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Abstract. In this paper, we reexamine in the framework of robust computation the Bentley–
Ottmann algorithm for reporting intersecting pairs of segments in the plane. This algorithm has
been reported as being very sensitive to numerical errors. Indeed, a simple analysis reveals that it
involves predicates of degree 5, presumably never evaluated exactly in most implementations. Within
the exact-computation paradigm we introduce two models of computation aimed at replacing the
conventional model of real-number arithmetic. The first model (predicate arithmetic) assumes the
exact evaluation of the signs of algebraic expressions of some degree, and the second model (exact
arithmetic) assumes the exact computation of the value of such (bounded-degree) expressions. We
identify the characteristic geometric property enabling the correct report of all intersections by
plane sweeps. Verification of this property involves only predicates of (optimal) degree 2, but its
straightforward implementation appears highly inefficient. We then present algorithmic variants that
have low degree under these models and achieve the same performance as the original Bentley–
Ottmann algorithm. The technique is applicable to a more general case of curved segments.
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1. Introduction. As is well known, computational geometry has traditionally
adopted the arithmetic model of exact computation over the real numbers. This model
has been extremely productive in terms of algorithmic research, since it has permit-
ted a vast community to focus on the elucidation of the combinatorial (topological)
properties of geometric problems, thereby leading to sophisticated and efficient algo-
rithms. Such an approach, however, has a substantial shortcoming, since all computer
calculations have finite precision, a feature which affects not only the quality of the
results but even the validity of specific algorithms. In other words, in this model,
algorithm correctness does not automatically translate into program correctness. In
fact, there are several reports of failures of implementations of theoretically correct
algorithms (see, e.g., [For87, Hof89]). This state of affairs has engendered a vigorous
debate within the research community, as is amply documented in the literature. Sev-
eral proposals have been made to remedy this unsatisfactory situation. They can be
split into two broad categories according to whether they perform exact computations
(see, e.g., [BKM+95, FV93, Yap97, She96]) or approximate computations (see, e.g.,
[Mil88, HHK89, Mil89]).

This paper fine-tunes the exact-computation paradigm. The numerical compu-
tations of a geometric algorithm are basically of two types: tests (predicates) and
constructions, each with clearly distinct roles. Tests are associated with branching
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decisions in the algorithm that determine the flow of control, whereas constructions
are needed to produce the output data. While approximations in the execution of
constructions are often acceptable, approximations in the execution of tests may
produce incorrect branching, leading to the inconsistencies which are the object of
the criticisms leveled against geometric algorithms. The exact-computation paradigm
therefore requires that tests be executed with total accuracy. This will guarantee that
the result of a geometric algorithm will be topologically correct albeit geometrically
approximate. This also means that robustness is in principle achievable if one is will-
ing to employ the required precision. The reported failures of structurally correct
algorithms are entirely attributable to noncompliance with this criterion.

Therefore, geometric algorithms can also be characterized on the basis of the
complexity of their predicates. The complexity of a predicate is expressed by the
degree of a homogeneous polynomial embodying its evaluation. The degree of an
algorithm is the maximum degree of its predicates, and an algorithm is robust if the
adopted precision matches the degree requirements.

The “degree criterion” is a design principle aimed at developing low-degree algo-
rithms. This approach involves reexamining under the degree criterion the rich body
of geometric algorithms known today, possibly without negatively affecting traditional
algorithmic efficiency. A previous paper [LPT96] considered as an illustration of this
approach the issue of proximity queries in two and three dimensions. As an addi-
tional case of degree-driven algorithm design, in this paper we confront another class
of important geometric problems, which have caused considerable difficulties in ac-
tual implementations: plane sweep problems for sets of segments. As we shall see,
plane sweep applications involve a number of predicates of different degree and algo-
rithmic power. Their analysis not only will lead to new and robust implementations
(an outcome of substantial practical interest) but will elucidate on a theoretical level
some deeper issues pertaining to the structure of several related problems and the
mechanism of plane sweeps.

2. Three problems associated with intersecting segments. Given is a
finite set S of line segments in the plane. Each segment is defined by the coordinates
of its two endpoints. We discuss the three following problems (see Figure 2.1):

Pb1: Report the pairs of segments of S that intersect.
Pb2: Construct the arrangement A of S, i.e., the incidence structure of the graph

obtained interpreting the union of the segments as a planar graph.
Pb3: Construct the trapezoidal map T of S. T is obtained by drawing two vertical

line segments (walls), one above and one below each endpoint of the segments
and each intersection point. The walls are extended either until they meet
another segment of S or to infinity.

Let S1, . . . , Sn be the segments of S, and let k be the number of intersecting pairs.
We say that the segments are in general position if any two intersecting segments
intersect in a single point, and all endpoints and intersection points are distinct.

The number of intersection points is no more than the number of intersecting pairs
of segments, and both are equal if the segments are in general position. Therefore, the
number of vertices of A is at most k, the number of edges of A is at most n+2k, and
the number of vertical walls in T is at most 2(n + k), the bounds being tight when
the segments are in general position. Thus the sizes of both A and T are O(n + k).
We didn’t consider here the two-dimensional faces of either A or T . Including them
would not change the problems we address.
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Fig. 2.1. A set of segments S, the corresponding arrangement A and its trapezoidal map T .

3. Algebraic degree and arithmetic models. It is well known that the ef-
ficient algorithms that solve Pb1–Pb3 are very unstable when implemented using
nonexact arithmetic, and several frustrating experiences have been reported [For85].
This motivates us to carefully analyze the predicates involved in those algorithms. We
first introduce here some terminology borrowed from [LPT96]. See also [Bur96, For93].
We consider each input data (i.e., coordinates of an endpoint of some segment of S)
as a variable.

An elementary predicate is the sign −, 0, or + of a homogeneous multivariate
polynomial whose arguments are a subset of the input variables. The degree of an
elementary predicate is defined as the maximum degree of the irreducible factors
(over the rationals) of the polynomials that occur in the predicate and that do not
have a constant sign. A predicate is more generally a Boolean function of elementary
predicates. Its degree is the maximum degree of its elementary predicates.
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The degree of an algorithm A is defined as the maximum degree of its predicates.
The degree of a problem P is defined as the minimum degree of any algorithm

that solves P .
In most problems in computational geometry, d = O(1). However, as d affects the

speed and/or robustness of an algorithm, it is important to measure d precisely.
In the rest of this paper we consider the degree as an additional measure of

algorithmic complexity. Note that, qualitatively, degree and memory requirements
are similar, since the arithmetic capabilities demanded by a given degree must be
available, albeit they may be never resorted to in an actual run of the algorithm
(since the input may be such that predicates may be evaluated reliably with lower
precision).

