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Abstract

Where are the IoT C2 servers located? What vulnerabili-
ties does IoT malware try to exploit? What DDoS attacks
are launched in practice? In this work, we conduct a large
scale study to answer these questions. Specifically, we col-
lect and dynamically analyze 1447 malware binaries on the
day that they become publicly known between March 2021
and March 2022 from VirusTotal and MalwareBazaar. By
doing this, we are able to observe and profile their behavior
at the network level including: (a) C2 communication, (b)
proliferation, and (c) issued DDoS attacks. Our comprehen-
sive study provides the following key observations. First, we
quantify the elusive behavior of C2 servers: 91% of the time
a server does not respond to a second probe four hours after
a successful probe. In addition, we find that 15% of the live
servers that we find are not known by threat intelligence
feeds available on VirusTotal. Second, we find that the IoT
malware relies on fairly old vulnerabilities in its proliferation.
Our binaries attempt to exploit 12 different vulnerabilities
with 9 of them more than 4 years old, while the most recent
one was 5 months old. Third, we observe the launch of 42
DDoS attacks that span 8 types of attacks, with two types
of attacks targeting gaming servers. The promising results
indicate the significant value of using a dynamic analysis
approach that includes active measurements and probing
towards detecting and containing IoT botnets.
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1 Introduction

A critical component in combating Internet of Things (IoT)
malware is timeliness: Indicators of Compromise (IoC) and
signatures need to be made available as fast as possible. Al-
though this is true for malware in general, this is more urgent
for IoT devices, which have significantly less built-in protec-
tion. For example, home sensors and industrial controllers
are typically not protected by on-device defenses such as
anti-virus software. Therefore, they rely evermore on fire-
walls and blacklists. In addition, if we identify the command
and control (C2) servers or the exploits that the malware will
use, we can improve our defense by hardening, spying and
even subverting the botnets. For example, Internet Service
Providers (ISPs) and law enforcement can block and take
down these C2 servers to disrupt the botnet [26, 28]. In addi-
tion, several recent works argue for the need for IoT specific
studies and countermeasures [11, 12, 16].

Problem: How much information can we extract from a
newly found IoT malware binary? This is the question that
motivates our work. Our goal is to reveal a missed oppor-
tunity: malware samples are captured and made publicly
available through services, such as MalwareBazaar, but are
not really used to profile IoT malware network traffic in a sys-
tematic and timely way. Specifically, the input to the problem
is a malware binary, and the desired output is a comprehen-
sive profile that includes: (a) its C2 server communication,
(b) its proliferation techniques, and (c) its attacks as they are
being launched.

Previous work: Our work has several key differences
with prior efforts, which we can classify in the following
categories. First, several efforts analyze the non-network be-
havior of the IoT malware [13, 14]; in contrast, we are only
focused on the network behaviors. Second, several efforts
focus on only one of the three categories of IoT malware
network traffic that we stated above. For example, several
of the related works in this category analyze the C2 com-
munication [18, 29, 30, 36, 39]. Another group within this
category, explores the proliferation behaviors of the mal-
ware [6, 23, 27]. The last group in this category study DDoS
attacks [24, 25, 32]. Third, several related works analyze
multiple aspects of the IoT malware network characteristics
[7, 16, 19, 21, 33]. These work either are not binary-centric
(they only look at traffic and network addresses), or do not
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Dataset Name | Size Methodology Misc
D-Samples 1447 Daily Collection from VT and Mal- | MIPS samples for both C2 and P2P malware with the following
wareBazaar YARA and AVCLass2 labels: Mirai, Gafgyt, Tsunami, Daddyl33t,

VPNFilter, Mozi, Hajime (see Appendix C for a description of
these malware)

D-C2s 1160 CnCHunter and VT C2 addresses found by CnCHunter and cross verified with VT
and manually

D-pPC2 448 Probing using CnCHunter Traffic of 7 C2s on a 4 hours interval recorded for 2 weeks

D-Exploits 197 Handshaker Exploits found by completing the handshake with malware when
targeting a victim

D-DDOS 42 Spying IoT C2 commands Traffic of DDoS commands and the attacks launched by malware

Table 1. The datasets used in this measurement study

provide a holistic view on all three aspects. We elaborate
on significant and subtle differences between our work and
prior efforts in section 7.

Contribution: We conduct an extensive and systematic
daily analysis of the newly reported IoT malware binaries
by VirusTotal and MalwareBazaar. Note that, unlike traffic
analysis studies, a binary-centric study can create a holistic
picture of the IoT malware with full attribution. In other
words, we can connect a binary and its family, with a live
C2 server, a set of proliferation techniques, and even actual
launched DDoS attacks including their type of attack and
the target. Our study is focused on timeliness in two ways.
First, we collect binaries as soon as they become available
from VirusTotal and MalwareBazaar for a year (March 2021 -
March 2022). Second, we dynamically analyze these binaries
on the day that we capture them. Overall, we collect and
analyze 1447 malware binaries, which seem to cover seven
major malware families as we will see in Table 1. We use
two approaches to analyze the malware dynamically: (a)
observational, where we let the malware contact its own
server, and (b) active probing, where we redirect the C2
communication to potential targets in search of live servers.

We highlight key results from our study. A key goal is to
provide a proof of concept for the value of a measurement
approach: binary-centric and focused on timeliness.

a. Capturing the ephemeral and elusive behavior of
C2 servers. We study the spatiotemporal properties of live
C2 servers. First, we find that the responsiveness of live
C2 servers is spotty: the servers never respond to all six
probes within a day. In fact, 91% of the time a server does
not respond to a second probe four hours after a successful
probe. Second, we find that the observed lifespan for close
to two thirds of the servers is one day. Third, we find that
15% of the live servers that we identify are not known to
threat intelligence feeds, which could be partly caused by
the elusive nature of the servers.

b. Proliferation techniques use old vulnerabilities.
Our binaries attempt to exploit 12 different vulnerabilities
with 9 of them more than 4 years old. Even the most recent
vulnerability was 5 months old. On the one hand, this is an
optimistic result: finding ways to defend against well-known
and old vulnerabilities could safeguard our IoT devices. On
the other hand, this could be an indication that IoT devices
are so vulnerable that hackers don’t have to try hard to
compromise them.

c. Eavesdropping on live DDoS attacks. After connect-
ing to live C2 servers, we capture the launch of 42 DDoS
attacks, as evidenced by the command received from their
C2 server. We obtain the target addresses and we identify
8 types of attacks with two types of attacks targeting gam-
ing servers. Furthermore, we find that three target IP ad-
dresses were within networks owned by Google, Amazon
and Roblox.

Potential Impact and large-scale deployment. Our
comprehensive profiling of freshly-caught binaries can help:
(a) secure the network, through firewall rules, (b) harden the
security of the device, and (c) provide intelligence of attacks
as they launch. The key goal of this work is to show the sig-
nificance of a binary-centric and timely dynamic analysis of
malware. Our preliminary results show the type and value of
the information that can be extracted. Our goal is to expand
the scope of the study in the future into a large-scale contin-
uous IoT malware monitoring infrastructure. Achieving this
will require: (a) expanding the sandbox capability to activate
binaries efficiently by emulating different host devices, and
(b) develop techniques to profile the collected information
into easy to use rules for different firewall technologies. Us-
ing our approach within a large and ongoing measurement
effort can provide significant value.

Open sourcing and sharing. Our group is committed
and has a track record of sharing tools and our data openly.



MalNet: A binary-centric network-level profiling of loT Malware

In fact, this was a key reason for leveraging and expanding
existing open-source tools .
This work was supported by NSF SaTC Grant No. 2132642.

2 Methodology and Datasets

In this section, we explain our experimental set up, and the
methodology for establishing the datasets that we use in our
study.

