
1

Deflection-Aware Routing Algorithm in Network on
Chip against Soft Errors and Crosstalk Faults

Hadi Zamani‡, Zahra Shirmohammadi§, Ali Jahanshahi‡ ‡University of California, Riverside, CA, USA §Shahid
Rajaee Teacher Training University {hzama001, ajaha004}@ucr.edu and shirmohammadi@sru.ac.ir

Abstract—Marching into nano-scale technology, probability of
soft errors and crosstalk faults has increased by about 6-7 times.
Since buffers occupy about 40-90% of the switch area, the
probability of soft errors in switches is significant. We propose
a deflection-aware routing algorithm (DAR) combined with an
information redundancy technique to cover the soft errors and
crosstalk faults in the header flow control units (FLIT). We also
introduce an interleaving method along with a simple hamming
code to tolerate the errors in data and tail FLITs. The proposed
methods have been evaluated in both circuit and simulation level
through a simulator written in C++, Booksim 2, and Synopsys
Design Compiler. The evaluation results show that we can cover
the soft errors and crosstalk faults with reasonable power and
performance overhead of 3% and 6.5% respectively.

Index Terms—Network on Chip, Soft Error, Crosstalk Fault.

I. INTRODUCTION

As the VLSI technology further scales down, designers are
able to integrate a huge numbers of processing cores into
a single die. This integration of cores leads to designing
many-core systems with new communication requirements.
Network on chip (NoC) has become a promising and revolu-
tionary paradigm for the communication of this unprecedented
abundance of on-chip cores in the recent past years [1]. In
a NoC architecture, a packet is broken down into multiple
flow control units called FLITs. These FLITs are sent and
received in the communication channels by the means of
wires between the cores. Every FLIT arriving in any middle
router is temporary stored in an input buffer until resources
are freed. During FLIT transmission, accuracy of data transfer
can be threatened by serious reliability concerns such as soft
errors and crosstalk faults. Theses reliability concerns would
become more serious with technology scaling. According
to International Technology Road map for Semiconductors
(ITRS) [2], most of soft errors are in Multi Bit Upset (MBU)
form in the chips fabricated after 2016. Although MBUs can
be appeared in the form of different patterns, the probabilities
of contiguous MBU patterns would be more than the other
MBU patterns [2], [3]. Moreover, data reliability can also be
threatened by crosstalk fault which occurs due to coupling
and inductance capacitance among adjacent wires of NoC that
can result in unwanted voltage glitches, delay, and speed up
in rising/falling transitions appearing on the victim wire [4]
[5] [6]. To the best of our knowledge, prior research cope
with soft error and crosstalk faults independently and mostly
focus on the Single Bit Upset (SBU) or few patterns of Multi
Bit Upset (MBU), whereas we mainly focus on the Multi Bit
Upset (MBU) patterns while covering all SBUs.

In this paper, we propose a deflection-aware routing al-
gorithm (DAR) along with a data redundancy technique to

account for soft errors within the header FLIT. Moreover, split
interleaving along with hamming code is also used to deal with
the faults within the data and header FLITs .

The rest of the paper is organized as follows. An overview
of NoC architecture and the motivation is presented in Section
II. Section III and IV discusses the proposed methodology
and evaluation results respectively. Sections V discusses the
literature and finally conclusion remarks are given in Section
VI.

II. BACKGROUND AND MOTIVATION

NoC Topology: The way processing elements are connected
together is called the NoC topology. The NoC topology de-
termines performance/cost. There are different NoC topologies
including star, ring, and mesh to trade performance of the NoC
against its cost. In this paper, we target 8X8 2D-mesh topology
since it is the most popular NoC topology [1].

NoC Routing Policy: XY routing policy that is a determin-
istic routing algorithm is chosen in our research which delivers
high performance in a 2D-mesh topology [7].

NoC Switching Policy: NoC switching strategy determines
data flow through the routers of NoC. There are different types
of switching algorithms including Wormhole, store and for-
ward, and virtual cut through. In this paper, we use wormwhole
switching algorithm which is widely used in NoCs due to its
low latency and small requirements at the nodes.