We will consider two arithmetic models. In the first one, called the predicate arith-
metic of degree d, the only numerical operations that are allowed are the evaluations of
predicates of degree at most d. Algorithms of degree d can therefore be implemented
exactly in the predicate arithmetic model of degree d. This model is motivated by
recent results that show that evaluating the sign of a polynomial expression may be
faster than computing its value (see [ABD+97, BY97, BEPP97, Cla92, She96]). This
model, however, is very conservative since the nonavailability of the arithmetics re-
quired by a predicate is assimilated to an entirely random choice of the value of the
predicate.

The second model, called the exact arithmetic of degree d, is more demanding.
It assumes that values (and not just signs) of polynomials of degree at most d be
represented and computed exactly (i.e., roughly as d-fold precision integers). However,
higher-degree operations (e.g., a multiplication operation of whose factors is a d-fold
precision integer) are appropriately rounded. Typical rounding is rounding to the
nearest representable number, but less accurate rounding can also be adequate as will
be demonstrated later.

Let P be a predicate (polynomial) of degree d. We ignore for simplicity the size
of the coefficients of P , because they are typically small constants; if the input data
are all b-bit integers, the size of each monomial in predicate P is upper bounded by
2bd. Moreover, let v be the number of variables that occur in a predicate; for most
geometric problems and, in particular, for those considered in this paper, v is a small
number. Since the polynomial P is homogeneous, it may contain only highest-degree
monomials, whose number is bounded by vd. It follows that an algorithm of degree d
requires precision p ≤ db+d log v = db+O(1) in the exact arithmetic model of degree
d.

4. The predicates and the degree of problems Pb1–Pb3. In this section,
we analyze the degree of problems Pb1–Pb3 (in subsections 4.1–4.3) and of the stan-
dard algorithms for solving these problems (in subsection 4.4).

We use the following notations. The coordinates of point Ai are denoted xi and
yi. Ai <x Aj means that the x-coordinate of point Ai is smaller than the x-coordinate
of point Aj . The same is true for <y. [AiAj ] denotes the line segment whose left and
right endpoints are, respectively, Ai and Aj , while (AiAj) denotes the line containing
[AiAj ]. Ai <y (AjAk) means that point Ai lies below line (AjAk).

4.1. Predicates. Pb1 requires only that we check if two line segments intersect
(Predicate 2′ below).

Pb2 requires in addition the ability to sort intersection points along a line segment
(Predicate 4 below).

Pb3 requires the ability to execute all the predicates listed below.
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Predicate 1: A0 <x A1.
Predicate 2: A0 <y (A1A2).
Predicate 2′: [A0A1]

⋂
[A2A3] �= ∅.

Predicate 3: A0 <x [A1A2]
⋂
[A3A4].

Predicate 4: [A0A1]
⋂
[A2A3] <x [A0A1]

⋂
[A4A5].

Predicate 5: [A0A1]
⋂
[A2A3] <x [A4A5]

⋂
[A6A7].

Two other predicates appear in some algorithms that report segment intersections.
Predicate 3′: (x = x0)

⋂
[A1A2] <y (x = x0)

⋂
[A3A4].

Predicate 4′: [A0A1]
⋂
[A2A3] <y (A4A5).

4.2. Algebraic degree of the predicates. We now analyze the algebraic de-
gree of the predicates introduced above.

Proposition 4.1. The degree of Predicates i and i′ (i = 1, . . . , 5) is i.
Proof. We first provide explicit formulae for the predicates.
Evaluating Predicate 2 is equivalent to evaluating the sign of

orient(A0A1A2) =

∣∣∣∣∣∣

x0 x1 x2

y0 y1 y2
1 1 1

∣∣∣∣∣∣
=

∣∣∣∣
x1 − x0 x2 − x0

y1 − y0 y2 − y0

∣∣∣∣ .

Predicate 2′ can be implemented as follows for the case A0 <x A2 (otherwise we
exchange the roles of [A0A1] and [A2A3]):

if A1 <x A2 then return false
if A3 <x A1

if orient(A0A1A2)× orient(A0A1A3) < 0 then return true
else return false

else
if orient(A0A1A2)× orient(A2A3A1) > 0 then return true
else return false

Therefore, in all cases, Predicate 2′ reduces to Predicate 2.
The intersection point I = [AiAj ]

⋂
[AkAl] is given by

I = Ai + (Aj −Ai)
NI

DI
(4.1)

with NI = orient(AiAkAl) and

DI =

∣∣∣∣
xj − xi xk − xl
yj − yi yk − yl

∣∣∣∣
= orient(AiAjAk)− orient(AiAjAl)

def
= Orient(AiAjAkAl).

Predicate 4′ reduces to evaluating orient(I, A0, A1), where I is the intersection of
[A2A3] and [A4A5]. It follows from (4.1) that this is equivalent to evaluating the sign
of orient(A2A3A4A5) and of

orient(A0A1A2)×Orient(A2A3A4A5)− orient(A2A4A5)×Orient(A0A1A2A3).

Predicates 3–5: Explicit formulas for Predicates 3, 4, and 5 can be immediately
deduced from the coordinates of the intersection points I = [A0A1]

⋂
[A2A3] and

J = [A4A5]
⋂
[A6A7] which are given by (4.1). If A4A5 = A0A1, it is clear from (4.1)

that (x1 − x0) is a common factor of xI − x0 and xJ − x0.
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If [A1A2] and [A3A4] do not intersect, Predicate 3′ reduces to Predicate 2. Oth-
erwise, it reduces to Predicate 3.

The above discussion shows that the degree of predicates i and i′ is at most i.
To establish that it is exactly i, we have shown in the appendix that the polynomials
of Predicates 2, 3, 4′, and 5, as well as the factor other than (x1 − x0) involved in
Predicate 4, are irreducible over the rationals.

It follows that the proposition is proved for all predicates.
Recalling the requirements of the various problems in terms of predicates, we have

the following proposition.
Proposition 4.2. The algebraic degrees of Pb1, Pb2, and Pb3 are, respectively,

2, 4, and 5.

4.3. Implementation of Predicate 3 with exact arithmetic of degree 2.
As they will be useful in section 7, in this subsection we present two approximate
implementations of Predicate 3 (of degree 3) under the exact arithmetic of degree 2.

From (4.1) we know that Predicate 3 can be written as

x01D < x21N,(4.2)

where x01 = x0 − x1, x21 = x2 − x1, D = | Orient(A1A2A3A4)|, and N = sign(D)×
orient(A1A3A4).

We stipulate to employ floating-point arithmetic conforming to the IEEE 754
standard [Gol91]. In this standard, simple precision allows us to represent b-bit integers
with b = 24 and double precision allows us to represent b′-bit integers with b′ =
2b+5 = 53. The coordinates of the endpoints of the segments are represented in simple
precision, and the computations are carried out in double precision. We denote ⊕, ⊗,
and � the rounded arithmetic operations +,×, and /. In the IEEE 754 standard,
all four arithmetic operations are exactly rounded; i.e., the computed result is the
floating-point number that best approximates the exact result.

Since Orient(A1A2A3A4) and orient(A1A3A4) are (2b + 3)-bit integers, the four
terms x01, x21, N , and D in inequality (4.2) can be computed exactly in double
precision, and the following monotonicity property is a direct consequence of exact
rounding of arithmetic operations.