2.1 Experimental setup: our sandbox

In our dynamic analysis, we activate the malware binary in
a sandbox. Among the various tools, we selected CnCHunter
[17], a powerful open-source tool for analyzing IoT malware
binaries. Leveraging the capabilities of the tool, we conduct
experiments in two different modes.

In the first mode, we find the referred C2 servers in the
binary as follows. We emulate the execution of the malware
binary using QEMU [9]. In this study, we focus on MIPS 32
bit CPU architecture as our focus is on IoT malware. MIPS is
a Reduced Instruction Set Computer (RISC) Instruction Set
Architecture (ISA) that is popular by IoT vendors. We use
the short form MIPS 32B binary to refer to the executable for
the MIPS 32 bit architecture. Considering additional types
of malware would require extending the capabilities of our
sandbox to other CPU architectures, which we intend to do
in the future. After the emulation, we analyze the network
communication of the C2 malware. As reported, we can
detect C2-bound traffic with a 90% precision [17].

In the second mode of execution, we weaponize a binary
and use it for probing a set of IP:port targets of interest. In this
mode, we identify the live C2 servers in the target address
space that engage and communicate with the weaponized
binary. In both modes of execution, the traffic generated by
the malware can be captured in a pcap format. We discuss
the limitation of our sandboxing approach in section 6.

2.2 Creating the malware binary dataset

We use VirusTotal [1] and MalwareBazaar[4] malware feeds
to collect our malware samples. VirusTotal provides a free
online file scanning service where users can submit suspi-
cious files and instantly get the result of analysis from 75
(as of Aug 28, 2022) AntiVirus products [40]. These files will
be available for analysis to the premium users. Several prior
work has already used VirusTotal datasets [13, 22, 37]. A
study [37] reports that malware appear in VirusTotal feeds
between few hours to one day in advance compared to other
sources. That said, the shared feeds can have delays of up to
24 hours [37]. In contrast to VirusTotal, our second source,

Ihttps://github.com/adava/CnCHunter/wiki/MalNet-Datasets
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MalwareBazaar provides malware samples freely to all users.
MalwareBazaar uses open source intelligence tools (OSINT),
and integrates data from 18 (as of Aug 28, 2022) sources to
provide malware feeds [3].

We collect malware binaries with the following process.
First, we collect malware on a daily basis. Every day between
March 2021 and March 2022, we collect the new IoT malware
binaries released by VirusTotal and MalwareBazaar. Then,
we dynamically analyze the new malware binaries on the
same day. We were able to collect 1447 MIPS 32B malware bi-
naries, which we refer to as D-Samples. Our dataset seems to
cover a wide range of malware families as shown in Table 1.

We briefly discuss our approach to verify the nature of the
collected binaries. First, we ensure that each binary is mal-
ware by getting the corroboration of at least 5 malware detec-
tion engines. Note that the threshold of 5 engines is aligned
with established best practices [41]. Second, we identify the
family of the malware as follows. We use crowd-sourced
YARA rules (provided in VirusTotal results) in addition to
AVClass2 [35] to identify the malware family labels. Note
that the AVClass2 seems to be often unreliable for for MIPS
binaries. For example, all the instances of the Mozi family,
a peer-to-peer (P2P) malware in our analysis, are wrongly
classified as Mirai.

2.3 Profiling IoT C2 addresses

We profile the IoT C2 addresses and create two datasets: (a)
D-C2s and (b) D-PC2.

a. The D-C2s dataset. In creating D-C2s, our first step is to
filter out the P2P samples (mostly Mozi malware family) from
our D-Samples. Having done that, we have a set of malware
samples that would have C2 communication. Next, we use
our sandbox to analyze the binaries and find its referred
C2 address. Then, we cross validate the results with Virus
Total Intelligence feeds by checking whether the reported C2
address (IP or DNS) is malicious. In order to measure the miss
rate of the threat intelligence feeds provided by VT, we query
VT two times. Once on the day the binary is published, and
once on May 7th 2022. If a C2 is reported as malicious by the
second query, but not by the first one, we consider it a miss.
Finally, we perform a manual verification of samples that
have unverified (by the two VT queries) live C2 addresses.
Our manual verification compares the captured traffic with
Mirai, Gafgyt, Tsunami and Daddyl33t network protocols.
We refer to this dataset of C2 addresses as D-C2s, which has
1160 addresses of C2 servers. We also want to understand
the temporal behavior of 10T C2 servers. D-C2s dataset is
not suitable for such a study as it depends on the latency of
sharing the IoT malware binaries and it also does not track
their online presence of C2 servers over time. For that, we
need active probing process that we describe below.
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b. The D-PC2 dataset. The key idea in creating D-PC2 is
to probe a target subnet and a set of ports, and then observe
the C2 servers as they go online and go offline. To this end,
we conduct an active probing study of 6 sample subnets and
12 ports with past history of malicious activity. These ports
are listed in Appendix B. The next step to conduct this study
is to select malware samples; we select two samples, one
Gafgyt and another one Mirai. We probe the subnets and
ports for two weeks on a 4 hours interval basis. In this period,
we find 7 C2 servers. At the end of the measurement, we
create D-PC2 dataset that contains 64 traffic measurements
per C2 address.

2.4 Observing exploits and vulnerabilities

To better understand the proliferation behavior of the IoT
malware, we extract the exploits from the malware using
dynamic analysis and trickery. We trick the malware into
sending over its exploits to fake victim targets that we con-
trol [6]. Our process is as follows. First, we identify the ports
that the malware uses to scan and attack. We select the most
popular ports in our experiment based on a threshold on
the number of distinct IPs that are contacted for a particular
destination port. We choose the value 20 for this threshold,
which gives good results as we will see later. Next, in a sepa-
rate thread, we create a socket on that port and redirect the
future traffic to that local port for the next IP addresses. This
way, the malware completes the TCP handshake with the
fake target and we collect the payload sent by the malware.
We call this method handshaker following the nomencla-
ture [23, 36].

We create dataset D-Exploits with the exploits that we ex-
tract using the handshaker method. Overall, we successfully
extract exploits from 197 samples targeting 12 vulnerabilities,
which we study in section 4.

2.5 Observing the launch of real DDoS attacks

As we mentioned earlier, we observe the launch of real DDoS
attack, including the command from the C2 server, and the
traffic generated by the malware in our sandbox. Note that
this ability to listen in to the server commands and connect
them with the actual attack is possible in our binary-centric
study, but not possible in a passive analysis of network traffic
as in some prior studies. For instance, a passive solution that
sits at the perimeter of a cloud provider is able to detect a
DDOS attack and all the originating bots (assuming there is
no reflection). However, such a solution can not connect the
attack to the C2 server that issued the attack command.
We describe our method in more detail. First, we find
malware samples with live C2 servers. For this, we analyze
the malware on the day they are first submitted, and watch
the C2 communication. If the communication is successful,

Ali Davanian and Michalis Faloutsos

AS Name ASN | Country | Hosting | Anti DDoS?
ColoCrossing 36352 Us Yes Yes
Delis LLC 211252 Us N/A N/A
DigitalOcean 14061 Us Yes Yes
FranTech Solutions | 53667 LU Yes Yes
HOSTGLOBAL 202306 RU Yes Yes
Serverion LLC 399471 NL Yes Yes
OVH SAS 16276 FR Yes Yes
IP SERVER LLC 44812 RU Yes Yes
Apeiron Global 139884 IN Yes No
Serverius 50673 NL Yes Yes

Table 2. Information about the top 10 Autonomous Systems
that host the C2 IPs (more information in Appendix A).

we let the malware run for 2 hours in a restricted mode (only
C2 traffic is allowed). Next, we rely on two methods to find
DDoS commands as we explain below.

a. Extracting DDoS commands from known IoT C2
protocols: We build a profile of three IoT malware appli-
cation layer communication protocols: Mirai, Gafgyt and
Daddyl33t. For Mirai, Gafgyt , we build the profiler based
on the available source code of these malware families. For
Daddyl33t, we reverse engineer the communicated traffic
and create the profile. While Mirai employs a binary based
protocol, Gafgyt and Daddyl33t use a text based protocol.
Using these profiles, we search the communicated C2 traffic
for DDoS commands.

b. Extracting DDoS commands based on behavioral
heuristics: In order to cover other malware families and
new variants, we employ a heuristic detection method to find
DDoS commands. We count the number of packets sent to
non-C2 IP addresses, and measure rate of packets per second.
If this rate is higher than a set threshold, we consider the
last issued C2 command as a C2 command and record it. By
default, we set the threshold to 100 packets per second in
this study based on empirical observation.