NoC Packet Format: Each packet is subdivided into FLITs.
Each packet contains header FLIT and data FLITs. The header
FLIT allows for a flexible source-directed routing scheme and
data FLITs contain the information.

NoC Reliability Challenges: Soft errors [8], [9] and
crosstalk [10]–[12] are among notable types of errors that
occur in NoCs. Technological advances are also compounding
the soft errors rates. The rate of soft errors has been increased
about 6-7 times from 130nm to 30nm technology [3].

Prior research mainly focus on SBUs [13], [14], whereas
ITRS estimates that most of the soft errors occurring in chips
manufactured after 2016 will be in the form of multiple-bit
upsets [2]. Given that 40-90% of the chip area is occupied with
buffers [15], [16], there is a high chance of having MBUs in
the buffers. This signifies importance of addressing soft errors,
particularly MBUs. Hence, this paper focuses on crosstalk and
MBUs as the major challenges towards reliability of NoCs.

III. PROPOSED METHOD

Due to importance of the header FLITs, different approaches
are considered to deal with faults within the header FLITs and
other types of FLITs including data and tail FLITs. Header

978-1-7281-7744-1/21/$31.00 © 2021 IEEE

2

Fig. 1: Header FLIT recovery scheme.

FLITs need more protection compared to the other types of
FLITs. This is because, header FLIT is used in the routing
algorithm. Any faults could potentially change the routing
information which results in a wrong destination.

A. Header FLIT Fault Coverage

To deal with the faults within the header FLIT, we pro-
pose DAR algorithm along with an information redundancy
technique. Moreover, to address soft error and crosstalk faults
within the other FLITs, we introduce an interleaving tech-
nique in conjunction with a simple information redundancy
technique.

1) Header FLIT Fault Detection: There are two phases
dealing with the faults within the header FLITs. 1) fault
detection phase and 2) fault recovery phase. In detection
phase, we propose a detection algorithm called Deflection-
Aware Routing (DAR) which is discussed in the following:
Deflection-Aware Routing (DAR): During FLIT transmission
between two adjacent nodes, a soft error in the buffer or
crosstalk fault in the channel can corrupt the data and po-
tentially lead to a wrong destination. Lets assume node 1 is
the current node (source/sender) and node 2 is the next node
in the deterministic routing path (next receiver node). We also
assume the header FLIT is not faulty during the routing stage
in node 1. However, there might be soft errors in the output
buffers of node 1 or crosstalk faults in the communication
channel between node 1 and node 2 before routing stage in
node 2. We already calculated the routing information in node
1 and the header FLIT is on it’s way to node 2. If there is a
fault in header FLIT between the routing stages in node and
node 2, we can not detect it in node 2 anymore and routing in
node 2 could lead to a wrong destination. In other words,
given faulty header FLIT, if routing is performed in node
2, it could result in a deviation from the main routing path
and consequently, the next receiver node might be a wrong
destination. To detect such errors which might occur following
routing in node 1, we duplicate the routing algorithm. Once in
node 1 (local sender) with the correct header FLIT and then, in
the node 2 (local receiver) with potentially faulty header FLIT.
Hence, we execute the routing algorithm in node 2 assuming
that we are still in node 1. If there is any deflection in the

