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Abstract
We present a scalable approach for identifying moving flock pat-
terns in large trajectory databases. A moving flock pattern refers
to a group of entities that move closely together within a defined
spatial radius for a minimum time interval. We focus on improving
the state-of-the-art sequential algorithms, which suffer from high
computational costs when dealing with large datasets. By leverag-
ing distributed frameworks and utilizing spatial partitioning, the
proposed solution aims to significantly reduce the time required to
detect moving flock patterns. We highlight the bottlenecks of the
sequential approaches and offer optimizations like partition-based
parallelism and strategies for managing flock patterns that span
multiple partitions. An experimental evaluation using synthetic
trajectory datasets, demonstrates that the proposed methods sub-
stantially improve scalability and performance compared to existing
sequential algorithms.

CCS Concepts
• Computing methodologies→ Parallel algorithms;MapRe-
duce algorithms; • Information systems→ Data structures.
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1 Introduction
Recent technological advances have dramatically increased the
volume of spatio-temporal data collected from GPS devices, smart-
phones, and IoT systems. These datasets capture the movement of
objects over time, providing valuable insights for various applica-
tions, including transportation management, urban planning, and
ecological studies. However, detecting complex mobility patterns
in such data remains a significant computational challenge.

Among those complex patterns, moving flock patterns refer
to groups of objects that move together within a specific spatial
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radius for a minimum time interval. Detecting these patterns is
computationally demanding because it involves tracking groups
over multiple time instants, where the same entities remain within
a defined proximity. A flock pattern is a set of at least 𝜇 entities that
move together inside a fixed radius of diameter 𝜀 during minimal
𝛿 consecutive time intervals. This problem is known to be NP-
hard [11], making it challenging for traditional algorithms to scale
effectively with large datasets.

Early approaches, such as the Basic Flock Evaluation (BFE) al-
gorithm [21], provided the first polynomial-time method for flock
detection, but faced high computational costs due to frequent disk
overlap checks and candidate evaluation. Despite improvements
through frequent patternmining [6] and plane sweeping techniques
[18], these methods still struggle with scalability in dense datasets.

This work introduces a scalable approach for detecting moving
flock patterns in very large and dense trajectory databases. Us-
ing distributed frameworks and spatial partitioning, the proposed
method significantly reduces computation times and addresses crit-
ical limitations, including efficient handling of dense data regions,
reduced disk replication overhead, and parallelized spatial-temporal
joins. Experimental evaluations demonstrate substantial perfor-
mance gains over state-of-the-art methods, validating the approach
for large-scale trajectory data analysis.

2 Related Work
The rapid growth of location-based devices, such as GPS, smart-
phones, and RFID tags, has allowed the collection of vast spa-
tiotemporal datasets. These datasets have become a critical resource
for identifying interesting spatiotemporal aggregate/density based
queries [1, 2, 12, 20, 24], including moving clusters [16], convoys
[15], and flocks [4, 11]. Specifically, the BFE (Basic Flock Evaluation)
algorithm [21] introduced a polynomial-time method to identify
flock patterns by detecting disks with a predefined diameter (𝜀)
at specific time instants. However, this approach is computation-
ally expensive, with a complexity of O(2𝑛2) per time step, due to
the need to repeatedly identify and combine disk-based proximity
relationships.

Efforts to improve this performance include frequent pattern
mining [6] and plane sweeping [18] techniques, which reduce the
overhead of disk combination but still rely on the core BFE strategy.
Depth-first algorithms [3, 10] have also been proposed to iden-
tify maximal duration flocks, but these methods face scalability
challenges in dense datasets.

Parallelism has emerged as a promising approach to improve per-
formance, taking advantage of GPU-based methods [9] and cluster
computing frameworkswith spatial capabilities [7, 14, 23]. However,
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these techniques often suffer from memory and communication
overheads, limiting their scalability for large datasets.

Despite these advancements, significant challenges remain in
efficiently detecting moving flock patterns at scale, particularly in
regions with high density and a large number of entities moving
simultaneously. This work addresses these gaps by introducing a
scalable partitioning and replication approach that significantly im-
proves performance for large-scale, dense spatio-temporal datasets.

3 Background
We first provide an overview of the current state-of-the-art sequen-
tial approaches. This will enable highlighting their challenges and
limitations in handling large spatio-temporal datasets, as described
in the next Section.