After collecting traffic that passes one of the above two fil-
ters, we further verify the correctness of the results manually.
For the first method, we verify the command by evaluating
whether the bot started to send traffic to that given DDoS
target continuously. For the second method, we extract the
target address and search for string and/or binary represen-
tation of the target IP in the last issued C2 command.

We refer to the dataset containing the DDoS commands,
and the traffic as D-DDOS. This dataset contains the 42 com-
mands issued to 20 different malware samples.

2.6 Ethical Considerations

We are confident that our experiments have not caused any
damage and took appropriate precautions in the four types
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Figure 1. A spatiotemporal view of C2 activity: the heatmap showing the weekly (x-axis) activity of malware-specified C2

servers from our malware feed across the ten most active ASes (y axis) between Mar 2021 and Mar 2022. We don’t have data

for some weeks either due to the disruption of the service, not observing MIPS 32b samples, or not detecting any C2 server. A
complete mapping of the weeks is provided in the Appendix E. The top four ASes are consistently more active with more dark

red activity.

of experiments we have. We use SNORT IDS to detect and
prevent malicious traffic from leaving our network. Further-
more, we had techniques in place to contain malicious traffic
in each of our experiments:

a. Detection of C2s: The tools that we use to detect C2s do
not need Internet connection when the malware is analyzed.
Thus, this analysis does not interact with the Internet, as
we “fake” it to the sandbox. If a sophisticated binary detects
that the Internet is not available, we deploy InetSim [2] to
simulate services like DNS and http.

b. Detection of exploits: This experiment does not need
Internet connection as we fake the victims for the IoT mal-
ware. We find the addresses that the malware tries to exploit
and complete the handshake with the malware pretending
to be those targets. We collect the following data packets
that might contain the exploit code.

c. Detection of DDoS targets: Based on the results of
(a), we filter out any other communication of the malware
to the outside world except to the C2 target. We record the
C2 traffic, reverse engineer it and find the DDoS commands
and their targets.

c. Probing IP Subnets: We only allow C2 communica-
tions like “Call-Home” messages to interact with potential
C2 servers. We have manually analyzed sample traffic traces
and we have not found any cases of non-C2 communications.
Our target subnets were small /24 subnets with a history of

malicious activity. We do not send probes if the host does
not listen on a port. On live ports, we filter out hosts that
present a well-known banner (such as Apache or Nginx).

3 Profiling C2 servers of IoT botnets

In this section, we answer the following questions:

Q1: What is the distribution of the C2 servers across Autonomous
Systems (ASes) and how does this evolve over time? (See sub-
section 3.1)

Q2: Are there common features among the Autonomous Sys-
tems that are "popular” with C2 servers? (See subsection 3.1)

Q3: What is the observed lifespan of the IoT C2s? (See subsec-
tion 3.2)

Q4: How effective are the VT threat intelligence feeds in terms
of comprehensiveness and timeliness? (See subsection 3.3)

3.1 Hosting Environments of IoT C2s

Some ASes are persistently more popular in hosting
IoT C2s. We identify and study the Autonomous Systems
(ASes) which host C2 servers. First, we want to study their
spatiotemporal distribution of C2 servers. In our one year
observation period, we find that 10 ASes host 69.7% (more
information in Appendix A) of the total number of all C2s
servers in our D-C2s dataset. These C2s are listed on Table 2.
Furthermore, 60% of these ASes consistently appear as top
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hosting ASes for IoT C2s on a weekly basis during the one
year of observation. The distribution of IoT C2s across the 10
most popular ASes based on the week number of the study
is depicted on Figure 1. The distribution shows more C2s
since January 2022. This is partially because we get more
samples since that date, and partially because the tool we
use (CnCHunter) achieves a better activation rate. We see
two interesting observations by analyzing Figure 1. First, IP
SERVER LLC (AS-44812) and Aperion Global (AS-139884)
become more active in the last 4 weeks of the study. On week
28, the highest number of C2s are from AS-44812, which is
a Russian ISP. Interestingly, this is the week that Russia
invaded Ukraine. A closer investigation will be needed to
establish a connection between these two events. Second, we
observe a peak of IoT malware samples on week 28, which
leads to a peak of observed C2 addresses across all ASes.

There are commonalities among the popular ASes
for IoT C2 servers. Although we can not certainly claim
why these Autonomous Systems (AS) are more popular for
the IoT C2 servers, we observe some common features. We
use the information we find on these ASes website with
the note that AS211252 does not provide any information
on their website. The first common pattern is that they are
all hosting providers and offer Dedicated or Virtual Private
Servers (VPS) for customers. Second, all of them, except
one, provide anti-DDOS services to their customers which
is ironic, as they host C2 servers which enable such DDoS
attacks. Third, 70% of these service providers are in the USA,
Russia and the Netherlands. Fourth, 30% of these providers
(AS53667, AS202306 and AS44812) accept cryptocurrency
payments that can hide the identity of the payers.

Note that we did not observe a correlation between the
size of the ASes or their service ranking and the number of
hosted IoT C2 servers. None of these ASes are among the
top-100 ASes based on the number of IPv4s they host [8].
In addition, they are not among the top VPS and Dedicated
providers [5] either.

The downloader and C2 servers are often on the same
server: We analyzed 47 distinct downloader addresses that
are referred by the exploits in the D-Exploits dataset and
only 12 downloader addresses are not identified as C2. All
downloader servers host on http port 80.

3.2 The observed lifespan of C2 servers

This section reports on the temporal behavior of the C2
servers.

IoT C2 servers seem to be short-lived and elusive.
We provide an analysis of the observed lifespan of the
C2 servers, which we define as: the interval between the
last and the first time we observe a C2 server referred by a
sample. We measure the lifespan of C2 servers based on the
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Figure 2. CDF of lifetime of C2 IPs
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Figure 4. C2 servers are elusive: the responses of C2 servers
are spotty to our 6 daily probes in the span of two weeks.

D-C2s and D-PC2 datasets. We analyze and report our two
datasets separately below. The overarching observation is
that C2 servers appear short-lived and elusive: servers are
not always responding to our active probes.

C2 servers are short-lived. We support this assertion
with two observations. First, we measure what percentage
of the binaries in D-C2s have a live C2 server on the day
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Figure 5. CDF of the number of distinct binaries that use a
C2 IP address.

they were reported to the malware repositories. We find
that 60% of the samples have a dead C2 server on that day.
This could be attributed to the latency in reporting malware
binaries. Second, we plot the cumulative distribution of C2
IPs observed lifespan in Figure 2. We see that 80% of the
binaries have an observed lifespan of one day while the
distribution has a mean lifespan of 4 days. The results are
qualitatively similar for DNS-based C2 addresses, which we
show in Figure 3.