routing, node 2, potentially, could not be the correct node
anymore. So, by re-calculating routing in node 2 and assuming
we are still in node 1, we can detect the error and fault recovery
phase would be initiated. However, there is no guarantee that
we can detect all errors. To cover the errors which are not
detected by DAR, we employ a simple information redundancy
scheme which is explained in the following.
Implementation Details: Given the mesh topology of our NoC
and being aware of the input port of the received packet, we
can calculate the transmitter address. Also, we are aware of
the receiver node address. In each node, we execute both main
and DAR algorithm. To eliminate performance overhead of
duplicate routing, we first execute the main routing to find
address of the next node in the routing path. This means, we
assume there is no fault in the header FLIT which guarantees
lack of performance overhead in no-faulty cases. In the next
step, while the header FLIT traverses switches inside the
receiver node, we initiate DAR algorithm. Based on input
port of the packet at receiver node, we find address of the
transmitter node and pass this address to the routing algorithm
that is supposed to execute in receiver node. In other words,
we duplicate the routing algorithm; one, assuming none-faulty
header FLIT in transmitter and second faulty header FLIT in
the following receiver node with assumption of being in the
previous transmitter node. There are two scenarios. (1) The
output of DAR is not equal to the current receiver node which
shows the header FLIT is faulty. (2) The output of DAR is
equal to address of the current receiver node. Even in case 2,
header FLIT might be faulty but we were not able to detect it
by DAR. This is because, even with the faulty header FLIT,
receiver node is still in the correct routing path but might end
up at faulty destinations in the next nodes. According to results
shown in Table II, DAR algorithm is more capable of detecting
complex fault patterns. It means complex fault patterns have
higher chance of leading to a wrong destination.

According to extracted fault patterns shown in table I [3],
faults are mostly in the form of two contiguous bits and single
bit. Hence, we further employ 2-bit-parity to detect errors that
were not detected by DAR. This would be enough for all single
and contiguous 2-bit errors. One parity bit is used for even bits
and the other parity bit is used for odds bits.

Based on trade-off between performance, power and area

3

overhead, DAR can be implemented in two different schemes.

Area and power aware approach: To implement the DAR al-
gorithm while considering area and power efficiency, we can
use the same router which is used for main routing algorithm.
The hardware redundancies will be limited to simple address
generator and comparator. Address generator produces address
of previous transmitter node based on the input channel of the
receiver. Comparator is used to compare address of receiver
node and output of DAR algorithm. In this approach, there is
no performance overhead with no faults in the system. This
is because first, we execute the normal routing algorithm with
assumption of no faults and after that we execute the DAR
algorithm. If any faults is detected, we drop the header FLIT
which is still in the current node and execute the main routing
algorithm based on the header FLIT which is buffered in the
transmitter node.

Performance-aware approach: In this approach, we employ an
extra router which is able to perform DAR simultaneously with
the normal routing algorithm. In this mechanism, beside the
redundancies which were mentioned in the previous section,
we need an extra router which duplicate the area, power
overhead of router. Considering the area, power overhead,
and negligible performance overhead of previous approach,
we employ the main router for DAR as well.

2) Header FLIT Fault Recovery: Due to different fault
patterns, which make it difficult to recover the original in-
formation, we store a copy of header FLIT in the spare buffer
located in the transmitter node until we verify the correctness
of the header FLIT in the receiver node. As shown in Figure
1, a spare buffer is used to store the header FLIT. Each time a
header FLIT is arrived at a node, it is stored in both main and
spare buffers. In the receiver node, we first verify correctness
of the header FLIT. If any error is detected, spare FLIT stored
in the spare buffer of the sender node, will be requested.
During this time, header FLIT should remain in the spare
buffer of the sender node. For an ideal NoC, this time is 4
cycles. This is because, routing algorithm, switch traverse, and
communication channels crossing take one cycle each and one
more cycle is needed for requesting a spare header FLIT. The
buffer used in each node is a queue and spare buffer is a
barrel shifter register which its length equals to the number of
cycles of the interval time (4 cycles). As shown in the Figure
1, in faulty cases, re-transmission signal which is sent from
the receiver node, fetches the FLIT from spare buffer which
is not faulty. For the spare buffer, we use barrel shifter since
we should re-buffer header FLIT in the spare buffer in case
there is a fault again.

TABLE I: Ratio of multiple bit upsets in different
technologies.

Multiple Bit Upsets
Design Rule (nm) Total 2 3 4-8 8

180 0.5 0.5 0.0 0.0 less than 0.1
130 1.2 0.8 0.2 0.2 less than 0.1
90 1.9 1.5 0.2 0.2 less than 0.1
65 2.4 2.1 0.1 0.0 less than 0.1
45 2.3 1.9 0.2 0.1 less than 0.1
32 3.1 2.6 0.2 0.3 less than 0.1
22 3.9 3.0 0.2 0.3 0.1

B. Data FLIT Fault Coverage

Since, we are using Wormhole switching, there is only
buffer space for one FLIT in each node. Hence, we should
check the correctness of the data node by node and there is
mechanism to check the correctness of the data FLITs end to
end.