3.1 The BFE sequential algorithm
The Basic Flock Evaluation (BFE) algorithm [21] was the first se-
quential approach designed to identify flock patterns in trajectory
databases. Below, we provide a general overview of its key aspects.

It is important to note that the BFE algorithm operates in two
phases. In the first phase, it identifies maximal disks at the current
time step. A maximal disk is defined as a set of entities such that
no proper subset of this set forms another disk, and no other disk
can include this set without duplication. In the second phase, the
algorithm extends and reports previous flocks by combining them
with newly discovered disks.

The input for the first phase consists of a set of points, the
query minimum distance 𝜀 (which defines the maximum diameter
of the disks within which the moving entities must lie), and the
minimum number of entities 𝜇 per disk. The primary objective of
this phase is to identify a set of disks at each time step, facilitating
their combination with future disks to form flocks, as flocks are
defined by their persistence over a period of time.

The main steps within phase 1 follow:
(1) Pair finding: The algorithm uses the parameter 𝜀 to identify

pairs of points that are within a maximum distance of 𝜀 units
from each other. This is achieved through a distance self-join
operation on the set of points, using 𝜀 as the distance thresh-
old. To avoid redundancy, duplicate pairs are eliminated; for
example, the pair (𝑝1, 𝑝2) is considered identical to the pair
(𝑝2, 𝑝1), so only one instance is retained. Point IDs are used
to filter out these duplicates efficiently.

(2) Center computation: From the set of pairs obtained, each
pair is used to compute the centers of two circles, each with
a radius of 𝜀

2 , whose circumferences pass through the two
points in the pair.

(3) Disk finding: Once the centers have been identified, a query
is executed to gather the points within a distance of 𝜀 units
from each center. This is accomplished by performing a
distance join between the set of points and the set of centers,
using 𝜀

2 as the distance parameter. As a result, each disk is
defined by its center and the IDs of the surrounding points.
At this stage, a filter is applied to discard any disks that
contain fewer than 𝜇 entities.

(4) Disk pruning: It is possible for a disk to contain the same
set, or a subset, of points as another disk. In such cases, the

Points

Finding pairs
Computing

centers
Finding disks Pruning disks

Points

Pairs Centers Disks

Figure 1: BFE Phase 1 steps on a sample dataset.

algorithm reports only that one disk which contains the
other(s), referred to as the maximal disk.

It is important to note that BFE also employs a grid structure in
this phase to optimize spatial operations. The algorithm divides the
space into a grid, where each cell has a side length of 𝜀 [21]. This
structure allows BFE to limit its processing to each grid cell and
its eight neighboring cells. There is no need to query cells beyond
this neighborhood, as points in more distant cells are too far away
to influence the results. Figure 1 shows an example of the Phase 1
steps using a sample dataset.

Phase 2 (the combination, extension and reporting of flocks)
performs a recursion using the set of disks found at time 𝑖 and the
set of partial flocks computed at the previous time instant 𝑖 − 1. As
we do not know where and how far a group of points can move in
the next time instant, this step performs a (temporal) join between
both sets (partial flocks computed at time 𝑖 − 1 and maximal disks
found in time 𝑖). When a join is performed, we check that the
number of common points remains greater than 𝜇, in which case
the partial flock extends in time. A flock is reported in the answer
if its duration has reached the minimum duration 𝛿 ; otherwise, it
remains as partial flock and it will be further evaluated during the
next iteration at the next time instant.

Similarly, Figure 2 illustrates the recursive process and how the
set of partial flocks from previous time instants feeds into the next
iteration. The example assumes a 𝛿 value of 3, meaning flocks
start being reported from time instant 𝑡2. Note that time instants
𝑡0 and 𝑡1 are considered the initial conditions. At the start of the
algorithm, maximal disks are identified at 𝑡0, which are immediately
transformed into partial flocks with a duration of 1 and then passed
on to the next time instant. At 𝑡1, a new set of maximal disks D1 is
found and joined with the partial flocks from 𝑡0, denoted as F0. The
information for each partial flock is updated accordingly, including
its duration and the points it contains. From this point onward,
subsequent time instants follow the exact steps outlined before.

3.2 The PSI sequential algorithm
The PSI algorithm, proposed by [18], follows a similar process to the
BFE algorithm. However, instead of using a grid structure to index
points within the area, PSI employs a sweep-line approach that
processes points in order of their x-coordinates. For each visited
point 𝑝 , the algorithm considers a square of side length 2𝜀 centered
at 𝑝 . It only examines the points to the right of 𝑝 that lie within
two half-squares of side length 𝜀.
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Figure 2: BFE Phase 2 example explaining the stages along
time instants and the initial conditions.