IoT C2 servers are elusive in terms of responsiveness
in our D-PC2 dataset. We observe an interesting behavior:
C2 server responsiveness to our active probing is spotty. In
Figure 4, we show the responsiveness of our seven servers
in our D-PC2 dataset. Recall that we probe these servers
daily with six probes and we mark as black a probe that
receives a response from the C2 server. We see that C2 servers
never responded to all six probes in one day. Furthermore,
we see that 91% of the time a server does not respond to a
second probe four hours after a successful probe. This is a
strong indication that IoT C2 servers are not consistently
responsive.

In practice, this observation suggests that an active prob-
ing study should be "persistent" and probe frequently to
ensure accurate detection of live C2 servers.

3.3 Threat intelligence effectiveness

In this section, we measure the effectiveness of the threat
intelligence (TI) feeds provided by 89 vendors and shared by
VT. We use the term effectiveness to refer to comprehensive
and timeliness of information. Threat intelligence feeds could
play an essential role in mitigating cyber-threats, if they are
used in a blacklisting strategy. This is particularly true for IoT
devices, which depend on the network perimeter safeguards,
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Figure 7. CDF of the number of vendors that report a known
C2 server as malicious.

Type Same Day | May 7th 2022
All 15.3% 3.3%
IP-based 13.3% 1.5%
DNS-based 57.6% 35.0%

Table 3. The unreported C2 servers: The percentage of C2
servers that security vendors are not aware the day we dis-
cover them. Two months after the end of the experiment
(May 7th 2022), these C2s are reported as malicious, which
provides an indirect validation of our detection approach.

as many IoT devices do not have the computation resources
to deploy sophisticated security solutions.

First, we find that 60% of C2 servers are contacted by
more than one distinct binaries. We show the cumulative
distribution of number of times a C2 is contacted by different
samples in D-C2s in Figure 5. We see that roughly 40% of C2
IPs are contacted by only one binary, while nearly 20% are
contacted by more than 10 distinct binaries. The result for
DNS names is similar in Figure 6. This observation shows
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that if we detect and "block" a C2 server based on one binary,
it could help contain the effect of other binaries that use that
server.

Second, we quantify the effectiveness of threat intelli-
gence feeds using our D-C2s dataset. We want to measure
how many of the C2 addresses we find are known to the
intelligence feeds. Specifically, we count a C2 address as a
miss, if it is reported not malicious by VirusTotal on the day
that we discover it. We ensure that the validity of the C2
address if: (a) it is deemed malicious the second time we
query VirusTotal or (b) its behavior matches that of known
C2 communication patterns as we outlined in section 2. We
point out that this way of measuring effectiveness is moti-
vated by the ephemeral nature of the IoT C2s and the need
for timely intelligence for containing bots in practice.

Threat intelligence feeds fail to detect 15% of the C2
servers on the day of discovery of the binary. The result
of our measurement is reported in Table 3. Threat intelli-
gence feeds are worse for DNS defined C2 servers compared
to servers with IP addresses. In addition, the results suggest
that the reason for the miss is the lack of timeliness. Our
measurement on May 7th shows that most of the missed C2
addresses will become reported malicious by threat intelli-
gence feeds with a delay as we mentioned earlier. This is
significant given the 1 day lifespan of the C2 addresses.

Most threat intelligence feeds miss detecting even
the known C2s. The CDF of number of different vendor
feeds that report a C2 address as malicious is illustrated in
Figure 7. Out of 44 threat intelligence feeds for IoT C2 servers,
25% of the known C2 servers are reported by one or two
feeds. This means that either intelligence sharing is absent,
or it happens with a lag. Regardless of the reason, the result
shows that for lower false negatives, an effective blacklist
needs to aggregate data from multiple sources. However, this
aggregation needs to be done carefully to avoid increasing
the false positives as discussed in recent studies [10, 41].

Feedback from the threat intelligence community.
We conducted a survey among threat intelligence vendors.
Despite asking a dozen vendors, we only got responses from
three of them. First, the vendors did not provide an estimate
of their miss rate for their blacklist. Second, the vendors
said that a miss rate of more than 10% would be considered
unacceptable. Finally, two of the vendors said that an obstacle
in detecting C2 servers is the lack of infrastructure to
execute IoT malware binaries.

4 Profiling IoT Malware Proliferation

In this section, we answer the following questions:

Q5: How recent are the vulnerabilities used by our malware?

Q6: What threat sources should be used in testing IoT devices?

Ali Davanian and Michalis Faloutsos

Q7: Are there recent exploitations of disclosed vulnerabilities?

Q8: What are the most popular vulnerabilities based on the
number of samples?

IoT malware authors rely on the exploitation of known
and old vulnerabilities. We find the exploitation of 14 vul-
nerabilities that are all known for a while. In more detail,
these vulnerabilities and descriptions about them are listed
on Table 4. These vulnerabilities are 3 years old on average.
Five of these vulnerabilities do not have an assigned CVE
number. although they have publicly available exploits. On
the other hand, two of the vulnerabilities have CVEs assigned
but do not have publicly available exploits.

The more intelligence threat sources the better. None
of the popular vulnerability and exploit databases, such as
NVD, EDB and OPENVAS, cover all the exploited vulner-
abilities. Therefore, a practitioner would need to consider
all three sources to ensure a more complete coverage of the
vulnerabilities.

IoT malware authors keep adding new exploits but
not necessarily for new vulnerabilities. One interesting
observation is the additions of two new exploits for CVE-
2016-5680 and CVE-2021-45382 compared to a study in 2020
[6]. While CVE-2021-45382 was disclosed after that study,
CVE-2016-5680 has been known for 6 years and just recently
has become exploited. This confirms a similar finding re-
ported in a recent study [6].

The most popular vulnerabilities are not the newest
ones. We rank vulnerabilities based on the number of bi-
naries that use them in our datasets. The top four popular
vulnerabilities (CVE-2015-2051, CVE-2018-10561, CVE-2018-
10562 and MVPower DVR Shell RCE) are at least 4 years
old. We point out that our dataset contains only the recently
reported samples, and these are vulnerabilities that were
first used by IoT malware in the year they were disclosed
[6]. This suggests that despite their age, these vulnerabilities
are preferred by hackers. The popularity of old vulnerabili-
ties used by newly captured IoT malware binaries seems to
run contrary to the emphasis that we place on the zero-day
vulnerabilities

The variance of popularity among vulnerabilities is
high. Not surprisingly, we observe that some vulnerabilities
are more popular than others. Here we opted for a visual and
temporal view of their pupolarity. We show the number of
binaries in D-Exploits per day that exploit a vulnerability in
Figure 8. We see four vulnerabilities that are consistently and
heavily used by binaries, while the rest of the vulnerabilities
have shorter and less intense usage.

Vendors seem to rarely offer a patch for popular IoT
vulnerabilities. We analyzed the availability of patches for
10 of vulnerabilities listed on Table 4 with assigned CVE
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ID | Vulnerability Exploit ID Publication Date Target Device # Samples

1 CVE-2018-10561 EDB-44576 May 3, 2018 GPON Routers 139

1 CVE-2018-10562 EDB-44576 May 3, 2018 GPON Routers 129

2 CVE-2015-2051 EDB-ID-37171 February 23, 2015 D-Link Devices 132

3 CVE-2017-18368 N/A May 2, 2019 ZyXEL 38

4 Vacron NVR RCE OPENVAS:1361412562310107187 | October 11, 2017 Vacron NVR 46

5 CVE-2017-17215 EDB-43414 March 20, 2018 Huawei Router HG532 1

6 MVPower DVR Shell unau- | EDB-ID-41471 February 27, 2017 MVPower DVR TV-7104HE 74
thenticated RCE

7 CVE-2021-45382 N/A December 19, 2021 | D-Link DIR-820L command in- | 3

jection

8 Linksys unauthenticated | EDB-ID-31683 February 16, 2014 Linksys E-series devices 2
RCE

9 WAN Side RCI EDB-ID-40740 November 8, 2016 Eir D1000 Wireless Router 9

10 | CVE-2018-20062 EDB-45978 December 11, 2018 | Devices that use ThinkPHP 2

11 | CVE-2016-5680 EDB-ID-40200

August 31, 2016 NUUO NVRmini2 / NVRsolo / | 1
Crystal Devices / NETGEAR Rea-

dyNAS

12 | Netlink GPON Router RCE | EDB-48225

Netlink GPON Routers 2

March 18, 2020

Table 4. A description of the vulnerabilities that were exploited by the malware in our D-Exploits dataset.

numbers using the vulnerability database vuldb [34]. There
are patches available only for 3 of the vulnerabilities (from a
single vendor). Five other vulnerabilities can only be miti-
gated via firewalling. Finally, two of the vulnerabilities can
only be mitigated by replacing the device.