Since the error patterns are mostly in contiguous forms,
without simplifying the error patterns, we need to use compli-
cated fault detection/correction methods to coverage the data
FLIT errors. We introduce an interleaving algorithm that splits
the complex error patterns to simple error patterns. Dealing
with the simple error patterns is easier than complex error
patterns. According to the fault model introduced in [3], We
have at most Eight contiguous bits that could be faulty.

As shown in Figure 2, in a typical interleaving approach,
order of the input data is changed before sending the data
to faulty environment that Multiple Bit Upset (MBU) might
happen. For recovering, the data should be de-interleaved
again. As shown in Figure 3, since buffers are more error
prone, interleaving and De-interleaving is done before and
after the buffers respectively. Based on the fault model, we
need to cover at most 8-bit contiguous error patterns. So we
interleave the data so that every two adjacent bits are stored
in the buffer with minimum distance of 8 bits.

Interleaving would not be able to detect or correct the
data. It only simplifies error patterns so that dealing with
simplified error patterns could be done with simpler encoders
and decoders with less performance, power, and area overhead.
Without interleaving, we should employ a fault tolerant tech-
niques which are able to recover the Eight contiguous error
patterns which adds huge area/power and performance over-
head. However, as shown in Figure 3 using interleaving along
with a simple encoder such as Hamming encoder/decoder,
we can handle simplified error patterns. Beside, using Mat-
lab Simulink, we simulated the coverage capability of our
introduced split interleaving along with Hamming codes in
presence of different numbers of contiguous faulty bits. As
shown in Figure 4, our introduced split interleaving combined
with hamming code is able to cover all the contiguous faulty
bits, while the well-known interleaving techniques are not
suitable for the contiguous faulty bits.

As shown in Figure 3, there are Two phases in data FLIT
recovery scheme. First phase: encoding and interleaving data
before storing data into the buffer. And Second phase: De-
interleaving and decoding the data after reading from the
buffer. With this approach we can guarantee we are able to
recover all contiguous and non-contiguous faulty patterns with
less than maximum number of faults according to the fault
model.

E F GA B C D

F D EC G A B

E F GA B C D In
terleavin

g

D
e-
in
te
rl
ea
vi
n
g

Fig. 2: Random Interleaving Scheme.

4

34 2 1 R34 2 1 R34 2 1 R23 14 23 14 23 14

2 31 42 31 4 34 2 1 R34 2 1 R34 2 1 R34 2 1 R34 2 1 R

Fig. 3: Encoding/decoding along with Random Interleaving
scheme.

The detailed scheme of data FLIT recovery scheme is shown
in Figure 3. As illustrated in the figure, Hamming encoder
and interleaver is employed before storing the data in virtual
channels (buffer) and De-interleaver and Hamming decoder is
employed virtual channels.

IV. EVALUATION METHODOLOGY AND RESULTS

Experimental Setup: Deflection-aware routing (DAR) is eval-
uated in different aspects. To measure the coverage capability
of DAR, a simulator is written in C++. The default routing
and switching algorithms are considered XY and Wormhole
respectively. XY routing algorithm is a deterministic algo-
rithm. In deterministic routing algorithm, given the packet’s
destination, routing path is unique.

To evaluate performance overhead of hardware redundan-
cies, Booksim 2 is employed [17]. Also, Synopsys Design
Compiler is employed to extract the power and area overhead
[18].

A. DAR Evaluation
To evaluate fault coverage capability of the DAR algorithm

and other simple data redundancy techniques, a simulator
is written in C++. In this simulator, network on chip with
mesh topology is implemented. The source and destinations
of packets are randomly chosen, and any deflection from
the main routing path is detected at each hop. In a faulty

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Burst Error (bits)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Er
ro

r R
at

e

Block Random Distance

Fig. 4: Fault coverage capability of split interleaving in
compared to Block and Random interleaving.