While BFE processes points inside a grid cell of side length 𝜀

along with its eight neighboring cells, PSI focuses on the points in
these two half-squares. As a result, PSI more efficiently identifies
the points relevant for detecting candidate pairs, centers, and disks.
This indexing method has been shown to outperform BFE in most
cases, with BFE offering similar or better performance only when 𝜀
values are relatively small. In such cases, the number of points to
consider is smaller, and PSI still requires sorting the points for the
sweep-line approach. Therefore, both approaches are considered in
the following sections.

4 Bottlenecks in the sequential approaches.
Since both sequential approaches follow the same steps , we will
focus on discussing bottlenecks from both approaches using the
BFE as an example. Certain stages in the BFE process are notably
impacted when handling very large datasets, especially when large
amount of trajectories happening at the same time are analyzed.
Phase 1: Spatial finding of maximal disks. Consider first Phase
1. As illustrated in Figure 1, this phase’s steps are demonstrated
using a sample dataset. It is important to note that the final set of
maximal disks is significantly smaller than the initial number of
candidate disks found. Specifically, the number of candidate centers
to evaluate is 2|𝜏 |2, where 𝜏 represents the number of trajectories
[21]. Our experiments reveal that this issue becomes more pro-
nounced not only in very large datasets but also in those containing
areas with a high density of moving entities.
Phase 1: Handling high-density areas. Even though partitioning
the problem into smaller subareas can improve performance by
exploiting parallelism and reducing the number of trajectories that
need to be analyzed, a few subareas (i.e., partitions) may still exhibit
low performance. This issue arises due to how the trajectories are
distributed within the subarea. We could have small areas with a
relatively low number of trajectories, but if these trajectories are
densely concentrated in a specific region, we still face an explosion
in the number of candidates. This, in turn, increases the response
time required to evaluate, filter, and find the maximal disks. This
phenomenon directly impacts parallelism because these few high-
density subareas will dominate the overall execution time.
Phase 2: Dealing with partial flocks during the temporal join.
At the end of Phase 1, we have computed a set of maximal disks for

maxdist

Figure 3: Examples of partial flocks that that start or end in
the border area of a partition.

a given time instant. In Phase 2, we proceed by combining these
disks over time instants to form flocks. However, since Phase 1
involved partitioning the spatial domain for parallelism, Phase 2
becomes more complex as flocks can move across spatial partitions
over time. Once the maximal disks are identified for a time instant 𝑖 ,
a temporal join occurs within each partition to link these disks with
partial flocks from the previous time instant (𝑖 − 1). However, we
must account for partial flocks that may appear near the partition
borders and potentially move into adjacent partitions.

5 Scalable Solutions
5.1 Finding maximal disks using a divide &

conquer approach
To address the first issue stated at section 4, we propose a divide &
conquer strategy that partition the study area into smaller subareas,
allowing for independent and parallel evaluation. The strategy
consists of three key steps: first, the partition and replication stage,
followed by the local flock discovery within each partition, and
finally, the filtering stage, wherewe consolidate and unify the results.
Each of these steps is detailed below.

• Partition and Replication: Figure 4 provides a brief exam-
ple of the partition and replication stage. Different types of
spatial indexes, such as grids, R-trees, or quadtrees, can be
used to create spatial partitions of the input dataset. In the
example shown in Figure 4.b, we use a quadtree, which gen-
erates seven partitions. To ensure each partition can locally
identify flocks, it must have access to all relevant data. This
is achieved by replicating points that are within a distance of
𝜀 from the border of each partition, an area referred to as the
expansion zone, into adjacent partitions. Figure 4.c illustrates
each partition, surrounded by a dotted line representing the
expansion zone, which includes the points that need to be
replicated from neighboring partitions.

• Local flock discovery: At this stage, each partition can be
processed independently and in parallel, with partitions as-
signed to different processing nodes. Within each partition,
we can execute the steps of Phase 1 of the BFE algorithm
locally.