Additionally, we analyze the exploits of the vulnerabilities
and we identify two patterns. First, most of the exploits are
similar, and seem to use the same template with variations on
the downloader server address and the loader name. Recall
that the loader is the file that downloads the malware and
executes on the victim. Second, the peculiarity of the loader
names and their frequency suggests that authors use the
same loader repeatedly in different exploits. To illustrate
this, we plot the frequency of loader names in the D-Exploits
dataset in Figure 9.

5 Profiling IoT malware attacks

In this section, we answer the following questions:

Q9: What types of DDoS attacks are launched by the IoT mal-
ware? (See subsection 5.1)

Q11: What protocols are the targets of IoT malware DDoS
attacks? (See subsection 5.2)

Q10: Who are the targets of the IoT malware DDoS attacks?
(See subsection 5.3)

We use our D-DDOS dataset and track the issuance of
DDoS commands from 6 malware variants across three mal-
ware families: Mirai (two variants), Gafgyt (two variants)
and Daddy33t (two variants). In total, we observe 42 attacks

issued by 17 distinct C2 servers to 20 of our malware binaries.
The C2 servers are located in 6 different countries. We find
that servers in the USA, the Netherlands and the Czech Re-
public were responsible for 80% of the attacks. We point out
that these are not VPN servers (we see no tunnelling setup or
traffic encapsulation). Two of the C2 servers (107.174.24.16
and 192.236.248.222) were not listed as malicious by Virus-
Total on the day that the attacks were launched, which is
aligned with our observations in Table 3. Furthermore, this
suggests that if our real-time eavesdropping had translated
into actions, one could have actionable just-in-time informa-
tion to potentially react to these attacks.
Attack-launching C2 servers have longer observed
lifespan. Interestingly, the C2 servers that issued DDoS
attacks have a longer observed lifespan compared to the rest
of C2s in our dataset. The attack-launching servers have an
average lifetime of roughly 10 days which is longer than the
overall lifespan average of 4 days (see subsection 3.2).

5.1 Types of observed attacks

We observe 8 types of DDoS attacks based on their issued
commands. These attacks vary in the way they are mounted,
and their target network protocol. We review each attack
based on their observed network behavior below. A distribu-
tion of these attacks based on the malware family that would
use them is depicted in Figure 11.

UDP DDoS Attack: This is the most common type of
DDoS attack and appears in all three malware families with
different names. In this type of attack, the target is flooded
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Figure 9. The number of binaries that use each loader file
names in our D-Exploits dataset.

with continuous packets at one or multiple UDP port(s). Al-
though the implementation of this attack is similar in all
three malware families, there are subtle differences that we
describe next.

Mirai uses value "0" in the DDOS command to refer to this
attack (UDP Flood in Figure 11). The original implementation
of this attack published with the source code of Mirai receives
a target address, source port, destination address and the
time length of the attack and floods the target for the given
time length. In our measurement, we saw implementations of
Mirai that receive the target IP and port but show different
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behaviors regarding the choice of the source port. Some
variants use the same initial port during the attack, while
other variants use multiple source ports. The payload of the
attack is the null byte (00h).

By contrast, Gafgyt uses the string UDP and daddyl33t
uses UDPRAW to launch this attack (see Figure 11 for their
distribution). Similar to one variant of Mirai, they receive a
target address and a target port, and select a source port that
remains the same throughout the attack. The payload of the
attack is the same as Mirai.

SYN Flood Attack: In this type of attack, a target is
flooded at one or multiple TCP port(s) repeatedly with the
first packet of the TCP handshake (SYN flag set). We saw
instances of this attack launched by daddyl33t and Mirai
botnets (HYDRASYN and SYN Flood in Figure 11) that we
describe below.

In the case of daddyl33t, the C2 server sendsa HYDRASYN
command that includes the target IP and port. The bots at-
tack the target with multiple source ports. In case of Mirai,
we saw two different implementations of this attack: (a) mul-
tiple source ports targeting the same destination port, and (b)
multiple source ports targeting multiple destination ports.

TLS attack: In this type of attack, a service that uses
TLS is targeted. The computation on the server side is more
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resource intensive compared to the client, and hence it is
possible to overwhelm the server. We see two implementa-
tion of this attack by daddyl33t and Mirai that we compare
below.

Binaries of daddyl33t family seem to target a UDP port
possibly running DTLS, and send an encoded message repeat-
edly. Mirai completes the TCP handshake with the target,
sends a large message in different chunks and then sends a
RST flag and starts over.

BLACKNURSE attack: This type of DDoS attack tar-
gets the ICMP protocol. The bots sends unsolicited IMCP
type 3 (Destination Unreachable) packets to the target to
overwhelm it. We only see daddyl33t employing this type of
attack.

STOMP attack: This attack targets the application layer
protocol STOMP that uses TCP transport. The attacker com-
pletes the TCP handshake and then floods the target with
fake STOMP requests that contain junk data.

VSE attack: This DDoS attack targets the Valve Source
Engine of the Steam game platform [38]. It is a UDP ampli-
fication attack where the bot sends TSource Engine Query
requests to a gaming server. This attack first appeared with
the release of Mirai source code, but we see one instance of
this attack launched by the Gafgyt malware.

STD attack: In this attack, the target is flooded with ran-
dom strings. We saw one instance of this attack launched
by Gafgyt towards a UDP port. The random string is gener-
ated once, and then used repeatedly throughout the attack
towards a target.

NFO attack: This attack specifically targets NFO servers
hosting vendor that manufactures its own servers [31]. Our
claim is based on two observations. First, the target of the
attack is an IP address that belongs to this vendor AS. Sec-
ond, the attack mentions the NFOV6. We are not sure what
vulnerability the attack tries to exploit but we see a custom
payoload for the attack that targets port 238 UDP on the tar-
get IP. This type of attack by IoT malware has been reported
before [42]. In our dataset, we see a launch of this attack by
daddyl33t.

5.2 DDOS attack traffic

The DDoS attacks we observe target 4 protocols: UDP (ex-
cluding DNS), TCP, DNS and ICMP. The distribution of the
attacks is illustrated in Figure 10. The vast majority (74%) of
the attacks target a service (excluding DNS) on top of the
UDP protocol. That said, because of the nature of UDP flood
DDoS attacks, we can not certainly say whether a service
has been targeted or the target IP. As we mentioned in the
previous section, except one case, all attacks receive the tar-
get port as part of the attack command. As we don’t have
access to the C2 code, we speculate that the C2 splits all the
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Figure 10. Distribution of DDoS attacks by target protocol:
UDP-based attacks are dominant.
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Figure 11. Distribution of DDoS attack type based on the
malware family. Mirai (grey) has more attacks, Daddyl33t

is second and is more diverse in the types of attacks, and
Gafgyt (orange) has fewer attacks.

target UDP ports and then distributes them to the bots. That
said, 21% of the attacks target port 80 (mostly on UDP), and
7% target port 443 that are the default ports for the HTTP
and HTTPS respectively.