Monotonicity property 1: x01 ⊗D < x21 ⊗N =⇒ x01 ×D < x21 ×N.
This implies that the comparison between the two computed expressions x01 ⊗D

and x21 ⊗N evaluates Predicate 3 except when these numbers are equal.
Since in most algorithms, an intersection point is compared with many endpoints,

it is more efficient to compute and store the coordinates of each intersection point and
to perform comparisons with the computed abscissae rather than to evaluate (4.2) re-
peatedly. We now illustrate an effective rounding procedure of the x-coordinates of
intersection points which gives an alternative approximate implementation of Predi-
cate 3.

Lemma 4.3. If the coordinates of the endpoints of the segments are simple pre-
cision integers, then the abscissa xI of an intersection point can be rounded to one
of its two nearest simple precision integers using only double precision floating-point
arithmetic operations.

Proof. We assume that the coordinates of the endpoints of the segments are
represented as b-bit integers stored as simple precision floating-point numbers. The
computations are carried out in double precision.
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The rounded value x̃I of xI is given by

x̃I = �((x21 ⊗N)�D)� ⊕ x1,

where �X� denotes the integer nearest to X (with any tie-breaking rule). If ε = 2−b′

is a strict bound to the modulus of the relative error of all arithmetic operations,
X̃ = (x21 ⊗N)�D satisfies the following relations:

x21N

D
(1− 2ε) ≈ x21N

D
(1− ε)2 < X̃ < x21N

D
(1 + ε)2 ≈ x21N

D
(1 + 2ε).

As x21N
D = xI − x1 ≤ 2b+1, we obtain

|(x21 ⊗N)�D − x21N/D)| <∼ 2b+122−b′ = 2−b−3 � 1.

We round X̃ to the nearest integer �X̃�. Since �X̃� and x1 are (b+1)-bit integers,
there is no error in the addition. Therefore, x̃I is a (b+2)-bit integer and the absolute
error on x̃I is smaller than 1.

It follows that, under the hypothesis of the lemma, if E is an endpoint, I is an in-
tersection point, and Ĩ is the corresponding rounded point, the following monotonicity
property holds.

Monotonicity property 2: Ĩ <x E =⇒ I <x E,

E <x Ĩ =⇒ E <x I.

This implies that the comparison between the x-coordinates of Ĩ and E evaluates
Predicate 3, except when the abscissae of Ĩ and E coincide.

Notice that the monotonicity property does not necessarily hold for two intersec-
tion points.

Remark 1. A result similar to Lemma 4.3 has been obtained by Priest [Pri92] for
points with floating-point coordinates. More precisely, if the endpoints of the segments
are represented as simple precision floating-point numbers, Priest [Pri92] has proposed
a rather complicated algorithm that uses double precision floating-point arithmetic
and rounds xI to the nearest simple precision floating-point number. Since it applies
to the integers as well, this stronger result also implies the monotonicity property.

4.4. Algebraic degree of the algorithms. The naive algorithm for detecting
segment intersections (Pb1) evaluates Θ(n2) Predicates 2′ and thus is of degree 2,
which is degree-optimal by the proposition above. Although the time-complexity of
the naive algorithm is worst-case optimal, since 0 ≤ k ≤ 1

2n(n−1), it is worth looking
for an output sensitive algorithm whose complexity depends on both n and k. Chazelle
and Edelsbrunner [CE92] have shown that Ω(n log n + k) is a lower bound for Pb1
and therefore also for Pb2 and Pb3. A very recent algorithm of Balaban [Bal95] solves
Pb1 optimally in O(n log n+ k) time using O(n) space. This algorithm does not solve
Pb2 nor Pb3 and, since it uses Predicate 3′, its degree is 3.

Pb2 can be solved by first solving Pb1 and subsequently sorting the reported
intersection points along each segment. This can easily be done in O((n+k) log n) time
by a simple algorithm of degree 4 using O(n) space. A direct (and asymptotically more
efficient) solution to Pb2 has been proposed by Chazelle and Edelsbrunner [CE92].
Its time complexity is O(n log n + k), and it uses O(n + k) space. Their algorithm,
which constructs the arrangement of the segments, is of degree 4.

A solution to Pb3 can be deduced from a solution to Pb2 in O(n+ k) time using
a very complicated algorithm of Chazelle [Cha91]. A deterministic and simple algo-
rithm due to Bentley and Ottmann [BO79] solves Pb3 in O((n+k) log n) time, which
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is slightly suboptimal, using O(n) space. This classical algorithm uses the sweep-
line paradigm and evaluates O((n+ k) log n) predicates of all types discussed above,
and therefore has degree 5. Incremental randomized algorithms [CS89, BDS+92] con-
struct the trapezoidal map of the segments and thus solve Pb3 and have degree 5.
Their time complexity and space requirements are optimal (although only as expected
performances).

In this paper, we revisit the Bentley–Ottmann algorithm and show that a variant
of degree 3 (instead of 5) [Mye85, Sch91] can solve Pb1 with no sacrifice of performance
(section 6.1). Although this algorithm is slightly suboptimal with respect to time
complexity, it is much simpler than Balaban’s algorithm. We also present two variants
of the sweep-line algorithm. The first one (section 6.2) uses only predicates of degree
at most 2 and applies to the restricted but important special case where the segments
belong to two subsets of nonintersecting segments. The second one (section 7) uses
the exact arithmetic of degree 2. All these results are based on a (nonefficient) lazy
sweep-line algorithm (to be presented in section 5) that solves Pb1 by evaluating
predicates of degree at most 2.

Remark 2. When the segments are not in general position, the number s of in-
tersection points can be less than the number k of intersecting pairs. In the extreme,
s = 1 and k = n(n − 1)/2. Some algorithms can be adapted so that their time com-
plexities depend on s rather than k [BMS94]. However, a lower bound on the degree
of such algorithms is 4 since they must be able to detect if two intersection points are
identical, therefore to evaluate Predicate 4′.

5. A lazy sweep-line algorithm. Let S be a set of n segments whose endpoints
are E1, . . . , E2n. For a succinct review, the standard algorithm first sorts E1, . . . , E2n

by increasing x-coordinates and stores the sorted points in a priority queue X, called
the event schedule. Next, the algorithm begins sweeping the plane with a vertical line
L and maintains a data structure Y that represents a subset of the segments of S
(those currently intersected by L, ordered according to the ordinates of their intersec-
tions with L). Intersections are detected in correspondence of adjacencies created in
Y , either by insertion/deletion of segment endpoints or by order exchanges at inter-
sections. An intersection, upon detection, is inserted into X according to its abscissa.
Of course, a given intersection may be detected several times. Multiple detections can
be resolved by performing a preliminary membership test for an intersection in X and
omitting insertion if the intersection has been previously recorded. An intersection is
reported when the sweep-line reaches its abscissa. We stipulate to use another pol-
icy to resolve multiple detections, namely to remove from X an intersection point I
whose associated segments are no longer adjacent in Y . Event I will be reinserted in
X when the segments become again adjacent in Y . This policy has also the advantage
of reducing the storage requirement of Bentley–Ottmann’s algorithm to O(n) [Bro81].