• Filtering: While partitioning and replication facilitate paral-
lelism, they can also lead to result duplication, as different
nodes may report the same maximal disk. Specifically, if a
disk’s center lies within a partition, it will be reported only
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Figure 4: An example of partitioning and replication on a
sample dataset.
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Figure 5: Ensuring no loss of data in safe zone and expansion
area.

once by the node processing that partition. However, disks
with centers located in an expansion zone will be reported
by all partitions that share that zone. To address this, we
propose a reporting approach that effectively prevents such
duplication, which we detail below.

Disks with centers in an expansion zone are created by points
that exist in both partitions due to replication. We assert that each
partition should only report disks generated within its own area
and not those originating in its expansion zone. Figure 5 illustrates
the possible scenarios. Assume partitions 1 and 2 in the figure are
contiguous, sharing edge AB. Consider the disks 𝑎′ and 𝑎′′ (each
with a diameter of 𝜀), which are generated by two points (shown
in green) located in the expansion zone of partition 1 but inside
partition 2. In this case, both 𝑎′ and 𝑎′′ will be reported by partition
2. Similarly, both 𝑐′ and 𝑐′′ will be reported by partition 1. However,
𝑏′ will be reported by partition 1, while 𝑏′′ will be reported by
partition 2.

5.2 Addressing density challenges using
maximal cliques.

As we discussed in section 4, dense areas pose challenges for prun-
ing, as they are highly sensitive to increases in the value of 𝜀, leading
to an exponential growth in the number of pairs. To address this,
we explored alternative strategies that could enable more effective
grouping of points. It is important to note that density-based spatial
clustering methods, such as DBSCAN [8], are not suitable for this
problem. In very dense regions, these approaches often produce
a single large cluster, which does not resolve the issue. Addition-
ally, clustering algorithms do not enforce the strict relationships
required for a flock, where all points must be within a distance of 𝜀
from each other.

Instead, we explored graph-oriented clustering, focusing on the
concept of maximal cliques. In an undirected graph, a maximal
clique is a subset of vertices where each vertex is directly connected
to every other vertex in the subset. Additionally, the clique is maxi-
mal in the sense that it cannot be extended by adding more vertices
[5, 19].

In this context, the points within a partition can be treated as the
vertices of an undirected graph, where edges are created between
pairs of points that are within a distance of 𝜀. By finding the set of
maximal cliques in this graph, we identify subsets of points where
each point is connected to all others in the subset. This means that
all points in the clique are at most 𝜀 apart, and no additional points
can be added to the subset. However, not every maximal clique
qualifies as a maximal disk. A maximal clique becomes a maximal
disk only if it contains at least 𝜇 points and can be enclosed by a
disk with a radius of 𝜀

2 .
To verify whether a maximal clique qualifies as a maximal disk,

we use the concept of the Minimum Bounding Circle (MBC) [22].
Given a set of points in Euclidean space, the MBC is the smallest
circle that can enclose all the points. For each maximal clique iden-
tified within a partition, we can quickly check if all points in the
clique fit within an MBC with a diameter of 𝜀. If they do, we can
immediately report the set of points and their MBC as a maximal
disk. However, cliques that do not satisfy this condition must be
evaluated using the traditional method. This involves computing
the potential disk centers, identifying candidate disks, and prun-
ing them.We have termed this approach as CMBC. We evaluate
the performance of the CMBC approach later in the experimental
section.

5.3 Handling issues in the temporal domain
To address the last issue presented in section 4, we introduce an
additional parameter, maxdist, which represents the maximum dis-
tance a moving object can travel between consecutive time instants
(see Figure 3). We define the safe area of a partition as the internal
region that is at least maxdist away from the partition’s border
(illustrated in grey in Figure 3). Any partial or full flocks discovered
within a partition’s safe area can be directly reported as results.
However, flocks that start or end outside the safe area must be
collected for post-processing to determine if they correspond with
partial flocks from neighboring partitions. These cases, where flocks
cross between partitions, are referred to as crossing partial flocks
(CPFs).

In Figure 6, we observe an example that illustrates the possible
cases. The figure shows flocks 𝑏 and 𝑑 , which start and end within
the safe area of the orange partition; both flocks are ready to be
reported.

On the other hand, flocks 𝑎 and 𝑐 move across different partitions.
Flock 𝑎 begins in the blue partition at 𝑡0 and moves to the orange
partition at 𝑡2. This movement results in two CPFs: 𝑎′, from 𝑡0 to
𝑡1, reported by the blue partition, and 𝑎′′, from 𝑡2 to 𝑡4, reported by
the orange partition.