TABLE II: Fault coverage capability of different mechanisms

Number of Injected Faults
FT Mechanisms 1 2 3 4-8

DAR (Deflection Aware Routing) 54 67 70 74
One bit parity 100 0 100 40
Two bit parity 100 100 100 99.95

DAR+ One bit parity 100 67 100 55.6
DAR+ Two bit parity 100 100 100 99.98

DAR+ One bit parity (Total) 76.17
DAR+ Two bit parity (Total) 99.99

case, as mentioned earlier, there are two situations. 1) The
faulty header flit is detected by employing the DAR. 2) The
faulty header flit is not detected by DAR. These faults can be
detected by employing simple data redundancies. According
to Table I, probability of 2-bit faults are more than other faults.
Single parity bit can not detect these faults. Since most of soft
errors are in contiguous form, with employing 2-bit parity, we
can cover most of the faults. According to our simulations,
coverage probability of different schemes are estimated. As
shown in Table II, DAR combined with two bit parity can
detect about 99.99% of soft errors while DAR combined with
single bit parity only can detect 76.17% of soft errors. Number
of faults are generated according to Table I.

1) Performance Evaluation: We employ the same router
which is used for the main routing algorithm. To minimize
performance overhead, DAR executes after the main routing
algorithm. Since other stages such as address generator and
comparing phase are executed simultaneously with the main
routing algorithm, they do not add performance overhead and
the performance overhead comes from DAR algorithm. In
NoCs, Router needs less than one cycle to execute routing
algorithm [1]. Based on the main routing algorithm length,
we might be able to execute the main routing and DAR
in one cycle. We call this situation as merged approach. In
merged approach, the DAR performance overhead is merged
with the main routing algorithm. In this case, the overhead
comes from the encoding/decoding phase which is less than
one cycle for NoC running at 1.2 GHz as illustrated in Table
IV. Using Booksim simulator, we have extracted the average
packet latency in presence of different traffic patterns. As
shown in Figure 5, blue dashed line shows the average latency
of merged approach which is measured for traffics including
Tornado, Uniform, Bitcomp, and Transpose. X-axis denotes
injection rate and Y-axis denotes average packet latency. The
routing delay, switching delay, virtual channel allocation are
considered one cycle. The packet length and virtual channel
length are 5 flits and 128 bit respectively. As shown in the
Figure 5, there is about less than 3% performance overhead
in presence of different injection rates in comparison to the
baseline configuration.

In case, if DAR and main routing algorithm need more
than one cycle to finish their execution. We call this approach

TABLE III: Area and Delay Overhead

Delay (ns) Area Overhead Ratio
at Each Node

Address Generator 0.38 0.005
Parity Bit Generator 0.39 0.017
Parity Comparator 0.42 0.011
Address Comparator 0.16 0.003
Multiplexer 0.22 0.025

5

0.00 0.05 0.10 0.15 0.20
Injection Rate

0

100

200

300

400

500

Av
er

ag
e

Pa
ck

et
 L

at
en

cy
 (c

yc
le

) (a) Uniform

0.00 0.05 0.10 0.15 0.20
Injection Rate

(b) Tornado

0.00 0.05 0.10 0.15 0.20
Injection Rate

0

100

200

300

400

500

Av
er

ag
e

Pa
ck

et
 L

at
en

cy
 (c

yc
le

) (c) Bitcomp

0.00 0.05 0.10 0.15 0.20
Injection Rate

(d) Transpose

baseline merged none merged

Fig. 5: Performance overhead in baseline vs. merged vs.
none-merged approach implementations.

as non-merged. In this case, it adds one more cycle to the
critical path. As shown in Figure 5, green dashed line shows
the average packet latency in presence of different injection
rates for non-merged approach. As shown in the Figure 5, in
non-merged implementation, on average, there is about 6.5%
performance overhead compared with the baseline.