5.1. Description of the lazy algorithm. We now describe a modification of
the sweep-line algorithm that does not need to process the intersection points by
increasing x-coordinates.

First, the algorithm sorts the endpoints of the segments by increasing x-coordinates
into an array X. Let E1, . . . , E2n be the sorted list of endpoints.

Then the algorithm starts processing events and maintains a dictionary Y that
stores an ordered subset of the line segments. The events consist of the endpoints and
of a subset of the pairs of segments that intersect and are adjacent in Y . Such pairs
are called processable and will be precisely defined below. The algorithm processes the
endpoints by increasing order of their x-coordinates, but, contrary to the standard
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algorithm, the processable pairs are processed in any order. As a consequence, two
intersection points or even an intersection point and an endpoint won’t necessarily
be processed in the order of their x-coordinates, and Y won’t necessarily represent
the ordered set of segments intersecting some vertical line L (as in the standard
algorithm).

The events are processed in the same way as in the standard algorithm, i.e.,
processing an endpoint means either the insertion of the corresponding segment into
Y or its deletion from it (as appropriate), and processing an intersection means its
report and the exchange of the two segments involved. The only difference is that
we maintain a set P of processable pairs: each time a pair of intersecting segments
become adjacent in Y , we check whether the pair is processable and, in the affirmative,
add it to P .

While there are processable pairs, the algorithm extracts any of them from P and
processes it. When there are no more processable pairs, the algorithm proceeds to the
next endpoint. When there are no more processable pairs and no more endpoints to
be processed, the algorithm stops.

To complete the description of the algorithm, we need to define the processable
pairs. The definition rests on the notions of active and prime pairs to be given below.
We need the following notations. We denote by L(Ei) the vertical line passing through
Ei. Slab (Ei, Ei+1) denotes the open vertical slab bounded by L(Ei) and L(Ei+1), and
(Ei, Ei+1] denotes the semiclosed slab obtained by adjoining line L(Ei+1) to the open
slab (Ei, Ei+1). For two segments Sk and Sl, we denote by Akl their rightmost left
endpoint, by Bkl their leftmost right endpoint, and by Ikl their intersection point when
they intersect (see Figure 5.1). In addition, Wkl denotes the set of segment endpoints
that belong to the (closed) region bounded by the vertical lines L(Akl) and L(Bkl)
and by the two segments (a trapezoid if the two segments do not intersect, a double-
wedge otherwise). We denote by Ekl the most recently processed element of Wkl and
by Fkl the element of Wkl to be processed next. (Note that Ekl and Fkl are always
defined, since they may respectively coincide with Akl and Bkl.) Last, we define sets
W+

kl(Ekl) and W
−
kl (Ekl) as follows. If Sk and Sl do not intersect, W+

kl(Ekl) = ∅ and
W−

kl (Ekl) consists of all points E ∈ Wkl, Ekl ≤x E. Otherwise, an endpoint E ∈ Wkl

belongs to W+
kl(Ekl) (respectively, to W

−
kl (Ekl)) if Ekl ≤x E and if the slab (Ekl, E]

does (respectively, does not) contain Ikl.
1

Definition 5.1. Let (Sk, Sl) be a pair of segments, and assume without loss
of generality that Sk

⋂
L(Ekl) <y Sl

⋂
L(Ekl). The pair is said to be active if the

following conditions are satisfied:
(1) Sk and Sl are adjacent in Y,
(2) Sk < Sl in Y,
(3) Fkl ∈W+

kl(Ekl) (emptiness condition).
Observe that the emptiness condition implies that the segments intersect (since

W+
kl(Ekl) = ∅ if they do not). We now identify a subset of the active pairs, whose

processing, as we shall see, has priority.
Definition 5.2. An active pair of segments (Sk, Sl) is said to be prime if the

next endpoint to be processed belongs to Wkl (i.e., it coincides with Fkl ∈W+
kl(Ekl)).

It should be noted that deciding if a pair of intersecting segments is active or prime
reduces to the evaluation of Predicates 2 only and the condition Fkl ∈W+

kl(Ekl) should

1For line segments or even pseudosegments, W−
kl
(Ekl) and W+

kl
(Ekl) do not depend on Ekl.

However, we keep Ekl as a parameter in preparation for the more general case of monotone arcs. See
Remark 4 at the end of this section.
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Sk

Sl

Ikl

L(Akl) L(Bkl)

Akl

Bkl

Ekl

Fkl

W+
kl(Ekl)

W−
kl (Ekl)

Fig. 5.1. For the definitions of W−
kl
(Ekl) and W+

kl
(Ekl).

not be construed as implying the comparison of the abscissae of Ikl and Fkl (Predicate
3). Indeed, if Sk

⋂
L(Akl) <y Sl

⋂
L(Akl) (which can be decided by Predicate 2), then

the emptiness condition corresponds to Fkl <y Sk and Sl <y Fkl.
For reasons that will be clear below, the set of processable pairs is not specified

in the finest detail in this section, since several different implementations are possible.
We require only that, at any time, the two following assertions remain true.

(1) All prime pairs are processable.
(2) All processable pairs are active.

In other words, the next endpoint may be processed once there are no more prime
pairs, without placing any deadline on the processing of the current active pairs as
long as they are not prime.

In the rest of this section, we will simply assume that we have an oracle at our
disposal that can decide if a given pair is processable. Clearly, for some instances
of the lazy algorithm (e.g., when considering all active pairs as processable), the
oracle can be implemented with Predicates 2 only. In such a case, the lazy algorithm
involves only Predicates 1 and 2 and is of degree 2 by Proposition 4.1. We will prove
its correctness in the next subsection.

The important issue of efficiently detecting the processable pairs will be considered
in sections 6 and 7 where several oracles will be introduced. These instances of the
lazy algorithm will still be correct but, in some cases, will have a degree higher than
2.
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5.2. Correctness of the lazy algorithm. Let Y −(Ei) and Y +(Ei) be, re-
spectively, snapshots of the data structure Y immediately before and after processing
event Ei, i = 1, . . . , 2n. Observe that Y −(Ei) and Y

+(Ei) differ only by the segment
S that has Ei as one of its endpoints. Let Y (Ei) = Y −(Ei)

⋃
Y +(Ei). The order

relation in Y is denoted by <.
Theorem 5.3. If Predicates 1 and 2 are evaluated exactly, the described lazy

sweep-line algorithm will detect all pairs of segments that intersect.
Proof. The algorithm (correctly) sorts the endpoints E1, . . . , E2n of the segments

by increasing x-coordinates into X. Consequently, the set of segments that intersect
L(E) and the set of segments in Y (E) coincide for any endpoint E. The proof of the
theorem is articulated now as two lemmas and their implications.

