
A Parallel DCEL Proposal

Andres Calderon

University of California, Riverside

June 12, 2019

AC (Summer’19) DCEL proposal June 12, 2019 1 / 21



DCEL basic concepts

Outline

DCEL basic concepts

Literature review

Proposal

AC (Summer’19) DCEL proposal June 12, 2019 2 / 21



DCEL basic concepts

What is a DCEL?

I Doubly connected edge list (DCEL) is a data structure suited to
represent a connected planar graph embedded in the plane
(Muller-Preparata, 2017).

I A planar embedding of G = (V,E) does not allow crossing edges.

I DCEL captures key topological information about vertices,
edges and faces.

AC (Summer’19) DCEL proposal June 12, 2019 3 / 21



DCEL basic concepts

DCEL examples

�nding the correct results for each operation. Furthermore, computing the result should be robust and
e�cient.

The solution we choose uses a planar graph as the underlying data structure, which allows an easy
traversing of the result. This data structure contains vertices, edges, faces, and holes, and each of these
element types has a color. The result needs neither necessarily be connected nor is it guaranteed that
there are no dangling elements.

The Algorithm:

In order to perform boolean operations on simple polygons we use the following strategy:

1. Find all intersections by doing a sweep-line over the edges of the polygons ([MS88], [MN94],
[BO79], [PS85]).

2. Construct a planar graph by inserting all edges and all intersections.

3. Traverse this planar graph in order to perform an intersection, union, or di�erence.

In this paper we will concentrate on the second and third step, constructing a planar graph from two
simple polygons, and traversing it in order to get the respective result. For that reason we have to
choose a suitable representation or data structure of a planar graph: the doubly connected edge list
(DCEL).

This data structure contains the following elements: faces, edges, and vertices. Each element is able
to store additional information like a color. This data structure also allows an easy and fast access of
all elements and the insertion of polygons with associated colors.

E V1 V2 F1 F2 P1 P2

e

e1

v1

v2

v0

f2 f1

e2

v3

e v1 v2 f1 f2 e1 e2

e1 v0 v1 f1 f2 e

e2 v2 v3 f1 f2 e

Figure 1: Illustration of the DCEL

1.1 A DCEL Represents a Planar Graph

Let V = fv�; v�; : : : ; v�g be a set of vertices and E = fe�; e�; : : : ; e�g be a set of edges. A planar graph
G = (V;E), not necessarily connected, can be represented in di�erent ways. One straightforward
representation would be to use a list of vertices V and a list of edges E, whereas each element V

contains the vertex coordinates and each element of E represents an edge, which contains its source-
vertex and its destination-vertex. The main disadvantage of this representation is that an e�cient
traversal of the graph is not possible without additional structures.

2

(Freiseisen, 1998)

AC (Summer’19) DCEL proposal June 12, 2019 4 / 21



DCEL basic concepts

DCEL examples

of vertices and edges. Since each edge de�nes its vertices explicitly, a connected sequence of edges
describes a face su�cient. If this sequence is circular the face is called bounded. Note: This de�nition
does not depend on what kind of geometric structure a DCEL represents, a (connected) planar graph
in 2D or a polyhedron in 3D.

Example 1. The following example depicted in Figure 3 shows a simple polygon with a dangling edge
represented as a DCEL, where A is the outer face an B is the interior one. Note: the dangling edge a
has two equal adjacent faces, i.e. (F1 = F2 = A).

E V1 V2 F1 F2 P1 P2

a 1 2 A A a c
b 2 5 A B a e
c 2 3 B A b d
d 3 4 B A c e
e 4 5 B A d b

a

b

e

d
c

1

2

3

4

5

B

A

Figure 3: Example 1 with dangling edge.

Example 2. In Figure 4 is shown a more practical but not too complicated example with three faces
and without dangling elements.

E V1 V2 F1 F2 P1 P2

a 1 5 A B e b
b 1 2 B A a f
c 2 3 B C b d
d 3 4 B C c e
e 4 5 B C d f
f 2 5 C A c a

Here we give some important type de�nitions, which will be used in some of the programs. I is an
interface or traits class. It holds a lot of special technical de�nitions and types necessary for an actual
implementation of the given programs (for a detailed information of I see the appendix).

For storing the elements of a DCEL we use the following ���-containers:

5

of vertices and edges. Since each edge de�nes its vertices explicitly, a connected sequence of edges
describes a face su�cient. If this sequence is circular the face is called bounded. Note: This de�nition
does not depend on what kind of geometric structure a DCEL represents, a (connected) planar graph
in 2D or a polyhedron in 3D.

Example 1. The following example depicted in Figure 3 shows a simple polygon with a dangling edge
represented as a DCEL, where A is the outer face an B is the interior one. Note: the dangling edge a
has two equal adjacent faces, i.e. (F1 = F2 = A).