One target hit by multiple attacks. We analyzed the
binaries and types of attacks. One interesting observation
is that, 25% of the targeted IP addresses are attacked using
two different attack types in a single session. For instance,
142.x.x.109 on port 4567 UDP, was once attacked by the TLS,
and then shortly after by HYDRASYN. Another example, is
target 172.x.x.77, that was first attacked by TLS on port 443
UDP, and then BLACKNURSE targeting the ICMP protocol.

5.3 Targets of the attacks

We observe a few patterns in the targets of the DDoS attacks.
We analyze the Autonomous Systems of the target victims
to detect patterns of similarity. The first pattern is about the
type of AS that the victim is located at. Targets are located in
23 Autonomous Systems that span 11 countries. 45% of these
ASes are Internet Service Providers (ISP), and 36% are Host-
ing providers. The rest of the attacks target businesses, with
the main ones being: Google, Amazon and Roblox. These
results are aligned with findings in a previous work[32]. An
interesting observation is the game industry orientation of
the businesses and the hosting providers: 18% of the ASes
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are specialized in the computer gaming industry. Figure 12
shows the location of the targets and the type of AS hosts.

6 Discussion and Limitations

We discuss limitations, extensions, and practical issues.

a. Potential Impact: our approach within the cyber-
security ecosystem. We see MalNet as a continuous moni-
toring effort, which becomes a building block in the ecosys-
tem of tools and services against IoT malware and botnets.
The role of our approach within this ecosystem could be
as follows: (a) IoT Honeypots and malware feeds collect
the binaries which they provide to our service; (b) Public
and private sources exchange information with our service
regarding the reputation of IP addresses; (c) Firewalls and
Network Intrusion Detection Systems incorporate rules
and malware signatures provided by our service, (d) ISPs
and web hosters can use our improved list of malicious
actors (bots and C2 servers) to clean up their networks. All
of those entities of course could be providing useful infor-
mation to validate, expand and improve our capabilities.

b. Are our malware binaries relevant and represen-
tative? This is the typical question for any empirical study,
that can mostly be answered indirectly. First, we collect the
malware binaries as soon as they are made available by feeds
that aggregate a large number of sources. Second, the fact
that some of the C2 servers that we find are not already in
threat intelligence feeds is an indication that we find reason-
ably fresh binaries and unknown C2 servers. Third, our mal-
ware covers several major malware families, such as Gafgyt,
Tsunami, and Mirai, as we saw in Table 1 and discussed in
a few places earlier. In a future large scale study, we would
like to experiment and compare not only the newly reported
binaries, but conduct a longitudinal study of malware of
different years.

c. How statistically reliable and generalizable are our
observations? This is a question that all measurement stud-
ies need to grapple with. First, all our observations are mea-
surement driven and can only describe the observed behavior
within the datasets that we collected. With that in mind, we
have clearly explained how we collected and created our
datasets. Given our interest to analyze newly reported mal-
ware, the number of binaries that a study with a historical
perspective may have had available is limited. We find that
examining the information that newly reported malware has
to offer is an important study, which in fact, seems to not
have been done in the past in the way we conduct it here.

d. Could this approach be deployed in practice and at a
large-scale? The current work provides a proof of concept
that shows the promise of our binary-centric approach. Our
ambition is to deploy it at large scale, which will have some
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challenges. Such a deployment would require us to: (a) ex-
pand the supported architectures, (b) adapt and continuously
update state of the art anti-evasion techniques in our sand-
box, and (c) collaborate with ISPs and cloud providers for
massive probing. Note that these challenges include some
that are active research problems in their own right, and
some that are mostly engineering tasks.

e. Can our approach extend to non-IoT malware?
The overarching approach applies to any malware that can
be activated in a sandbox. In addition, some of our current
methods for identifying the C2-bound traffic may need to be
adapted in the case of different malware. However, with some
customization, the overarching framework could be made to
expand to additional types of malware and platforms. Note
that our focus on IoT malware is motivated by the fact that
IoT malware is newer, less studied but with an increasing
presence and potential for harm. This motivation is backed
up by our vendors survey that revealed lack of IoT malware
execution infrastructure as a main barrier.

f. What would be the potential downsides of us-
ing sandboxing as opposed to malware execution on
devices? An emulation environment might not accurately
model the bare metal device, and this might sometimes im-
pact the correctness of the execution. Additionally, the side
effects of an emulation might signal the malware about being
analyzed. In response to which, the malware might abort
the execution. In order to compare with on device execution,
we measure activation as how successful our emulation is
compared to on-device execution. Our activation rate is at
90% that is in par with the previous studies [16].

7 Related Work

There are several categories of related work to our research.
Below, we discuss each category and explain how this re-
search is different. Overall, none of the related efforts has
focused on a binary centric approach that provides a holistic
view on the network behaviors of the IoT malware

a. IoT malware system-level behavior analysis. Study-
ing the behavior of IoT malware has become a hot topic both
for academia and industry [13, 14]. These work focus more
on the system level behavior of the malware, namely: the
types of techniques that malware employs to evade detection,
the type of device that the host is, and how malware makes
itself persistent. Understanding the system level behavior of
the malware is complementary, but significantly different
from the network behavior which is our focus here.

b. IoT malware network behavior analysis. Some ef-
forts focus on characterizing the behavior of a single malware
family like Mirai [7, 19] or Hajime [21] while a few others
characterize the behaviors of several malware families at
the same time [16, 33] or the waiting phase behavior [20].
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to nature of the majority of its targets.

Although the previous efforts explore the network behavior
of the IoT malware to some extent, neither they are binary-
centric nor they provide a holistic view on all three types
of IoT malware traffic as we do here. Other studies [19] [33]
[16][20] do not study the proliferation or the attack phase of
a botnet. Another study [7] provides an analysis of the DDoS
attacks, but they rely on ISP traffic, which is an interesting
and challenging problem in its own right: given network
traffic, one has to identify and characterize the attack traf-
fic. By contrast, we follow a binary-centric approach, which
allows attribution of the attacks to the C2 servers and the
malware binaries that initiate and carry out the attack.

c. IoT malware proliferation behavior analysis: A
few related work explore the proliferation behaviors of the
IoT malware [6, 23, 27]. While we share many similarities
with these work, we focus on the recent malware, and hence
recent trends in terms of exploits and vulnerabilities. In addi-
tion, we provide a holistic view including the C2 behaviors
and the DDoS attacks.

d. C2 Communication Analysis: Several studies ana-
lyze C2 server communication from a networking point of
view [17, 18, 29, 30, 36, 39]. Although interesting and informa-
tive, these studies focus on understanding the infrastructure
that supports the botnet operation. By contrast, we provide
a binary-centric measurement study with complementary
profiling of proliferation and attack activity. In addition, we
are the first to illustrate IoT C2 servers are elusive using
active probing techniques.

e. Studying DDoS Attacks: Several studies focus on
different aspects of DDoS attacks [24, 25, 32]. An earlier
work [32] studies the victims of the DDoS attacks, and an-
other work [25] studies the servers who issue the attack
commands. Both studies use honeypots. On the other hand,
a recent work [24] studies the effectiveness of booters take-
down operations by analyzing network data from ISPs. Our
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fundamental difference is in our binary-centric approach. By
only using malware binaries and spying into IoT malware
botnets, we provide a similar analysis on the victims and
origins of the DDoS attacks and get similar results as the
previous work.

