going to be convolved with the fmap. Figure 5
shows the structure of this hardware unit for FILT SIZE = 3

and ROW STRIDE = 1.
The buffering state machine is generated specific to each

layer since the dimension of inter-layer data for each layer is
different (due to max-pooling and COL STIRDE > 1). The
BRAM and ROM in Figure 5 are generated according to the
size of the fmaps that will be buffered in the layer and the
number of the layer filters. ROMs are initialized with the
quantized CNN weights W provided by the software backend.

On the output side, the feeding state machine loads the rows
from the fmaps RAM based on ROW STRIDE & FILT SIZE

and feeds them into the output with the filter.
The generated buffering and feeding SMs by hardware

generation backend are decoupled in order to avoid stalls to
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Fig. 5: FeedForward unit architecture with FILT SIZE =

3 & ROW STRIDE = 1. fmap buffering and feeder state
machines (SM) are decoupled to avoid the CNN pipeline stalls,
resulting in higher throughput.

the pipeline, which diminishes the throughput.
2.5) Dense or fully-connected (FC) unit: dense or fully-
connected is also implemented as a parameterized hardware
unit. Similar to the convolution unit, this unit mainly consists
of multiplication and addition (MAC), requiring FPGA’s
built-in DSPs. In this framework, the number of DSPs (D)
and the number of neurons in the FC unit (FC SIZE), which
corresponds to the FC unit output size, are configurable.

In most CNNs, the FC unit size (the number of neurons) is
quite large. However, due to FPGA resource constraints, we
may not be able to use DSPs equal to the size of the FC unit.
Therefore, this unit is generated in a way that is able to handle
the difference between the number of used DSPs (D) and FC
unit output size (FC SIZE) for this unit under the conditions
stated in Equation 2.

1 ≤ D ≤ FC SIZE

FC SIZE % D = 0
(2)

Figure 4 shows the data flow and the state machine for this
unit. The state machine performs partial MAC operations (in
slices of size D) and accumulates the results in the output
registers of the FC unit. For the first slice of size D (S = 0),
the state machine rotates the input by one to the left at each
cycle, resulting in feeding the different elements of the input
to be MACed by their corresponding weights stored in ROMs.
After M cycles (size of the input row), the result of partial
MAC is accumulated in the FC output registers, MAC units
are reset, and the same input row gets MACed by the weights
to generate the next slice of size D (S = 1). This process of
accumulation is performed S = FC SIZE / D times so that all
of the input row elements are MACed by all of the neurons
in the FC unit.

The weights for this layer are stored in a cluster of ROMs
where each ROM contains the weights for its corresponding
DSP or MAC unit. The ROMs are generated and initialized
based on the weights provided by the software backend and
are used in the synthesis.

Figure 4 illustrates the state machine for processing only
one input fmap row. We design the FC unit state machine in
a way that the unit does not wait for all of the fmaps to be



produced by the last convolution layer. This unit processes the
last convolution layer output row after it is outputted by the
convolution layer to keep the pipeline full.

In conjunction with the state machine shown in Figure 4,
which process only one input row, another state machine is
generated for the FC unit to keep track of all of the input
fmaps as the convolution unit outputs them. At the end of
each inference stage, the higher-level state machine outputs
the result of FC operation, which is accumulated in 32-bit
registers, and resets them to make the FC unit ready for the
next inference.

In our experiments, we noticed that this unit could be the
bottleneck of the generated CNN accelerator. Depending on
the number of used DSPs and the FC unit’s size, this unit’s
latency for processing one input row can be higher than that
of convolution unit. If the convolution unit is used in exclusive
mode, the rate at which the convolved rows are fed into the
FC unit is higher than the rate at which the FC unit processes
them. This situation worsens when the target FPGA is so tiny
that the allocated DSPs for FC unit is very low compared
to the size of FC unit, i.e., high FC SIZE to D ratio. In
order to address this problem, we put a buffer between the last
convolution unit and the FC unit. Using a shared convolution
unit does not cause these problems since the convolution unit
becomes the bottleneck of the CNN.

3) Synthesis Backend: this backend synthesizes the gen-
erated hardware H by hardware generation backend for the
target FPGA. If the synthesis is successful, a bitstream is
generated to program the FPGA with. In case of synthesis
failure, the report of synthesis R is fed to resource-aware
optimization as a guide to further optimize the hardware for
the target FPGA.

B. Precision Adjustment (PA)

One important step in generating the CNN is to adjust
the precision of each layer output before feeding them to
the next layer. In order to adjust the fixed-point precision
of the CNN, we need to propagate several test inputs to
the hardware implementation of the CNN. The precision
adjustment process leverages the model-in-the-loop concept.
This stage is demonstrated in Figure 1 by PA .