Lemma 5.4. Two segments have exchanged their positions in Y if and only if
they intersect and if the pair has been processed.

Proof. Let us consider two segments, say Sk and Sl, that do not intersect. Without
loss of generality, let Sk < Sl in Y (Akl). Assume for a contradiction that Sl < Sk in
Y −(Bkl). Sk and Sl cannot exchange their positions because they will never form an
active pair. Therefore, Sl < Sk in Y −(Bkl) can happen only if there exists a segment
Sm, m �= k, l, that at some stage in the execution of the algorithm was present in Y
together with Sk and Sl and caused one of the following two events to occur.

(1) Sm > Sl and the positions of Sm and Sk are exchanged in Y .
(2) Sm < Sk and the positions of Sm and Sl are exchanged in Y .

In both cases, the segments that exchange their positions are not consecutive in Y ,
violating condition 1 of Definition 5.1.

Therefore, two segments can exchange their positions in Y only if they intersect
and this can happen only when their intersection is processed. Moreover, when the in-
tersection has been processed, the segments are no longer active and cannot exchange
their positions a second time.

We say that an endpoint E of S is correctly placed if and only if the subset of the
segments that are below E (in the plane) coincides with the subset of the segments
< S in Y (E), i.e.,

∀S′ ∈ Y (E), S′ < S ⇐⇒ S′ ⋂L(E) <y S
⋂
L(E).

Otherwise, E is said to be misplaced. (Note that S
⋂
L(E) coincides with E.)

Lemma 5.5. If Predicates 1 and 2 are evaluated exactly, both endpoints of every
segment are correctly placed.

Proof. Assume, for a contradiction, that E of S is the first endpoint to be mis-
placed by the algorithm.

Claim 1. E can be misplaced only if there exist at least two intersecting segments
Sk and Sl in Y

−(E) such that E belongs to Wkl.
Proof. First recall that Predicate 2 is the only predicate involved in placing S in

Y .
Consider first the case where E is the left endpoint of S. Let (Sk, Sl) be any pair

of segments in Y −(E). If E �∈Wkl, then both Sl and Sk are either above or below E,
and their relative order does not affect the placement of E. This establishes that E
will be correctly placed in Y +(E) (i.e., the contrapositive of the necessary condition
expressed by the claim).

Suppose now that E is a right endpoint. In this case we shall establish the lemma
in its direct form. The left endpoint of S has been correctly placed since it was
processed earlier and E is the first one to be misplaced. If E has been misplaced,
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then, by Lemma 5.4, there exists a segment S′ ∈ Y −(E) intersecting S to the left of
E such that the relative positions of S and S′ in Y +(A) and Y −(E) are the same (A
is the rightmost left endpoint of S and S′), i.e., their order in Y has not been reversed
by the algorithm. In this case, E = Bkl ∈ Wkl for Sk = S and Sl = S

′, thus proving
that there exists a pair Sl and Sk such that Sl and Sk intersect and E ∈Wkl.

Let Sk and Sl be two segments of Y
−(E) such that E ∈Wkl. Assume without loss

of generality that Sk < Sl in Y (Ekl). Since E is the first endpoint to be misplaced,
we have Sk

⋂
L(Ekl) <y Sl

⋂
L(Ekl). For convenience, we will say that two segments

Sp and Sq have been exchanged between E′ and E′′ for two endpoints E′ <x E
′′ if

Sp < Sq in Y
+(E′) and Sq < Sp in Y −(E′′).

The case where E ∈W−
kl (Ekl) cannot cause any difficulty since Sk and Sl cannot

be active between Ekl and E, and therefore, Sk and Sl cannot be exchanged between
Ekl and E, which implies that E is correctly placed with respect to Sk and Sl.

The case where E ∈ W+
kl(Ekl) is more difficult. E is not correctly placed only

if Sk and Sl are not exchanged between Ekl and E, i.e., Sk < Sl in both Y +(Ekl)
and Y −(E). We shall prove that this is not possible and therefore conclude that S is
correctly placed into Y in this case as well.

Assume, for a contradiction, that Sk and Sl have not been exchanged between
Ekl and E. As E belongs to W+

kl(Ekl), Sk and Sl cannot be adjacent in Y
−(E) since

otherwise they would constitute a prime pair and they would have been exchanged. Let
(Sk = Sk0 , Sk1 , . . . , Skr , Skr+1 = Sl) (r ≥ 1) be the subsequence of segments of Y −(E)
occurring between Sk and Sl with the further (legitimate) assumption that (Sk, Sl) is
a pair of intersecting segments such that E ∈W+

kl(Ekl), for which r isminimal (i.e., for
which the above subsequence is shortest). For an arbitrary 1 ≤ i ≤ r, consider segment
Ski and assume, without loss of generality, that E <y Ski

. As a direct consequence
of the fact that (Sk, Sk1 , . . . , Skr , Sl) is shortest, we observe that E cannot belong to
W+

kki
(Ekki) nor to W

+
kil
(Ekil). We distinguish two cases.

(i) E <y Ski (see Figure 5.2). Clearly, E ∈ Wkil, and, by the above observation,
we must have E ∈W−

kil
(Ekil). It follows that the relative y-orders of Ski and Sl along

L(Ekil) and L(E) are the same, hence Sl
⋂
L(Ekil) <y Ski

⋂
L(Ekil). As E is the first

endpoint to be misplaced, the order in Y +(Ekil) agrees with the geometry; i.e., we
have Sl < Ski in Y

+(Ekil). Moreover, since the pair (Ski , Sl) is not active (between
Ekil and E, because E ∈ W−

kil
(Ekil)) and therefore cannot be exchanged, the same

inequality holds in Y −(E), which contradicts the definition of Ski .

(ii) Ski
<y E. This case is entirely symmetric to the previous one. It suffices to

exchange the roles of Sk and Sl and to reverse the relations < and <y.

Since a contradiction has been reached in both cases, the lemma is proved.

We now complete the proof of the theorem. The previous lemma implies that
the endpoints are correctly processed. Indeed let Ei be an endpoint. If Ei is a right
endpoint, we simply remove the corresponding segment from Y and update the set of
active segments. This can be done exactly since predicates of degree ≤ 2 are evaluated
correctly. If Ei is a left endpoint, it is correctly placed in Y on the basis of the previous
lemma.

The lemma also implies that all pairs that intersect have been processed. Indeed
if Sp and Sq are two intersecting segments such that Sp

⋂
L(Apq) <y Sq

⋂
L(Apq) and

Sq
⋂
L(Bpq) <y Sp

⋂
L(Bpq), the lemma shows that Sp < Sq in Y

+(Apq) and Sp > Sq
in Y −(Bpq), which implies that the pair (Sp, Sq) has been processed (Lemma 5.4).

This concludes the proof of the theorem.