8 Conclusion

Our study can be seen as a proof of concept of different type
of malware analysis that focuses on: (a) dynamic analysis, (b)
timely collected malware, and (c) comprehensive profiling of
all major bot activities. We collect daily and analyze on the
same day the newly reported IoT malware from VirusTotal
and MalwareBazaar. A binary-centric study can create a
holistic picture of the IoT by connecting a binary and its
family, with live C2 servers, a set of proliferation techniques,
and even actual launched DDoS attacks.

First, we quantify the elusive behavior of C2 servers: 91%
of the time a C2 server does not respond to a second probe
sent four hours after a successful probe. We also find that
15% of the live servers that we find are not known by threat
intelligence feeds available on VirusTotal. Second, we find
that the IoT malware relies on fairly old vulnerabilities in
its proliferation. Our binaries attempt to exploit 12 different
vulnerabilities with 9 of them more than 4 years old, while
the most recent one was 5 months old. Third, we observe the
launch of 42 DDoS attacks that span 8 types of attacks while
we observe that a target is often hit by two different attacks.

The overarching goal is to show the potential of a binary-
centric dynamic analysis of malware with a focus on newly
discovered binaries. Our preliminary results show the infor-
mation and insights that can be obtained. Our future goal is
to expand the scope of the study into a large-scale continuous
IoT malware monitoring infrastructure.



IMC ’22, October 25-27, 2022, Nice, France

References

(1]
(2]

(3]

— —
[N
L

(10]

(11

—

[12

—

[13

—

[15

[

[16]

(17]

(18]

(19]

[n.d.]. VirusTotal. https://www.virustotal.com.
Hungenberg,Thomas and Eckert, Matthias. 2022. Internet Services
Simulation Suite. https://www.inetsim.org.
abuse.ch. [n.d.]. About MalwareBazaar.
about/.

Abuse.ch. [n.d.]. MalwareBazaar. https://bazaar.abuse.ch/.

Forbes Advisor. [n.d.].  Best Dedicated Hosting Services Of
2022. https://www.forbes.com/advisor/business/software/best-dedi

https://bazaar.abuse.ch/

cated-server-hosting.

Arwa Abdulkarim Al Alsadi, Kaichi Sameshima, Jakob Bleier, Katsunari
Yoshioka, Martina Lindorfer, Michel van Eeten, and Carlos H Gafan.
2022. No Spring Chicken: Quantifying the Lifespan of Exploits in IoT
Malware Using Static and Dynamic Analysis. (2022).

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, ] Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. 2017. Understanding the Mirai
Botnet. In Proceedings of the USENIX Security Symposium.

Big Data Cloud APL [n. d.]. Autonomous Systems (AS) advertised [Pv4
space rank. https://www.bigdatacloud.com/insights/as-rank.

Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Transla-
tor. In Proceedings of the USENLX Annual Technical Conference (ATC,
FREENIX Track).

Xander Bouwman, Harm Griffioen, Jelle Egbers, Christian Doerr, Bram
Klievink, and Michel van Eeten. 2020. A different cup of TI? The added
value of commercial threat intelligence. In Proceedings of the USENIX
Security Symposium. https://www.usenix.org/conference/usenixsecuri
ty20/presentation/bouwman

Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele.
2016. Towards Automated Dynamic Analysis for Linux-based Embed-
ded Firmware.. In NDSS.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, Davide Balzarotti,
and Sophia Antipolis. 2014. A Large-Scale Analysis of the Security of
Embedded Firmwares.. In USENIX Security Symposium. 95-110.
Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. 2018. Understanding Linux Malware. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P).

Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen,
Leyla Bilge, and Davide Balzarotti. 2020. The Tangled Genealogy of IoT
Malware. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC).

Crowdstrike. [n.d.]. Linux-Targeted Malware Increases by 35% in
2021: XorDDoS, Mirai and Mozi Most Prevalent.
owdstrike.com/blog/linux-targeted-malware-increased-by-35-per
cent-in-2021/.

Ahmad Darki and Michalis Faloutsos. 2020. RIOTMAN: a systematic
analysis of IoT malware behavior. In Proceedings of International Confer-
ence on emerging Networking EXperiments and Technologies (CONEXT).
Ali Davanian, Ahmad Darki, and Michalis Faloutsos. 2021. CnCHunter:
An MITM-Approach to Identify Live CnC Servers. Black Hat USA
(2021).

Jonathan Fuller, Ranjita Pai Kasturi, Amit Sikder, Haichuan Xu, Berat
Arik, Vivek Verma, Ehsan Asdar, and Brendan Saltaformaggio. 2021.
C3PO: Large-Scale Study Of Covert Monitoring of C&C Servers via
Over-Permissioned Protocol Infiltration. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS).
Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Bat-
tle over the Internet of Things. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).

https://www.cr

14

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

Ali Davanian and Michalis Faloutsos

Huy Hang, X. Wei, M. Faloutsos, and Tina Eliassi-Rad. 2013. Ent-
elecheia: Detecting P2P Botnets in their Waiting Stage.. In IFIP Net-
working.

Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts,
and Dave Levin. 2019. Measurement and analysis of Hajime, a peer-to-
peer IoT botnet. In Proceedings of the Network and Distributed Systems
Security Symposium (NDSS).

Heqing Huang, Cong Zheng, Junyuan Zeng, Wu Zhou, Sencun Zhu,
Peng Liu, Suresh Chari, and Ce Zhang. 2016. Android malware develop-
ment on public malware scanning platforms: A large-scale data-driven
study. In 2016 IEEE International Conference on Big Data (Big Data).
IEEE, 1090-1099.

Seiya Kato, Rui Tanabe, Katsunari Yoshioka, and Tsutomu Matsumoto.
2021. Adaptive Observation of Emerging Cyber Attacks targeting
Various IoT Devices. In 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM). IEEE, 143-151.

Daniel Kopp, Matthias Wichtlhuber, Ingmar Poese, Jair Santanna,
Oliver Hohlfeld, and Christoph Dietzel. 2019. DDoS hide & seek:
on the effectiveness of a booter services takedown. In Proceedings of
the Internet Measurement Conference. 65-72.

Johannes Krupp, Mohammad Karami, Christian Rossow, Damon Mc-
Coy, and Michael Backes. 2017. Linking amplification DDoS attacks
to booter services. In International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 427-449.

Victor Le Pochat, Sourena Maroofi, Tom Van Goethem, Davy Preuve-
neers, Andrzej Duda, Wouter Joosen, Maciej Korczynski, et al. 2020. A
practical approach for taking down avalanche botnets under real-world
constraints. In Proceedings of the 27th Annual Network and Distributed
System Security Symposium. Internet Society.

Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. 2017.
Iotcandyjar: Towards an intelligent-interaction honeypot for iot de-
vices. Black Hat USA (2017).

Yacin Nadji, Manos Antonakakis, Roberto Perdisci, David Dagon, and
Wenke Lee. 2013. Beheading hydras: performing effective botnet take-
downs. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. 121-132.

Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee.
2011. Understanding the Prevalence and Use of Alternative Plans in
Malware with Network Games. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC).

Matthias Neugschwandtner, Paolo Milani Comparetti, and Christian
Platzer. 2011. Detecting Malware’s Failover C&C Strategies with
Squeeze. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC).

NFOservers. [n.d.]. NFOservers. https://www.nfoservers.com.
Arman Noroozian, Maciej Korczynski, Carlos Hernandez Gafan,
Daisuke Makita, Katsunari Yoshioka, and Michel van Eeten. 2016. Who
gets the boot? analyzing victimization by ddos-as-a-service. In Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 368-389.

Kevin Valakuzhy Ryan Court Kevin Snow Fabian Monrose Manos An-
tonakakis Omar Alrawi, Charles Lever. 2021. The Circle Of Life: A
Large-Scale Study of The IoT Malware Lifecycle. In Procedings of the
USENIX Security Symposium.

pyxyp inc. [n.d.]. VulDB vulnerability database. https://vuldb.com/
?kb.about.