Similarly, flock 𝑐 starts in the blue partition at 𝑡0, moves to the
orange partition at 𝑡2, and returns to the blue partition at 𝑡3. This
creates three CPFs: 𝑐′, from 𝑡0 to 𝑡1, reported by the blue partition;
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Figure 6: CPFs cases moving along different partitions over
time.

𝑐′′, at 𝑡2, reported by the orange partition; and 𝑐′′′, from 𝑡3 to 𝑡4,
reported by the blue partition.

In the post-processing stage, we evaluate four alternatives for
collecting and checking crossing partial flocks (CPFs). The simplest
approach is to gather all CPFs and process them sequentially on a
single node (the master node). However, due to the large number of
partitions and themaxdist parameter, the volume of CPFs requiring
post-processing can become substantial, leading to a bottleneck
that negatively impacts overall performance.

We also evaluate an intermediate approach where the CPFs from
a given partition are sent to a middle-level node for processing,
based on the quadtree structure used to create the partitions. The
choice of which middle-level node to send the CPFs to is determined
by a user-defined parameter called step. A value of 𝑠𝑡𝑒𝑝 = 1 corre-
sponds to sending CPFs to the immediate parent, 𝑠𝑡𝑒𝑝 = 2 to the
grandparent, and so on, until the root is reached. For example, with
step=1, all CPFs from a partition are first sent to its parent node in
the quadtree. The parent node processes its CPFs, but some flocks
may still cross outside the parent’s safe area. These leftover CPFs
are then passed to the next parent (since 𝑠𝑡𝑒𝑝 = 1), and this process
continues until all CPFs are processed, potentially reaching the
root node. This approach allows for parallelism in post-processing,
as moving to a parent node increases the partition’s area and im-
proves the likelihood that CPFs can be resolved at that level. In the
experimental section, we test different values of the step parameter,
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Figure 7: Master and By-Level alternatives. Different values
of 𝑠𝑡𝑒𝑝𝑠 are illustrated for the By-Level apprach,
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Figure 8: LCA alternative and how it resolves CPFs at the
nearest shared ancestor of the involved partial flocks.

such as 𝑠𝑡𝑒𝑝 = 2, where CPFs are sent to the grandparent at each
stage. Figure 7 illustrates the Master and By-Level alternatives.

Unlike the previous two approaches, which assign all CPFs from
a given partition in the same way (partition-based), the third alter-
native assigns each CPF individually (CPF-based). For a given CPF
𝑓 , we extend its most recent disk by a ring with a size of maxdist,
identifying all overlapping partitions for this extended disk —es-
sentially determining which neighboring partitions the objects in
𝑓 could move to in the next time instant. For each overlapping
partition, we retrieve the Least Common Ancestor (LCA) between
that partition and 𝑓 ’s original partition. CPF 𝑓 is then sent to the
node(s) corresponding to these LCAs. The benefit of this approach
is that the LCA can efficiently complete the processing for 𝑓 , as
it exploits proximity using mindist (see Figure 8). However, the
downside is the increased copying overhead, as 𝑓 may need to be
sent to multiple nodes.
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A limitation of the previous alternatives is that each spatial parti-
tion is processed by a single node, which incrementally evaluates all
time instances for that partition. The fourth alternative introduces
fixed divisions in the temporal domain, based on a user-defined
parameter (number of divisions), as illustrated in Figure 9. In this
approach, the spatio-temporal space is divided into temporal ‘cubes,’
each of which can be processed by different nodes. For simplicity,
we assume that each division spans the same length of time. How-
ever, an additional validation step is required to ensure continuity
of flocks across temporal divisions.

6 Experimental Evaluation
6.1 Experimental Setup
For our experiments, we utilized a 12-node cluster, each running
Linux (kernel version 3.10) and Apache Spark 2.4. Each node was
equipped with 8 cores, providing a total of 96 cores across the
cluster. Each core operated with an Intel Xeon CPU at 1.70 GHz,
and each node had 4 GB of main memory.

To evaluate the different approaches, we generated three syn-
thetic datasets with varying characteristics, as detailed in Table 1.
These datasets were created using the SUMO simulator [17], by
importing traffic networks of Berlin and Los Angeles from Open-
StreetMap [13]. We configured SUMO for pedestrian traffic and
generated datasets of 10K, 25K, and 50K pedestrian trajectories. The
total duration of the trajectories was set to 10, 30, and 60 minutes,
respectively, with positions of pedestrians recorded at one-minute
intervals.