As we mentioned before in Section II-A1, verification (inter-
layer) data V are generated by the software backend. In
this stage, an accurate software model of the generated CNN
hardware is used in simulation to verify the correctness of the
design and to perform inter-layer precision adjustment. For
doing so, all of the verification data are fed to the model in
simulation. Then, the output of each layer of the generated
CNN hardware model H is collected, and the difference of
the collected data and the verification data are calculated to
measure the error E introduced by the precision adjustment
in each layer. Starting from the first layer, this step configures
the inter-layer precision adjustment unit A so that the output
error of the first layer is minimized. Then, the output error of
the next layer is measured, and the precision of the inter-layer
precision adjustment unit for that layer is set.

The sequence of propagating data, collecting data, calculat-
ing error, and adjusting the precision units is performed until
the generated hardware’s inter-layer and accelerator’s end-to-
end error merges to a minimum error. i.e., as close as possible
to verification (inter-layer) data. In the end, the simulation and
precision adjustment backend reports the error introduced by
quantization of the model to 16-bits as well as the accuracy
of the generated hardware for the CNN O .

The precision adjustment step leverages CHISEL’s powerful
test capability to input data to the design hardware and
analyzes it. We use Verilator [32], a cycle-accurate hardware
simulation engine, as the simulation backend of this stage
in our CHISEL-based framework. Verilator converts the HDL
description of the hardware design H to a C++ or SystemC
model that can be compiled and executed. Since the model is
converted to a C++ executable, the simulation is performed
fast.

C. Resource-aware Optimization (RO)

The proposed framework targets very small embedded FP-
GAs. Therefore, one important step for designing the CNN is
to check if the target FPGA has enough computational (LUT
and DSP) and memory (Flip Flop and BRAM). The goal of
this stage is to use the existing knobs to optimized the resource
usages of the CNN so that it fits on the target FPGA with
minimum impact on the model performance, i.e., accuracy. If
the synthesis of the generated hardware accelerator fails (due
to a lack of enough hardware resource for the design), this
stage tries to optimize the hardware to fit it in the target FPGA.
This stage consists of two steps that are performed in order.

1) Hardware Components Optimization: Hardware
components optimization consists of a model-in-the-
loop adjustment of the generated hardware parameters
without affecting the accuracy of the model. At this step, the
framework trades latency/throughput of the accelerator for its
hardware resource usage by fine-tuning different components
of the generated accelerated to fit it into the FPGA. For doing
so, the report of the synthesis backend R is analyzed, and
depending on the type of resource (LUT/FF, BRAM, DSP)
that caused the synthesis to fail, the hardware components
parameters PH are adjusted. Algorithm 1 shows how this
stage is performed.

At this stage, the framework cannot provide any solution to
the memory (BRAM) shortage by adjusting the parameters
of the hardware components. Since the model weights W
are stored in BRAMs of the FPGA, in case the synthesis
failure is due to a lack of enough BRAMs, the framework
goes back to the inputs (hyper paramters) to optimize the CNN
software model size (fewer parameters) in the software model
optimization step.

2) Software Model Optimization: This step aims to de-
crease the number of the model parameters so that the new
model fits in the target FPGA. At this step, the framework
trades model accuracy for memory.

Bayesian optimization has previously been used for auto-
tuning high-level synthesis directives [33], and extracting



Algorithm 1: Harware Components Optimization
Data: H : hardware description of CNN

1 R ←Synthesize( H ).report
2 while R .failed do
3 PH ← H .conf

4 if failure is due to lack of LUT then
5 PH ← PH .Conv.gen mode = Shared
6 H = HardwareGen(conf)
7 else
8 if failure is due to lack of DSP then
9 PH ← adjustNumDSPs(PH .FC)

10 PH ← adjustNumDSPs(PH .Conv)
11 H = HardwareGen(conf)
12 else
13 if failure is due to lack of BRAM then
14 SoftwareModelOptimization( R )
15 break

16 R ←Synthesize( H ).report

accelerator variants with optimal performance and cost trade-
offs on the FPGA [34]. In order to converge to the desired
smaller model, Bayesian Optimization is used in the proposed
framework alongside some heuristic to adjust the hyper pa-
rameters of the model PS so that the accuracy degradation of
the new model is minimum while the model is smaller.

III. EXPERIMENTAL RESULTS

We use Inf4Edge framework to generate a CNN for images
classification on a small embedded FPGA. Our experiment
setup detail is as follows:

CNN Architecture: Table I shows the architecture and hyper
parameters of the CNN we input to the framework in order to
classify CIFAR-10 dataset images.