2) Area and Delay Evaluation: In detection phase, a simple
comparator, parity generator and parity detector are used.
To evaluate the area, and performance overheads, all added
components are implemented in VHDL and synthesized with
Synopsys Design Compiler. Delay, and area overheads are
measured for 22nm technology. Table III shows these eval-
uation results for these components. According to the results,
address generator, parity comparator and address comparator
can overlap with the main routing algorithm and do not imply
any performance overhead to NoC pipeline.

TABLE IV: Memory, performance, and power overheads of
data FLIT recovery scheme.

Flit Length
(bits)

Hamming
(m, n)

Delay
(cycle)

Ratio of
Dynamic Power

Ratio of
Static Power

32 (7,4) 0.4333 0.0173 0.0045
40 (9,5) 0.4500 0.0178 0.0055
48 (10,6) 0.4750 0.0185 0.0070
56 (11,7) 0.4833 0.0192 0.0080
64 (12,8) 0.5000 0.0200 0.0095
72 (13,9) 0.5250 0.0210 0.0105
80 (14,10) 0.5417 0.0225 0.0125
88 (15,11) 0.5583 0.0230 0.0135
96 (17,12) 0.6083 0.0242 0.0170
104 (19,13) 0.6167 0.0250 0.0190
112 (19,14) 0.6250 0.0257 0.0195
120 (20,15) 0.6583 0.0262 0.0210
128 (21,16) 0.6917 0.0275 0.0225

B. Data-Flit Recovery Method Evaluation
For data FLITs, split interleaving along with data redun-

dancy technique is exploited to deal with data FLIT errors.
Split interleaver guarantees that contiguous faulty patterns are
divided into separate faults which can be covered by using
simple hamming encoder/decoders.

Assuming B and L as the maximum number of faults
and FLIT length, to determine the types of hamming en-
coder/decoders, we divide the FLIT size to the maximum
number of faults. If FLIT size is dividable to number of faults,
we need B hamming encoder/decoder, which each of them is
able to correct one fault at each data group of FLIT. The length
of each group is calculated according to Equation 1.

splittedgroup length = bL
B
c (1)

And if FLIT length is not dividable to number of faults,
the length of one of hamming encoder/decoders is calculated
according to Equation 2 and the length of other hamming
encoder/decoders is calculated according to Equation 1.

residueflit length = L mod B (2)

To find redundancy bits in each group, we use Equation 3.
The minimum value for r determines the number of redun-
dancy bits for each hamming encoder/decoder.

2r − r − 1 > N (3)

So, hamming codec (Ni+r, Ni) is needed to tolerate one
fault at each group of data in which Ni equals to the length
calculated according to Equations 2 and 3, and r is the number
of redundancy bits.

Area, and performance overheads of this approach is shown
in Table IV. To find the area, power and performance over-
heads, the hamming codecs are implemented in VHDL and
synthesized with Synopsys Design Compiler. As shown in
Table IV, the performance overhead of the hamming codes
are reasonable. For different hamming codes, the maximum
performance overhead added to network on chip, is less than
0.83 ns or 0.69 cycle when the NoC is running at 1.2 GHz.
But if the frequency is greater than 1.2 GHz and less than
about 3.2 GHz, it only adds two cycles to the node pipeline.
With these values, we observe the same performance overhead
as shown in Figure 5.

V. RELATED WORK

The soft and hard error and their impacts on the relia-
bility and efficiency of the similar many-core architectures
are addressed in several researches [19]–[22]. However, the
reliability of communications channels in network-on-chips
(NoCs) is not thoroughly addressed and improving the NoC
reliability has a significant impact on state-of-art multi pro-
cessor’s overall performance and significantly impacts the
network cost, including area and power. We can divide the
NoC’s reliability approaches into Three main categories: 1)
Information-based redundancy techniques. 2) Hardware-based
redundancy methods. and 3) Routing based methodologies.
In information-based redundancy techniques, researches have
used different redundancy techniques including parity, SEC-
DED [23], and CRC [24]–[26] w.r.t to the fault rate and

6

application. Also, there have researches that explore reliability-
aware design of NoC architecture [27]–[30]. For instance,
Dutta Et al [27] introduce changing the router architecture to
enable a low cost error correcting code to protect NoC router
against single bit upset. Previous researches do not consider
MBUs thoroughly and only focus on SBU and particular
patterns of MBUs.