Remark 3. Handling the degenerate cases does not cause any difficulty, and the
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Sk

Sl

E

Ski

L(Ekl) L(E)

Fig. 5.2. For the proof of correctness of the lazy algorithm.

previous algorithm will work with only minor changes. For the initial sorting of
the endpoints, we can take any order relation compatible with the order of their
x-coordinates, e.g., the lexicographic order.

Remark 4. Theorem 5.3 applies directly to pseudosegments, i.e., curved segments
that intersect in at most one point. Lemmas 5.4 and 5.5 also extend to the case of
monotone arcs that may intersect at more than one point. To be more precise, in
Lemma 5.4, we have to replace “intersect” with “intersect an odd number of times”;
Lemma 5.5 and its proof are unchanged provided that we define W+

kl(Ekl) (respec-
tively, W−

kl (Ekl)) as the subset of Wkl consisting of the endpoints E, Ekl ≤x E, such
that the slab (Ekl, E] contains an odd number (respectively, none or an even number)
of intersection points. As a consequence, the lazy algorithm (which still uses only
Predicates 1, 2, and 2′) will detect all pairs of arcs that intersect an odd number of
times.

Remark 5. For line segments, observe that checking whether a pair of segments
is active does not require knowing (and therefore maintaining) Ekl. In fact, we can
replace condition 3 in the definition of an active pair by the following condition:
Sl <y Fkl <y Sk and Ikl <x Fkl. If Ekl <x Ikl, the two definitions are identical and if
Ikl <x Ekl, the pair is not active since, by Lemma 5.5, condition 2 of the definition
won’t be satisfied.

6. Efficient implementations of the lazy algorithm in the predicate
arithmetic model. The difficulty of efficiently implementing the lazy sweep-line
algorithm using only predicates of degree at most 2 (i.e., in the predicate arithmetic
model of degree 2) is due to verification of the emptiness condition in Definition 5.1
and of the prime-pair condition expressed by Definition 5.2: both conditions require
examination of all endpoints that have not been processed yet. One can easily check
that various known implementations of the sweep achieve straightforward verification
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of the emptiness condition by introducing algorithmic complications. The following
subsection describes an efficient implementation of the lazy algorithm in the predi-
cate arithmetic model of degree 3. The second subsection improves on this result in a
special but important instance of Pb1, namely the case of two sets of nonintersecting
segments. The algorithm presented there uses only predicates of degree at most 2.

6.1. Robustness of the standard sweep-line algorithm. We shall run our
lazy algorithm under the predicate arithmetic model of degree 3. We then have the
capability to correctly compare the abscissae of an intersection and of an endpoint. We
refine the lazy algorithm in the following way. Let Ei be the last processed endpoint
and let Ei+1 be the endpoint to be processed next. An active pair (Sk, Sl) that occurs
in Y between Y (Ei) and Y

−(Ei+1) will be processed if and only if its intersection point
Ikl lies to the right of Ei and not to the right of Ei+1. As the slab is free of endpoints
in its interior, any pair of adjacent segments encountered in Y (between Y (Ei) and
Y −(Ei+1)) and that intersect within the slab is active. Moreover the intersection
points of all prime pairs belong to the slab. It follows that this instance of the lazy
algorithm need not explicitly check whether a pair is active or not and therefore is
much more efficient than the lazy algorithm of section 5. This algorithm is basically
what the original algorithm of Bentley–Ottmann2 becomes when predicates of degree
at most 3 are evaluated. (Recall that the standard algorithm requires the capability
to correctly execute predicates of degree up to 5.)

We therefore conclude with the following theorem.

Theorem 6.1. If Predicates 1, 2, and 3 are evaluated exactly, the standard sweep-
line algorithm will solve Pb1 in O((n+ k) log n) time.

It is now appropriate to briefly comment on the implementation details of the
just described modified algorithm. Data structure Y is implemented as usual as a dic-
tionary. Data structure X, however, is even simpler than in the standard algorithm
(which uses a priority queue with dictionary access). Here X has a primary compo-
nent realized as a static search tree on the abscissae of the endpoints E1, . . . , E2n.
Leaf Ej points to a secondary data structure L(Ej) realized as a conventional linked
list, containing (in an arbitrary order) adjacent intersecting pairs in slab (Ej , Ej+1].
Remember that, when Ej has been processed, all intersecting pairs of L(Ej) are ac-
tive. Insertion into L(Ej) is performed at one of its ends, and so is access for reporting
(when the plane sweep reaches slab (Ej , Ej+1]). Since access to events occurs in data
structure X, each pair in X must have pointers to the two corresponding segments
in Y , in order to enable the necessary updates. In addition, to effect constant-time
removal of a pair (Sh, Sk) due to loss of adjacency, all that is needed is to make
bidirectional the mentioned pointers. Notice that the elements of X correspond to
pairs of adjacent segments in Y , so that at most two records in X are pointed to by
any member of Y . We finally observe that a segment adjacency arising in Y during
the execution of the algorithm must be tested for intersection; however, an intersect-
ing pair of adjacent segments is eligible for insertion into X only as long as the plane
sweep has not gone beyond the slab containing the intersection in question. As regards
the running time, beside the initial sorting of the endpoints and the creation of the
corresponding primary tree in time O(n log n), it is easily seen that each intersection
uses O(log n) time (amortized), thereby achieving the performance of the standard
algorithm.

2With the policy concerning multiple detections of intersections that is stipulated at the beginning
of section 5.
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S1

S3

S4

S2

I12

I23

I34

Fig. 6.1. Assume that the computed x-coordinate of the intersection I12 of S1 and S2 is (erro-
neously) found to be smaller than the x-coordinate of the left endpoint of S3. Y is implemented as a
balanced binary search tree. The key associated to a node is the �n

2
�th element of the corresponding

subtree. If all predicates of degree at most 2 are evaluated exactly, S3 is correctly inserted below S2,
and S4 is correctly inserted above S1 and S2. The different states of Y are (S1), (S1, S2), (S2, S1),
(S3, S2, S1), and (S3, S2, S1, S4). Since segments S3 and S4 are never adjacent, their intersection
I34 will not be detected. Observe that the missed intersection point can be arbitrarily far from the
intersection point involved in the wrong decision.

Finally, we note that if only predicates of degree ≤ 2 are evaluated correctly,
the algorithm of Bentley–Ottmann may fail to report the set of intersecting pairs of
segments. See Figure 6.1 for an example.

Remark 6. The fact that the sweep-line algorithm does not need to sort intersection
points had already been observed by several authors including Myers [Mye85], Schorn
[Sch91], and Hobby [Hob93]. Myers does not use it for solving robustness problems
but for developing an algorithm with an expected running time of O(n log n + k).
Schorn uses this fact to decrease the precision required by the sweep-line algorithm
from fivefold to threefold; i.e., Schorn’s algorithm uses exact arithmetic of degree 3.
Using Theorem 5.3, we will show in section 7 that double precision suffices.