E V1 V2 F1 F2 P1 P2

a 1 2 A A a c
b 2 5 A B a e
c 2 3 B A b d
d 3 4 B A c e
e 4 5 B A d b

a

b

e

d
c

1

2

3

4

5

B

A

Figure 3: Example 1 with dangling edge.

Example 2. In Figure 4 is shown a more practical but not too complicated example with three faces
and without dangling elements.

E V1 V2 F1 F2 P1 P2

a 1 5 A B e b
b 1 2 B A a f
c 2 3 B C b d
d 3 4 B C c e
e 4 5 B C d f
f 2 5 C A c a

Here we give some important type de�nitions, which will be used in some of the programs. I is an
interface or traits class. It holds a lot of special technical de�nitions and types necessary for an actual
implementation of the given programs (for a detailed information of I see the appendix).

For storing the elements of a DCEL we use the following ���-containers:

5

(Freiseisen, 1998)

AC (Summer’19) DCEL proposal June 12, 2019 5 / 21



DCEL basic concepts

Computing the overlay

Section 2.3
COMPUTING THE OVERLAY OF TWO

SUBDIVISIONS

their coordinates directly in the Origin() field of the edge; there is no strict need
for a separate type of vertex record. Even more important is to realize that in
many applications the faces of the subdivision carry no interesting meaning
(think of the network of rivers or roads that we looked at before). If that is the
case, we can completely forget about the face records, and the IncidentFace()
field of half-edges. As we will see, the algorithm of the next section doesn’t
need these fields (and is actually simpler to implement if we don’t need to
update them). Some implementations of doubly-connected edge lists may also
insist that the graph formed by the vertices and edges of the subdivision be
connected. This can always be achieved by introducing dummy edges, and
has two advantages. Firstly, a simple graph transversal can be used to visit all
half-edges, and secondly, the InnerComponents() list for faces is not necessary.

2.3 Computing the Overlay of Two Subdivisions

Now that we have designed a good representation of a subdivision, we can tackle
the general map overlay problem. We define the overlay of two subdivisions S1
and S2 to be the subdivision O(S1,S2) such that there is a face f in O(S1,S2)
if and only if there are faces f1 in S1 and f2 in S2 such that f is a maximal
connected subset of f1 ∩ f2. This sounds more complicated than it is: what it
means is that the overlay is the subdivision of the plane induced by the edges
from S1 and S2. Figure 2.4 illustrates this. The general map overlay problem

=⇒

Figure 2.4
Overlaying two subdivisions

is to compute a doubly-connected edge list for O(S1,S2), given the doubly-
connected edge lists of S1 and S2. We require that each face in O(S1,S2) be
labeled with the labels of the faces in S1 and S2 that contain it. This way we
have access to the attribute information stored for these faces. In an overlay of a
vegetation map and a precipitation map this would mean that we know for each
region in the overlay the type of vegetation and the amount of precipitation.

Let’s first see how much information from the doubly-connected edge lists
for S1 and S2 we can re-use in the doubly-connected edge list for O(S1,S2).
Consider the network of edges and vertices of S1. This network is cut into pieces
by the edges of S2. These pieces are for a large part re-usable; only the edges
that have been cut by the edges of S2 should be renewed. But does this also 33

(de Berg et al, 2008)

AC (Summer’19) DCEL proposal June 12, 2019 6 / 21



DCEL basic concepts

The algorithm

1. Find all intersections over the edges of the polygons.

2. Construct a planar graph by inserting all edges and all
intersections (DCEL).

3. Traverse this planar graph in order to perform an intersection,
union or difference.

AC (Summer’19) DCEL proposal June 12, 2019 7 / 21



DCEL basic concepts

Advantages

I DCEL captures topological information.

I DCEL allows multiple spatial operations.

I DCEL can be constructed from this in O(n log(n)) time using
O(n) additional memory.

I DCEL allows boolean operations in O(n) time using O(n)
additional space.

AC (Summer’19) DCEL proposal June 12, 2019 8 / 21



Literature review

Outline

DCEL basic concepts

Literature review

Proposal

AC (Summer’19) DCEL proposal June 12, 2019 9 / 21



Literature review

Literature review

I A full reference list of relevant papers is available at: http://www.
cs.ucr.edu/~acald013/public/RIDIR/R04/DCELReport.html.

I First 5 entries contains solid introductory material about DCELs,
specially de Berg et al. (2008) and Freiseisen (1998).

I Next entries discuss alternative methods for map overlay,
particularly exploring sequential techniques and parallel spatial
joins.

I There is no mention to a distributed DCEL implementation.