For the partitioning phase, we employed a quadtree structure,
though other indexing methods could also be used. The advantage
of using a quadtree is its ability to create nodes that tend to have a
similar number of objects. The input to this phase is a set of points

Table 1: Description of datasets.

Number of Total number Maximum
Dataset Trajectories of points Duration (min)
Berlin10K 10000 97526 10
LA25K 25000 1495637 30
LA50K 50000 2993517 60

in the format (traj-id, x, y, t). To construct the quadtree, we begin
by sampling 1% of the input data and inserting this subset into an
initially empty quadtree.

A key parameter for the quadtree is the node capacity, denoted
as 𝑐 . When the number of points in a node exceeds this capacity,
the node splits. After all the sampled points are inserted, we use
the Minimum Bounding Rectangles (MBRs) of the leaf nodes as the
partitions for our approach. The remaining points are then inserted
into these fixed partitions, with no further splits occurring. Each
partition is assigned to a different cluster node, where a sequential
version of either BFE or PSI is executed locally on the points within
that partition.

6.2 Optimizing the number of partitions for
Phase 1.

The capacity parameter 𝑐 directly influences the number of par-
titions in the quadtree. A smaller value of 𝑐 results in a higher
number of partitions, which leads to many smaller tasks that can be
distributed across the cluster. However, this can increase the over-
head associated with data transmission and, potentially, replication,
which may become a bottleneck. Conversely, a larger value of 𝑐
reduces the number of partitions, resulting in fewer but larger tasks.
This increases the workload of the sequential algorithmwithin each
partition, potentially extending the response time for individual
jobs.

Figure 10 presents the execution time (in seconds) for computing
maximal disks (Phase 1) at a specific time instant, using different
values of 𝑐 and 𝜀. The experiments were conducted using the LA25K
dataset. For the case where 𝜀 = 20𝑚, we observe that there is an
optimal value of 𝑐 that minimizes the execution time for finding
maximal disks, which occurs at 𝑐 = 100 (corresponding to approxi-
mately 1300 partitions). Additionally, the optimal value of 𝑐 varies
based on the value of 𝜀. For instance, with a smaller 𝜀 = 2𝑚, the
execution time is minimized at a larger capacity 𝑐 = 500 (around
250 partitions). When 𝜀 is large, more pairs of points need to be pro-
cessed, resulting in a higher number of maximal disks to compute.
In such cases, using a smaller value of 𝑐 creates more partitions
within the same spatial area, thereby distributing the workload
more evenly across partitions and reducing the amount of work
per partition.

After determining the optimal value of 𝑐 for a given 𝜀, we further
analyzed the behavior of BFE and PSI on the most ‘demanding’
partitions, those that required the longest time to complete Phase
1. Since the partitions are processed in parallel across different
cores, these demanding partitions have the greatest impact on the
overall performance. By focusing on these partitions, we can better
understand potential bottlenecks and further optimize the system’s
efficiency.
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Figure 10: Execution time testing different values for Capac-
ity (𝑐) and Epsilon (𝜀).
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Figure 11: Comparison of PSI and BFE algorithms for the
most time-consuming partitions when 𝜀 varies from 10 to 20
meters. The results demonstrate that PSI consistently outper-
forms BFE due to its more flexible bounding box approach,
which reduces candidate pair evaluations in dense partitions.

6.3 Analyzing most costly partitions.
We began by identifying the top 10 partitions that required the
most time to execute the BFE algorithm with 𝜀 = 20 meters. For
these specific partitions, we ran both BFE and PSI while varying
𝜀 from 10 to 20 meters. The Phase 1 execution times are shown in
Figure 11, where it is evident that PSI consistently outperformed
BFE across all values of 𝜀.

We further investigated the reasons behind some partitions tak-
ing longer to compute. Figure 12 shows the Phase 1 execution times
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Figure 12: Execution time for pairs/disks finding in the dense
partition.

per partition while varying 𝜀 from 10m to 20m, with partitions or-
dered by the number of pairs they contain. One key observation is
that as 𝜀 increases, the number of pairs also increases, since a larger
𝜀 allows for more maximal disks. For instance, with 𝜀 = 10𝑚, the
maximum number of pairs in a partition is around 1800, whereas
for 𝜀 = 20𝑚, some partitions contain nearly 4000 pairs.