Silvia Sebastian and Juan Caballero. 2020. Avclass2: Massive malware
tag extraction from av labels. In Procedings of the Annual Computer
Security Applications Conference (ACSAC).

Rui Tanabe, Tatsuya Tamai, Akira Fujita, Ryoichi Isawa, Katsunari
Yoshioka, Tsutomu Matsumoto, Carlos Gafidn, and Michel Van Eeten.


https://www.virustotal.com
https://www.inetsim.org
https://bazaar.abuse.ch/about/
https://bazaar.abuse.ch/about/
https://bazaar.abuse.ch/
https://www.forbes.com/advisor/business/software/best-dedicated-server-hosting
https://www.forbes.com/advisor/business/software/best-dedicated-server-hosting
https://www.bigdatacloud.com/insights/as-rank
https://www.usenix.org/conference/usenixsecurity20/presentation/bouwman
https://www.usenix.org/conference/usenixsecurity20/presentation/bouwman
https://www.crowdstrike.com/blog/linux-targeted-malware-increased-by-35-percent-in-2021/
https://www.crowdstrike.com/blog/linux-targeted-malware-increased-by-35-percent-in-2021/
https://www.crowdstrike.com/blog/linux-targeted-malware-increased-by-35-percent-in-2021/
https://www.nfoservers.com
https://vuldb.com/?kb.about
https://vuldb.com/?kb.about

MalNet: A binary-centric network-level profiling of loT Malware

Cumulative Distribution of Number of Autonomous Systems

Total Number of C2s
3 8 8 & 3 3 3 8
2 ® 2 2 8 B3 2 8
= 2 ]
b
-
5
1
1

g
B

I
1
1
A

2

0 10 20 30 40 50 60 70 80 90 100 110 120
Number of Autonomous Systems

Figure 13. CDF of the number of AS that host a known C2
server.

2020. Disposable botnets: examining the anatomy of iot botnet infras-
tructure. In Proceedings of the International Conference on Availability,
Reliability and Security (ARES).

[37] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019.
A close look at a daily dataset of malware samples. ACM Transactions
on Privacy and Security (TOPS) 22, 1 (2019), 1-30.

[38] Valve Developer Community. 2022.
.valvesoftware.com/wiki/Main_Page.

[39] Pierre-Antoine Vervier and Yun Shen. 2018. Before toasters rise up:

A view into the emerging iot threat landscape. In Proceedings of the

International Symposium on Research in Attacks, Intrusions and Defenses

(RAID).

VirusTotal. [n. d.]. VirusTotal Contributors. https://support.virustotal.

com/hc/en-us/articles/115002146809-Contributors.

Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai

Song, and Gang Wang. 2020. Measuring and Modeling the Label Dy-

namics of Online Anti-Malware Engines. In Proceedings of the USENIX

Forum. https://developer

[40]
[41]
Security Symposium.

Albert Zsigovits. 2021. Mirai/Gafgyt Fork with New DDoS Modules
Discovered. https://cujo.com/mirai-gafgyt-with-new-ddos-modules-

(42]

discovered/.

A Autonomous systems with C2 activity

In this section, we provide more details about the autonomous
systems of C2 servers that we observed in our dataset. In to-
tal, 128 autonomous systems appeared in our dataset. Among
these, ASN 15169 (Google LLC), ASN 16509 (Amazon.com
Inc) and ASN 37963 (Hangzhou Alibaba Advertising Co.Ltd)
are among the top 100 largest autonomous systems [8] (at the
time of writing this paper). A CDF of number of autonomous
systems and the distribution of C2s is depicted in Figure 13.

B Ports selected for probing

We list the ports selected for probing to compile D-PC2
dataset in Table 5.
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1312, 666, 1791, 9506, 606, 6738, 5555, 1014, 3074,
6969, 42516, 81

Table 5. The port configuration parameter of the probing to
compile the D-PC2 dataset.

Ports

Malware
family

Description

Mirai It exploits IoT devices and turns them into bots. It
first appeared in 2016, and has been associated with
many notorious DDOS attacks including the one tar-
geting Dyn DNS service provider and OVH hosting
service provider. Mirai communication protocol is

binary based.

Gafgyt It is a malware which infects Linux systems (espe-
cially those running BusyBox) in order to launch
DDOS attacks. It first appeated in 2014, and since
then many other variants have emerged. The main
difference (for this study) that Gafgyt has with Mirai

is its communication protocol that is text based.

It is a Linux backdoor that allows access to the in-
fected machine/device. It also has capabilities to
download and execute files from the Internet. For
this study, its main distinction is its communication
over the IRC protocol.

Tsunami

It is a modified version of another malware named
OBot. QBot is a banking trojan that has keylogger
functionalities. Daddyl33t, on the other hand, targets
IoT devices. For the purpose of this study, we are
interested in its distinct DDOS attacks that targets
ICMP protocol and gaming servers.

Daddyl33t

Hajime It is another IoT malware that originally was based
on Peer 2 Peer (P2P) communications. According to
[21], Hajime secures the infected device but at the
same time tries to extend its reach by infecting more

devices.

Mozi Mozi is an evolution of Mirai and Gafgyt in many
aspects, and shares similarities with Hajime in the
P2P communication. According to CrowdStrike, it is
one of the most prelavant linux malware, and it has
already grown 10 times in the number of samples in

2021 [15].

VPNFilter | It is an Advanced Persistent Threat (APT) that tar-
gets router and network devices. VPNFilter has very
sophisticated features compared to other IoT mal-

ware. For instance, it can persists itself on the IoT

device and survive even after a reboot.

Table 6. A description of malware families analyzed in this
study.

C Malware Families

In this section, we provide details of the malware families
we found in our dataset. Table 6 contains this information.
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vendor Num of ¢2s | vendor Num of ¢2s
0xSI_f33d 799 Kaspersky | 798
PhishLabs 798 Netcraft 746
SafeToOpen | 799 Forcepoint | 745
Threat-
Seeker
AutoShun 799 CRDF 728
Lumu 799 Comodo | 697
Valkyrie
Verdict
StopBadware | 798 Fortinet 681
Cyan 799 Webroot | 683
NotMining 798 Avira 568
CMC Threat | 578 Avira 568
Intelligence
CyRadar 387 G-Data 324

Table 7. This table reports the number of C2 addresses that
different vendors could report malicious on a set of 1000 C2
IP addresses.

D Threat Intelligence Vendors

We use the feed provided by VirusTotal [1] to cross vali-
date our detected C2s. The complete list of all the vendors
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that provide reputation information for IP and DNS names
is available on the VirusTotal website [40]. At the time of
conducting this study, 89 vendor feeds were available by
VirusTotal (VT) APL

We provide a high level overview of these feeds here, and
for a complete list you can refer to our dataset page?. From all
the vendors that contribute to the VT threat intelligence, only
44 vendors could flag the C2 IPs in our dataset malicious at
least for 1 C2 address (45 never flag any C2 address). Table 7
lists top 20 of vendors that could detect at least 20% of the
C2 addresses.

E Weeks of Study

A mapping between the 31 weeks of our study in Figure 1
and their actual dates is presented below. Weeks 1 to 20 of
the study happened in 2021 while weeks 21 to 31 were in
2022. Week 1 maps to the week 14 of the year, weeks 2 to 11
map to weeks 24 to 33, weeks 12 to 20 map to weeks 44 to
53 of year 2021. Weeks 21 to 31 map to weeks 2 to 12 of year
2022.

Zhttps://github.com/adava/CnCHunter/wiki/MalNet-Datasets
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