6.2. Reporting intersections between two sets of nonintersecting line
segments. In this subsection, we consider two sets of line segments in the plane,
Sb (the blue set) and Sr (the red set), where no two segments in Sb (similarly, in
Sr) intersect. Such a problem arises in many applications, including the union of two
polygons and the merge of two planar maps. We denote by nb and nr the cardinalities
of Sb and Sr, respectively, and let n = nb + nr.

Mairson and Stolfi [MS88] have proposed an algorithm that works for arcs of curve
as well as for line segments. Its time complexity is O(n log n+k), which is optimal, and
requires O(n+ k) space (O(n) in case of line segments). The same asymptotic time-
bound has been obtained by Chazelle et al. [CEGS94] and by Chazelle and Edelsbrun-
ner [CE92]. The latter algorithm is not restricted to two sets of nonintersecting line
segments. Other algorithms have been proposed by Nievergelt and Preparata [NP82]
and by Guibas and Seidel [GS87] in the case where the segments of Sb (and Sr) are
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Sb

Sr

Tbr

L−
b

L+
b

Ibr

Fig. 6.2. Notations for the case of two sets of nonintersecting line segments.

the edges of a subdivision with convex faces. With the exception of the algorithm of
Chazelle et al. [CEGS94], all these algorithms construct the resulting arrangement
and therefore have degree 4. The algorithm of Chazelle et al. requires comparing the
ordinates of the intersections of two segments with a vertical line passing through an
endpoint. Therefore it is of degree 3.

We propose here an algorithm that computes all the intersections but not the ar-
rangement. This algorithm uses only predicates of degree ≤ 2 and has time complexity
O((n+ k) log n).

Segments are assumed to be nonvertical since intersections with vertical segments
can be easily handled with predicates of degree ≤ 2. We say that a point Ei is vertically
visible from a segment Sb ∈ Sb if the vertical line segment joining Ei with Sb does
not intersect any other segment in Sb (the same notion is applicable to Sr). For two
intersecting segments Sb ∈ Sb and Sr ∈ Sr, let L be a vertical line to the right of
Abr such that no other segment intersects L between Sb and Sr (i.e., Sb and Sr are
adjacent). We let Tbr denote the wedge defined by Sb and Sr in the slab between L
and L(Ibr) (see Figure 6.2). For a point set F , we let CH+(F) and CH−(F) denote
its upper and lower convex hulls, respectively.

Our algorithm is based on the following observation.

Lemma 6.2. Tbr contains blue endpoints if and only if it contains a blue endpoint
that is vertically visible from Sb. Similarly, Tbr contains red endpoints if and only if
it contains a red endpoint vertically visible from Sr.

Proof. The sufficient condition is trivial, so we prove only necessity. Assume
without loss of generality that Sr

⋂
L(Abr) <y Sb

⋂
L(Abr). Let E be the subset of

the blue endpoints that belong to Tbr. Clearly, all vertices of CH
+(E) are vertically

visible from Sb.

Our algorithm has two phases. The second one is the lazy algorithm of section
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5. The first one can be considered as a preprocessing step that will help to efficiently
find active pairs of segments.

More specifically, our objective is to develop a quick test of the emptiness con-
dition based on the previous lemma. The preprocessing phase is aimed at identifying
the candidate endpoints for their potential belonging to wedges formed by intersecting
adjacent pairs. Referring to Sb (and analogously for Sr), we first sweep the segments
of Sb and construct for each blue segment Sb the lists L−

b and L+
b of blue endpoints

that are vertically visible from Sb and lie respectively below and above Sb. The sweep
takes time O(n log n) and the constructed lists are sorted by increasing abscissa. Since
there is no intersection point, only predicates of degree ≤ 2 are used. The total size
of the lists L−

b , L+
b , L−

r , and L+
r is O(n).

As mentioned above, the crucial point is to decide whether or not the wedge Tbr
of a pair of intersecting segments Sb and Sr, adjacent in Y , contains endpoints of
other segments. Again, we assume that Sr < Sb in Y . If such endpoints exist, then
Tbr contains either a blue vertex of CH

+(L−
b ∩L+) or a red vertex of CH−(L+

b ∩L+).
(L+ is the half-plane to the right of line L.)

We will show below that, using predicates of degree ≤ 2, the lists can be prepro-
cessed in time O(n log n) and that deciding whether or not Tbr contains endpoints can
be done in time O(log n), using only predicates of degree at most 2.

Assuming for the moment that this primitive is available, we can execute the plane
sweep algorithm described earlier. Specifically, we sweep Sb and Sr simultaneously,
using the lazy sweep-line algorithm of section 5.3 Each time we detect a pair of
(adjacent) intersecting segments Sb and Sr, we can decide in time O(log n) whether
they are “active” or “not active,” using only predicates of degree ≤ 2.

We sum up the results of this section in the following theorem.
Theorem 6.3. Given n line segments in the plane belonging to two sets Sb and Sr,

where no two segments in Sb (analogously, in Sr) intersect, there exists an algorithm
of optimal degree 2 that reports all intersecting pairs in O((n + k) log n) time using
O(n) storage.

We now return to the implementation of the primitive described above. Suppose
that, for some segment Si (i = b or r) we have constructed the upper hull CH+(L−

i ∩
L+). Then we can detect in O(log n) time if an element of a list, say L−

b , lies above
some segment Sr. More specifically, we first identify among the edges of CH+(L−

b ∩L+)
the two consecutive edges whose slopes are, respectively, smaller and greater than the
slope of Sr. This requires only the evaluation of O(log |L−

b |) predicates of degree 2.
It then remains to decide whether the common endpoint E of the two reported edges
lies above or below the line containing Sr. This can be answered by evaluating the
orientation predicate orient(E,Ar, Br).

The crucial requirement of the adopted data structure is the ability to efficiently
maintain CH+(L−

i ∩ L+). To this purpose, we propose the following solution.
The data structure associated with a list L−

i (i = b or r) represents the upper
convex hull CH+(L−

i ) of L−
i . (Similarly, the data structure associated with a list L+

i

represents the lower convex hull CH−(L+
i ) of L+

i .) This implies that a binary search
on the convex hull slopes uniquely identifies the test vertex. Since the elements of
each list are already sorted by increasing x-coordinates, the data structures can be
constructed in time proportional to their sizes and therefore in O(n) time in total.
It can be easily checked that only orientation predicates (of degree 2) are involved
in this process. To guarantee the availability of CH+(L−

i ∩ L+), we have to ensure

3We can adopt the policy of processing all active pairs before the next endpoint.
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that our data structure can efficiently handle the deletion of elements. As elements
are deleted in order of increasing abscissa, this can be done in amortized O(log |S|)
time per deletion [HS90, HS96]. It follows that preprocessing all lists takes O(n) time,
uses O(n) space, and requires only the evaluation of predicates of degree ≤ 2.