Another notable observation is that BFE is more sensitive to
the density of pairs within a partition than PSI, a difference that
becomes more pronounced at higher values of 𝜀 (e.g., 18m or 20m).
As mentioned earlier, the flexible bounding boxes used by PSI more
effectively isolate the relevant points for computing pairs, whereas
BFE relies on a fixed grid cell, which makes it less efficient in denser
partitions.

A final observation is that a few partitions take significantly
more time than others, particularly those with a higher density of
pairs. This is directly related to the number of maximal disks that
need to be computed and subsequently pruned. For example, the
partition that takes the longest time when 𝜀 = 20𝑚 is the one with
the highest number of pairs, which corresponds to partition 187 in
Figure 11.

We further analyzed how Phase 1 processing is distributedwithin
the most demanding partition. Figure 13.a (for BFE) and Figure 13.b
(for PSI) display the time taken by each Phase 1 stage (refer to Figure
1) for partition 187. The most resource-intensive stage in both cases
is the final step of filtering the disks, where disks whose points
are contained within others are removed—this stage identifies the
maximal disks (labeled as ‘Maximals’ in the figure).

This stage is particularly costly because both BFE and PSI must
scan a large set of candidate disks, identifying and removing those
that are redundant. As 𝜀 increases, this processing becomes even
more time-consuming, as the number of pairs and candidate disks
grows along with 𝜀.

6.4 Can we reduce pruning time?
In this section we evaluate the CMBC approach introduced in sec-
tion 5.2. In this approach, we use maximal cliques algorithms to
group points in dense areas and we check if those maximal cliques
are enclosed by MBC with radius lower than 𝜀

2 to quickly report
them as maximal disks. In order to evaluate the group of cliques
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Figure 14: Execution time of CMBC variants compared to
standard PSI in the partition 187 (𝜀 = 20𝑚).

that do not meet the above condition, we implemented two vari-
ants. The first variant, termed COLLECT, gathers the points from all
cliques that are not reported as maximal disks, removes duplicates
(since points may appear in multiple cliques), and then applies the
traditional pruning method to the entire set. In the second variant,
EACH, we apply the pruning procedure independently for each
clique that does not qualify as a maximal disk.

Figure 14 compares the performance of the two CMBC variants
with the time taken by PSI for the same stage. Interestingly, neither
variant achieves a reduction in execution time. Upon closer exami-
nation, it becomes evident that while identifying the cliques and
their MBCs is relatively fast, only a small fraction of the cliques qual-
ify as maximal disks. Consequently, the overhead associated with
processing the remaining cliques outweighs the benefits, making
the original PSI approach more efficient.

We next increased the density of points within the same partition
to determine whether a higher number of cliques would qualify
as maximal disks and thus affect the performance. The number of
points in the partition was incrementally increased from 500 (the
initial number) to 1K, 2K, 4K, and 6K so as to test varying densities.
For each simulation, we recorded the execution time required to
identify maximal disks, increasing the value of 𝜀 from 10 to 20
meters. Additionally, we tracked the number of pairs generated for
each value of 𝜀 as a measure of candidate disk density. Figure 15
presents the performance of CMBC (using the COLLECT variant)
compared to PSI as the number of points and pair density increased.
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Figure 15: Execution time comparison of the CMBC approach
(COLLECT variant) and the standard PSI algorithm as the
number of points and pair density increasewithin a partition.
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Figure 16: Execution time of the CMBC variants compared
to standard PSI in the partition 187 with ≈2K points present
(𝜀 = 20𝑚).

We observed that the performance of the CMBC approach sur-
passes that of PSI when the partition contains more than 2K points
and the pair density increases. To further investigate, we evaluated
the behavior of both CMBC variants for a partition with 2K points,
as shown in Figure 16. The results demonstrate that the COLLECT
variant outperforms PSI in this scenario. The higher density led
to a greater number of cliques being identified early as maximal
disks. This early identification significantly reduced the number of
pairs and candidates that needed evaluation through the traditional
pruning approach, thereby improving overall efficiency.

6.5 Relative performance of BFE and PSI Phase
1 using synthetic datasets.

To further examine the relative performance of the scalable BFE
and PSI approaches for Phase 1, we also conducted experiments
using a synthetic dataset where we could control the values of 𝑐 , 𝜀,
and point density. We used a fixed square area of 1000m x 1000m,
within which we uniformly distributed 25K, 50K, 75K, and 100K
points.