Fault tolerant routing based algorithms mostly have been
proposed to cope with permanent faults. There are Two
kinds of fault tolerant routing algorithms known as stochastic
and deterministic routing. For example, in stochastic routing
algorithms, a huge amount of packets are transferred through
several paths to avoid potential faults. A probabilistic broad-
cast which is derived from a randomized gossip protocol
is introduced by [31]. In stochastic fault tolerant routing
algorithms, the bandwidth is wasted due to transfer of re-
dundant packets which degrades the throughput of the NoC.
Redundant Random Walk reduces the amount of extra packets
by replicating the packets only at the source node [32]. To
detect the routing deflection, an adaptive routing algorithm is
introduced in [33]. The routing decision is made based on the
cost function considering the route length and local fault status.
However, the routing decision which is based on the only fault
information of the current router, can lead to live-lock.

VI. CONCLUSION

In this paper, a new deflection-aware routing along with an
information redundancy techniques was introduced to maintain
the reliability of header FLITs. We also introduced Split
interleaving combined with hamming codes to cover the data
FLIT errors. Our proposed mechanisms, were evaluated in
both circuit level and simulation level. A simulator was written
in C++ to calculate the fault coverage capability of header
flit fault detection scheme. To find the area, performance,
and power overheads of hardware redundancies, we imple-
mented and synthesized them in VHDL and Synopsys Design
Compiler respectively. The evaluation results show that the
proposed methods achieve high reliability while maintaining
performance requirements.

REFERENCES

[1] S. Kumar, A. Jantsch, J. . Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Computer Society Annual Symposium on VLSI. New
Paradigms for VLSI Systems Design. ISVLSI 2002, 2002.

[2] ITRS, “International technology roadmap for semiconductors,” http://
www.itrs2.net/itrs-reports.html, May 2015.

[3] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on Neutron-Induced soft error in SRAMs from a 250 nm to a
22 nm design rule,” IEEE Trans. Electron Devices, 2010.

[4] Z. Shirmohammadi, H. Z. Sabzi, and others, “3D-DyCAC: Dynamic
numerical-based mechanism for reducing crosstalk faults in 3D ICs,”
2017 IEEE International, 2017.

[5] Z. Shirmohammadi, M. Taali, and H. Z. Sabzi, “InduM: An accurate
probablity inductance-based model to predict delay in chips,” in Interna-
tional Conference on Computer and Knowledge Engineering (ICCKE),
2019.

[6] Z. Shirmohammadi and H. Z. Sabzi, “DR: Overhead efficient RLC
crosstalk avoidance code,” 2018 8th International, 2018.

[7] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System
on Chip Interconnect. Morgan Kaufmann, Jul. 2010.

[8] M. J. Gadlage, A. H. Roach, A. R. Duncan, A. M. Williams, D. P.
Bossev, and M. J. Kay, “Soft errors induced by high-energy electrons,”
IEEE Transactions on Device and Materials Reliability, vol. 17, no. 1,
pp. 157–162, 2017.

[9] J.-L. Autran and D. Munteanu, Soft Errors: From Particles to Circuits.
CRC Press, Dec. 2017.

[10] Z. Shirmohammadi and S. G. Miremadi, “Addressing NoC reliability
through an efficient Fibonacci-Based crosstalk avoidance codec design,”
in Algorithms and Architectures for Parallel Processing. Springer
International Publishing, 2015, pp. 756–770.

[11] ——, “On designing an efficient numerical-based forbidden pattern
free crosstalk avoidance codec for reliable data transfer of nocs,”
Microelectron. Reliab., vol. 63, pp. 304–313, 2016. [Online]. Available:
https://doi.org/10.1016/j.microrel.2016.03.031

[12] ——, “Using binary-reflected gray coding for crosstalk mitigation of
network on chip,” in The 17th CSI International Symposium on Com-
puter Architecture & Digital Systems (CADS 2013). IEEE, 2013, pp.
81–86.