7. An efficient implementation of the lazy algorithm under the exact
arithmetic model of degree 2. We shall run the lazy algorithm of section 6.1
under the exact arithmetic model of degree 2, i.e., Predicates 1 and 2 are evaluated
exactly but Predicate 3 is implemented with exact arithmetic of degree 2 as explained
in section 4.3. Several intersection points may now be found to have the same abscissa
as an endpoint. We refine the lazy algorithm in the following way. Let Ei be the last
processed endpoint and let Ei+1 be the endpoint with an abscissa strictly greater than
the abscissa of Ei to be processed next. An active pair (Sk, Sl) will be processed if
and only if its intersection point is found to lie to the right of Ei and not to the right
of Ei+1.

We claim that this policy leads to efficient verification of the emptiness condition.
Indeed, the intersections of all prime pairs belong to (Ei, Ei+1], because Ei+1 ∈
W+

kl(Ekl) =⇒ Ikl ≤x Ei+1, and, by the monotonicity property, both implementations
of Predicate 3 of section 4.3 will report that Ikl ≤x Ei+1.

The crucial observation that drastically reduces the time complexity is the fol-
lowing. A pair of adjacent segments (Sk, Sl) encountered in Y between Y (Ei) and
Y (E−

i+1) whose intersection point is reported to lie in slab (Ei, Ei+1] is active if and

only if Ei+1 �∈ W−
kl (Ekl). Indeed, since Ikl is found to be <x Ei+2, the monotonicity

property implies that Ikl <x Ei+2. Therefore, when checking if a pair is active, it is
sufficient to consider just the next endpoint, not all of them.

Theorem 5.3 therefore applies. If no two endpoints have the same x-coordinate, the
algorithm is the same as the algorithm in section 6.1 apart from the implementation
of Predicate 3. Otherwise, we construct X on the distinct abscissae of the endpoints
and store all endpoints with identical x-coordinates in a secondary search structure
with endpoints sorted by y-coordinates. This secondary structure will allow us to
determine if a pair is active in logarithmic time by binary search. We conclude with
the following theorem.

Theorem 7.1. Under the exact arithmetic model of degree 2, the instance of the
lazy algorithm described above solves Pb1 in O((n+ k) log n) time.

8. Conclusion. Further pursuing our investigations in the context of the exact-
computation paradigm, in this paper we have illustrated that important problems on
segment sets (such as intersection report, arrangement, and trapezoidal map), which
are viewed as equivalent under the Real-RAM model of computation, are distinct if
their algebraic degree is taken into account. This sheds new light on robustness issues
which are intimately connected with the notion of algebraic degree and illustrates the
richness of this new direction of research.

For example, we have shown that the well-known plane sweep algorithm of Bentley–
Ottmann uses more machinery than strictly necessary and can be appropriately mod-
ified to report segment intersections with arithmetic capabilities very close to optimal
and no sacrifice in performance.

Another result of our work is that exact solutions of some problems can be ob-
tained even if approximate (or even random) evaluations of some predicates are per-
formed. More specifically, using less powerful arithmetic than demanded by the appli-
cation, we have been able to compute the vertices of an arrangement of line segments
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by constructing an arrangement which may be different from the actual one (and may
not even correspond to any set of straight line segments) but still has the same vertex
set.

Our work shows that the sweep-line algorithm is more robust than usually be-
lieved, proposes practical improvements leading to robust implementations, and pro-
vides a better understanding of the sweeping line paradigm. The key to our technique
is to relax the horizontal ordering of the sweep. This is one step further after similar
attempts, aimed though at different purposes [Mye85, MS88, EG89].

A host of interesting open questions remain. One such question is to devise an
output-sensitive algorithm for reporting segment intersections with optimal time com-
plexity and with optimal algebraic degree (that is, 2). It would also be interesting to
examine the plane sweep paradigm in general. For example, with regard to the con-
struction of Voronoi diagrams in the plane, one should elucidate the reasons for the
apparent gap between the algebraic degrees of Fortune’s plane sweep solution and of
the (optimal) divide-and-conquer and incremental algorithms.

Appendix. In connection with reducibility of polynomials over a domain of ra-
tionality, we choose the rationals as the latter. “Reducible” means “reducible over
the rationals.”

We first recall that a general determinant is irreducible if its entries are regarded
as independent variables [Boc07]. This suffices to prove directly that the degree of
Predicate 2 is 2 and will be crucial for completing the proof of irreducibility of the
polynomials pertaining to the other predicates. Use will be made of the following
theorem.

Let p(x1, . . . , xn) be a multivariate homogeneous polynomial, and let I be a subset
of {1, . . . , n}, such that for any j ∈ I, xj is a variable of degree 1 in p. For i ∈ {1, . . . , n}
p can be expressed as

p = pixi + pi0,

where pi and pi0 are polynomials in all variables except xi. Two polynomials are
not considered distinct if they differ just by a multiplicative constant. We have the
following.

Theorem 8.1. Let p(x1, . . . , xn) be a multivariate homogeneous polynomial with
degree at least 3 and |I| ≥ 2. If for some i, j ∈ I, coefficients pi and pj are distinct
and irreducible, then p is irreducible.

Proof. Assume, for a contradiction, that p is reducible. This means that p can be
expressed as p = φψ, where φ and ψ are multivariate homogeneous polynomials over
the same variables satisfying 1 ≤ degree(φ), degree(ψ) < degree(p). Each degree-1
variable obviously appears in exactly one of the factors. With complete generality,
assume that xi appears in φ. We distinguish two cases.

(1) degree(φ) > 1. Expanding φ around xi we obtain φ = φixi + φi0, so that

p = φψ = (φixi + φi0)ψ = φiψxi + φi0ψ.

This means that pi = φiψ, with degree(φi), degree(ψ) ≥ 1, i.e., pi is reducible,
a contradiction.

(2) degree(φ) = 1. Variable xj appears either in φ or in ψ. In the first case, pi and
pj are both proportional to ψ, i.e., they may differ only by a multiplicative
constant and are not distinct, a contradiction.
In the second case, by an argument analogous to that of Case 1, we reach the
conclusion that pj = φψj and that degree(ψj) = degree(p)−degree(φ)−1 ≥



1420 JEAN-DANIEL BOISSONNAT AND FRANCO P. PREPARATA

3− 1− 1 = 1. Since pj = φψj and degree(φ), degree(ψj) ≥ 1, pj is reducible,
another contradiction.

This completes the proof of the theorem.
The calculation of coefficients pi, pj corresponds to taking formal derivatives of p

with respect to xi,xj . Notice that a derivation reduces the degree by 1. The reader may
verify, by explicit and not very enlightening calculations, that the following schedules
of derivations lead to irreducible 2 × 2 determinants. The indices conform with the
notation of section 4.1.

Predicate 3: Apply Theorem 8.1 to the pair (x1, x2).
Predicate 4: Apply Theorem 8.1 first to (x2, x3) and then to (y6, y7).
Predicate 4′: Apply Theorem 8.1 first to (x0, x1) and then to (x2, x3)
Predicate 5: Apply Theorem 8.1 first to (x1, x2), next to (x7, x8), and finally to

(y5, y6).
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