We experimented with different quadtree capacities (𝑐 values of
100, 200, and 300), which resulted in varying numbers of partitions
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Table 2: Number of partitions by capacity and number of
points in synthetic uniform datasets.

25K 50K 75K 100K
c=100 544 1024 1024 2185
c=200 256 514 1024 1024
c=300 256 514 481 1024
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Figure 17: Performance in an uniform dataset analysing den-
sity and capacity with diverse values for epsilon.

(as shown in Table 2). Both BFE and PSI were tested for phase 1,
where maximal disks are identified, using 𝜀 values ranging from
1m to 5m. The results are presented in Figure 17.

Overall, PSI demonstrated better performance than BFE, though
there were cases (particularly with smaller 𝜀 values) where BFE
outperformed PSI. In these cases, the smaller 𝜀 generates fewer
pairs, and the additional ordering step required by PSI becomes
an overhead. However, in the subsequent experiments focusing
on temporal joins (phase 2, flock creation), we concentrate on the
scalable performance of PSI.

6.6 Evaluation of Phase 2: Temporal join.
Phase 2 focuses on joining maximal disks across time instants to
form flocks. In Section 4, we discussed four alternatives: Master,
By-Level, LCA, and Cube-based. For these experiments, we used
the scalable PSI approach due to its robust performance. First, we
compared the Master and By-Level alternatives while varying 𝜀

from 20m to 40m using the Berlin10K dataset (see Figure 18). For
the By-Level approach, we tested different step values ranging from
1 to 6. The Master approach proved to be the slowest, due to the
overhead of sending all CPFs to the root node. The performance
of the By-Level approach depends on the step size. A smaller step
value (e.g., step 1) introduces overhead because CPFs may need to
be evaluated at more intermediate nodes before completion. On
the other hand, a larger step value reduces parallelism by sending
more CPFs to intermediate nodes. Based on these experiments, we
determined that Step=3 offers the best balance.
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Figure 18: Root and step alternative for temporal join using
the Berlin dataset.
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Figure 19: Interval optimization for the Cube-based alterna-
tive for temporal join using the LA25K dataset.

We also evaluated the optimal value for the interval parame-
ter in the Cube-based approach. Using the LA25K dataset with
𝜀 = 30𝑚, we tested various interval values, ranging from 2 to 12
time instants. This dataset contains 30 time instants in total. The
results, shown in Figure 19, illustrate the trade-offs involved. Lower
interval values result in higher parallelism, as more cubes can be
processed independently. However, this also increases the number
of cube crossings for CPFs that need to be checked, which adds
to the execution time. Conversely, larger interval values reduce
parallelism but also decrease the number of CPF crossings. Based
on these findings, we selected 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 6 as the optimal value for
the Cube-based approach.

Finally, we compared the optimized versions of the By-Level
and Cube-based approaches with the Master and LCA methods.
Figure 20 shows the results, including the sequential PSI algorithm
as a reference. This experiment was conducted using the LA25K
dataset with 𝜀 values ranging from 5m to 30m. Clearly, all parallel
approaches offer significant improvements over the sequential PSI.

To further analyze the relative performance of the scalable ap-
proaches, Figure 21 focuses on the parallel algorithms for the same
experiment. Interestingly, for very small 𝜀 values, the Master ap-
proach performs best —primarily because the limited number of
flocks makes sending the CPFs to a single node fast and efficient.
However, as 𝜀 increases, the Cube-based approach becomes the
most effective, leveraging greater parallelism. By-Level also im-
proves over the Master approach as 𝜀 grows, as explained in Figure
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18. Similarly, for larger 𝜀 values, the LCA approach outperforms By-
Level because it more quickly identifies the node that can complete
the CPF operations.

We repeated the same experiment with the LA50K dataset, vary-
ing 𝜀 from 4m to 20m. The results, shown in Figure 22, once again
demonstrate that the Cube-based approach offers the best perfor-
mance as 𝜀 increases.

7 Conclusions
We presented a novel, scalable approach to discover moving flock
patterns in large trajectory databases. By leveraging distributed

frameworks, the proposed method overcomes the limitations of se-
quential algorithms that struggle with large-scale spatio-temporal
datasets. Through partitioning and replication, as well as improve-
ments in pruning and temporal joins, this approach efficiently han-
dles dense data, offering significant performance improvements
over traditional methods. The evaluation results demonstrate the
scalability and effectiveness of the approach, making it a valuable
contribution for analyzing complex movement patterns.
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