[13] M. Zhang, Z. Guo, and W. Xu, “An adaptive single event upset (SEU)-
Hardened Flip-Flop design,” in 2019 IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC). ieeexplore.ieee.org,
Jun. 2019, pp. 1–3.

[14] M. Berg, K. LaBel, M. Campola, and M. Xapsos, “Analyzing system
on a chip single event upset responses using single event upset data,
classical reliability models, and space environment data,” 2017.

[15] Jingcao Hu and R. Marculescu, “Dyad - smart routing for networks-on-
chip,” in Proceedings. 41st Design Automation Conference, 2004., 2004,
pp. 260–263.

[16] J. Hu and R. Marculescu, “DyAD,” 2004.
[17] Nan Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,

D. E. Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-
accurate network-on-chip simulator,” pp. 86–96, 2013.

[18] Synopsys, “Rtl design and synthesis,” https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test.html, May.

[19] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong,
“Paver: Locality graph-based thread block scheduling for gpus,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 18,
no. 3, pp. 1–26, 2021.

[20] H. Zamani, Y. Liu, D. Tripathy, L. Bhuyan, and others, “GreenMM:
energy efficient GPU matrix multiplication through undervolting,” Pro-
ceedings of the ACM, 2019.

[21] H. Zamani, D. Tripathy, L. Bhuyan, and Z. Chen, “SAOU: safe adaptive
overclocking and undervolting for energy-efficient GPU computing,” in
Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, ser. ISLPED ’20. New York, NY, USA:
Association for Computing Machinery, Aug. 2020, pp. 205–210.

[22] D. Tripathy, H. Zamani, D. Sahoo, L. N. Bhuyan, and M. Satpathy,
“Slumber: static-power management for GPGPU register files,” in Pro-
ceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, ser. ISLPED ’20. New York, NY, USA:
Association for Computing Machinery, Aug. 2020, pp. 109–114.

[23] R. Sharifi and Z. Navabi, “Online profiling for cluster-specific variable
rate refreshing in high-density dram systems,” in 2017 22nd IEEE
European Test Symposium (ETS). IEEE, 2017, pp. 1–6.

[24] A. Berman and I. Keidar, “Low-overhead error detection for Networks-
on-Chip,” 2009.

[25] K. A. S. S. Lakshmi, Kandala Anupama Satya, A. M. Keerthi, K. M. Sri,
and M. Vinodhini, “Code with crosstalk avoidance and error correction
for network on chip interconnects,” 2020.

[26] C.-L. Li, Y.-W. Kim, Y. S. Lee, and T. H. Han, “Power-efficient error-
resilient network-on-chip router using selective error correction code
scheme,” pp. 1368–1370, 2018.

[27] A. Dutta and N. A. Touba, “Reliable Network-on-Chip using a low cost
unequal error protection code,” in 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), Sep. 2007,
pp. 3–11.

[28] M. G. Moghaddam, “Dynamic energy and reliability management in
network-on-chip based chip multiprocessors,” 2017.

[29] B. Bhowmik, J. K. Deka, and S. Biswas, “Improving reliability in
spidergon network on Chip-Microprocessors,” 2020.

[30] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das, “Ex-
ploring fault-tolerant network-on-chip architectures,” in International
Conference on Dependable Systems and Networks (DSN’06), 2006, pp.
93–104.

[31] T. Dumitras, S. Kerner, and R. Marculescu, “Towards on-chip fault-
tolerant communication,” in ASP-DAC 2003., Jan. 2003, pp. 225–232.

[32] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir,
and M. J. Irwin, “Fault tolerant algorithms for network-on-chip inter-
connect,” in IEEE Computer Society Annual Symposium on VLSI.

[33] A. Kohler, G. Schley, and M. Radetzki, “Fault tolerant network on chip
switching with graceful performance degradation,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 29, no. 6, pp. 883–896, Jun. 2010.