Dataset and preprocessing: we use CIFAR-10 dataset to
train and test the CNN. 85% of the data were used for training
and validation, and 15% of the data were used for test.

Hardware Platform (FPGA): we evaluate our design on a
PYNQ board [35] which is an open-source project from Xilinx
that makes it easy to design embedded systems with Xilinx
Zynq SoC. PYNQ uses a low-cost Xilinx Zynq-7000 SoC
containing an XC7Z020 FPGA alongside an ARM Cortex-A9
embedded processor.

Synthesis Tool: we use Xilinx SDSoC 2016.4 to perform
synthesis, generate reports used in resource-aware optimiza-
tion stage, generate bitstream, and programming the FPGA.

Resource-aware optimization: we intentionally set
FILT SIZE = 5, and D = FC SIZE in framework’s
input hyper parameters. Since this hyper parameter results
in a model which is larger than our FPGA capacity, the
synthesis fails. First, the framework set the the convolution
unit generation mode to shared mode in the hardware
components optimization step, but it did not help and the
synthesis failed again. In the next effort, hardware component
optimization picked D = 50 and D = 10 for the first and the
second FC units respectively, which means instead of using

TABLE I: The CNN architecture generated by the framework.

Layer Filt. size Output size # of output fmaps # of params
Conv2d 3 (32, 32) 32 320
ReLU (32, 32) 32 0
Max pool (16, 16) 32 0
Conv2d 3 (16, 16) 64 18496
ReLU (16, 16) 64 0
Max pool (8, 8) 64 0
Conv2d 3 (8, 8) 128 73856
ReLU (8, 8) 128 0
Max pool (4, 4) 128 0
Conv2d 3 (4, 4) 128 147584
ReLU (4, 4) 128 0
Max pool (2, 2) 128 0
Dense (1, 100) 51300
ReLU (1, 100) 0
Dense (1, 10) 1010
ReLU (1, 10) 0
Total 292,566

D1 = FC SIZE1 = 100 and D2 = FC SIZE2 = 10 DSPs for
the FC units, 50 and 10 were used respectively.

In the third round of optimization, the FPGA could not fit
the model weights in the BRAMs. Therefore, software model
optimization step decided to use FILT SIZE = 3 as filter size
for all of the convolution layers. The reason behind choosing
such a small CNN is that we are using a very small FPGA.

Accuracy loss, HW vs SW: in order to compare the accu-
racy of the software model and the accelerator implemented
on the FPGA, we classified CIFAR-10 test dataset with both
software model on ARM Cortex-A9 which is the embedded
processor of our FPGA and on the CNN accelerator with two
modes.

Table II shows the accuracy. SW is the Python-based soft-
ware classifier performed on ARM processor of the FPGA
board (650 MHz frequency). HW-SM is the CNN accelerator
generated in shared mode (sharing one convolution unit among
all layers), and HW-EM is the CNN accelerator generated in
exclusive mode (one convolution for each layer).

TABLE II: Software vs. Inf4Edge inference accelerator.

version Accuracy (%) Runtime (ms) Data type
SW 74.13 51.24 32-b floating

HW-SM 72.04 11.17 16-b fixed
HW-EM 72.04 3.23 16-b fixed

We see that the effect of using 16-bit fixed-point data on the
precision of the classification is negligible which is congruent
with previous work on the effect of quantization on the CNNs’
accuracy. Also, as we expected, using exclusive convolution
hardware units improves the runtime by avoiding stalls due to
serializing the use of convolution unit which is shared among
4 layers.

Figure 6 shows the resource usage of the CNN hardware im-
plemented in PYNQ board. As we expected, memory (BRAM)
is the hardware resource limitation that we encounter since
BRAMs have to be utilized for storing model and all inter-
layer data.
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Fig. 6: Hardware resource utilization of the Table I CNN
implemented on FPGA.

IV. CONCLUSION

We proposed a framework that enables the designers to
automatically implement a CNN inference accelerator for an
embedded FPGA without having the knowledge of hardware
design. The framework provides a software API that allows
designers to input a high-level description of their desired
CNN design to the framework, and the framework generates
the CNN accelerator for the target FPGA considering its
hardware resource limitation. The resource-aware optimization
first tries to fine-tune the parameters of the hardware, and if
it still fails, the software model hyper parameters are fine-
tuned for the target FPGA so that it fits into the FPGA. The
framework also tunes the precision of the the intermediate data
using the data set provided by the designer.
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