AC (Summer’19) DCEL proposal June 12, 2019 10 / 21

http://www.cs.ucr.edu/~acald013/public/RIDIR/R04/DCELReport.html
http://www.cs.ucr.edu/~acald013/public/RIDIR/R04/DCELReport.html


Literature review

Literature review

I Sequential techniques (more relevant):
I G. Barequet, “DCEL: A Polyhedral Database and Programming

Environment”. IJCGA, vol. 08, pp. 619-636, Oct. 1998.
I T. Asano and G. Rote, “Constant-Working-Space Algorithms for

Geometric Problems”. JoCG, vol. 2, pp. 46-68, 2009.
I W. Freiseisen, “Colored DCEL for Boolean Operations in 2D”. Tech

report. 1998.

AC (Summer’19) DCEL proposal June 12, 2019 11 / 21



Literature review

Literature review

I Parallel spatial joins (more relevant):
I S. Puri and S. K. Prasad, “Efficient Parallel and Distributed

Algorithms for GIS Polygonal Overlay Processing”. Washington,
DC, USA, 2013, pp. 2238-2241.

I I. Sabek and M. F. Mokbel, “On Spatial Joins in MapReduce”.
2017, pp. 1-10.

I C. Zhou, Z. Chen, and M. Li, “A parallel method to accelerate
spatial operations involving polygon intersections”. IJGIS, vol. 32,
no. 12, pp. 2402-2426, Dec. 2018.

I W. R. Franklin, S. V. G. de Magalhes, and M. V. A. Andrade,
“Data Structures for Parallel Spatial Algorithms on Large
Datasets”. 2018, pp. 1619.

AC (Summer’19) DCEL proposal June 12, 2019 12 / 21



Literature review

Current (sequential) implementations

I CGAL: Computational Geometry Algorithms Library in C++
(binding for Java and Python are available).
https://www.cgal.org/.

I dyn4j: A 100% Java 2D collision detection and physics engine.
http://www.dyn4j.org/.

I anglyan/dcel: Python implementation of a doubly connected edge
list. https://github.com/anglyan/dcel.

I vpranckaitis/muller-preparata-algorithm: DCEL algorithm
implementation and visualisation with Scala. https:
//github.com/vpranckaitis/muller-preparata-algorithm.

AC (Summer’19) DCEL proposal June 12, 2019 13 / 21

https://www.cgal.org/
http://www.dyn4j.org/
https://github.com/anglyan/dcel
https://github.com/vpranckaitis/muller-preparata-algorithm
https://github.com/vpranckaitis/muller-preparata-algorithm


Proposal

Outline

DCEL basic concepts

Literature review

Proposal

AC (Summer’19) DCEL proposal June 12, 2019 14 / 21



Proposal

The proposal

A parallel DCEL implementation to support big spatial data overlay
operations.

AC (Summer’19) DCEL proposal June 12, 2019 15 / 21



Proposal

What is the problem?

I Currently, most map overlay methods are sequential based.

I For layers with thousand of polygons the execution time is not
feasible.

I Most of techniques are oriented to a specific spatial operation
(intersection, union, difference, ...).

I Parallel techniques divide the data into partitions and duplicate
features if needed in order to solve the problem locally.

I Data structures collecting topological properties are not explored.

AC (Summer’19) DCEL proposal June 12, 2019 16 / 21



Proposal

Why is it important?

I The rise of big (spatial) data makes necesary to count with fast
and efficient techniques for spatial analysis.

I In particular, the RIDIR project has to deal with spatial
operations between layers collecting thousand of counties
nation-wide. The versatility and efficiency of the spatial methods
is cardinal for their studies.

I It should be interesting to count with intermediate data structures
that allow multiple map overlay queries.

I DCEL allows linear time to compute spatial operations.

AC (Summer’19) DCEL proposal June 12, 2019 17 / 21



Proposal

What are the limitations of related work?

I Topological data structures are common in computational
geometry. However, most implementations are sequential and they
do not scale appropiately on large spatial datasets.

I Parallel spatial joins add complexity due to spatial partitioning
necessarily introduces replication.

AC (Summer’19) DCEL proposal June 12, 2019 18 / 21



Proposal

Why is it challenging?

I Initial stages of the DCEL construction expect it fits in main
memory.

I Subsequent operations should be able to query the DCEL in a
transparent way.

AC (Summer’19) DCEL proposal June 12, 2019 19 / 21



Proposal

What are our novel contributions?

I At the best of our knowledge, there is not a distributed DCEL
implementation.

I It is necesary to design procedures for partitioning and merging
during the DCEL construction.

I The spatial methods that run over the DCEL are based on
boolean operations. They should be adjusted accordingly to a
distributed DCEL.

AC (Summer’19) DCEL proposal June 12, 2019 20 / 21



Proposal

What is the validation method?

I We can compare the new implementation to sequential versions of
the algorithm.

I To test scalability we can perform benchmarks to the current
versions of area tables and area interpolate.

AC (Summer’19) DCEL proposal June 12, 2019 21 / 21


	DCEL basic concepts
	Literature review
	Proposal

