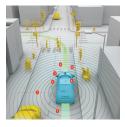
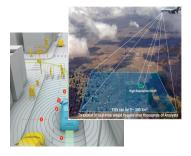
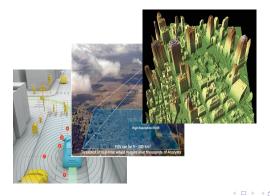
Spark + Simba: Efficient In-Memory Spatial Analytics. Based on D. Xie, F. Li, B. Yao, G. Li, L. Zhou and M. Guo SIGMOD'16.

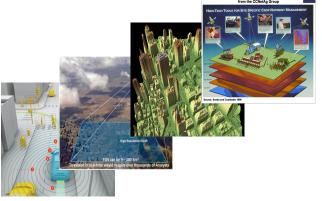
Andres Calderon

April 24, 2018









Applications

• The applications and commercial interest is clear...

Spatial is Special

• But remember that "Spatial is Special" ...

Spatial is Special

• But remember that "Spatial is Special" ...

Introduction

Spatial is Special

• But remember that "Spatial is Special" ...

Spark + Simba

Introduction

Is there room for improvements?

• Why do we need a new tool???

- Problems of Existing Systems...
 - Single node database (low scalability) ArcGIS, PostGIS, Oracle Spatial.
 - Disk-oriented cluster computation (low performance) Hadoop-GIS, SpatialHadoop, GeoMesa.
 - No sophisticated query planner and optimizer SpatialSpark, GeoSpark
 - No native support for spatial operators Spark SQL, MemSQL

- Extends Spark SQL to support spatial queries and offers simple APIs for both SQL and DataFrame.
- 2 Support two-layer spatial indexing over RDDs (low latency).
- Designs a SQL context to run important spatial operations in parallel (high throughput).
- Introduces spatial-aware and cost-based optimizations to select good spatial plans.

- Extends Spark SQL to support spatial queries and offers simple APIs for both SQL and DataFrame.
- 2 Support two-layer spatial indexing over RDDs (low latency).
- Oesigns a SQL context to run important spatial operations in parallel (high throughput).
- Introduces spatial-aware and cost-based optimizations to select good spatial plans.

- Extends Spark SQL to support spatial queries and offers simple APIs for both SQL and DataFrame.
- Support two-layer spatial indexing over RDDs (low latency).
- Oesigns a SQL context to run important spatial operations in parallel (high throughput).
- Introduces spatial-aware and cost-based optimizations to select good spatial plans.

- Extends Spark SQL to support spatial queries and offers simple APIs for both SQL and DataFrame.
- Support two-layer spatial indexing over RDDs (low latency).
- Oesigns a SQL context to run important spatial operations in parallel (high throughput).
- Introduces spatial-aware and cost-based optimizations to select good spatial plans.

Outline

Simba Architecture Overview

- Programming Interface
- Indexing
- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

Outline

Simba Architecture Overview

- Programming Interface
- Indexing
- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

Spark SQL Overview

Spark SQL is Apache Spark's module for working with structured data.

- Seamlessly mixes SQL queries with Spark programs.
- Connects to any data source the same way.
- Includes a highly extensible cost-based optimizer (*Catalyst*).
- Spark SQL is a full-fledged query engine based on the underlying Spark core.

Spark SQL Overview

Spark SQL is Apache Spark's module for working with structured data.

- Seamlessly mixes SQL queries with Spark programs.
- Connects to any data source the same way.
- Includes a highly extensible cost-based optimizer (*Catalyst*).
- Spark SQL is a full-fledged query engine based on the underlying Spark core.

Spark SQL Overview

```
# Apply functions to results of SQL queries.
context = HiveContext(sc)
results = context.sql("""
                         SELECT
                         FR.OM
                                 people""")
names = results.map(lambda p: p.name)
# Query and join different data sources.
context.jsonFile("s3n://...").registerTempTable("json")
results = context.sql("""
                         SELECT
                         FROM
                               people
                         JOTN.
                               json ...""")
```

(日) (四) (日) (日) (日)

Simba is an extension of Spark SQL across the system stack.

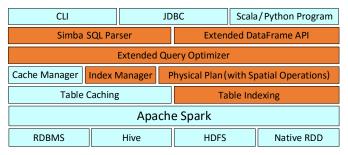


Figure 1: Simba architecture.

Simba is an extension of Spark SQL across the system stack.

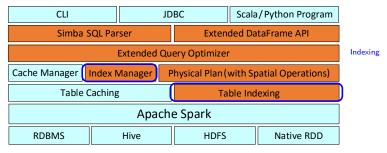


Figure 1: Simba architecture.

< □ > < 凸

Simba is an extension of Spark SQL across the system stack.

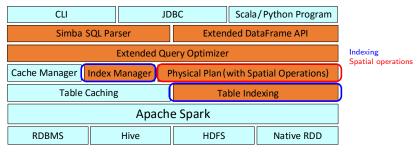


Figure 1: Simba architecture.

< □ > < 凸

Simba is an extension of Spark SQL across the system stack.

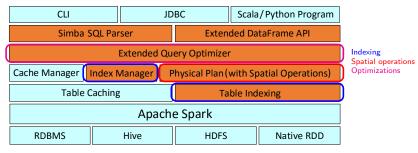


Figure 1: Simba architecture.

3

Simba is an extension of Spark SQL across the system stack¹.

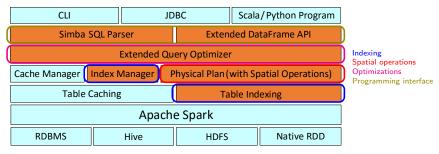


Figure 1: Simba architecture.

-

< □ > < 凸

¹a "bit" different in last version over Spark 2.X

Outline

1 Simba Architecture Overview

• Programming Interface

- Indexing
- Spatial Operations
- Optimization

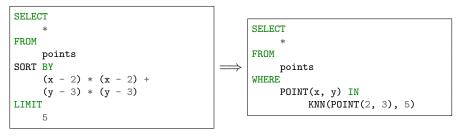
2 A simple example

3 Conclusions

Programming Interface

• Support rich query types natively in the kernel...

• The 5 nearest entries to point (2,3).



< □ > < □ > < □ > < □ > < □ > < □ >

Spatial Predicates

- RANGE, CIRCLERANGE and KNN...
 - Show me the points inside a rectangle:

```
SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN RANGE(POINT(10, 5), POINT(15, 8)).
```

• Show me the points laying 10m around:

```
SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN CIRCLERANGE(POINT(4, 5), 10)
```

Show me the 3 nearest points:

```
SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN KNN(POINT(4, 5), 3)
```

< □ > < □ > < □ > < □ > < □ > < □ >

Spatial Joins

• KNN JOIN and DISTANCE JOIN...

List the 5 nearest hotels around Points of Interest.

```
SELECT

*

FROM

hotels AS h

KNN JOIN

pois AS p

ON

POINT(p.x, p.y) IN KNN(POINT(h.x, h.y), 5)
```

• Show me drones that are close to each other (less that 20m).

```
SELECT

*

FROM

drones AS d1

DISTANCE JOIN

drones AS d2

ON

POINT(d2.x, d2.y, d2.z) IN CIRCLERANGE(POINT(d1.x, d1.y, d1.z), 20.0).
```

(日) (四) (日) (日) (日)

Index Management

- CREATE INDEX and DROP INDEX...
 - Create a 3D index on the sensor table using a R-tree:

```
CREATE INDEX pointIndex ON sensor(x, y, z) USE RTREE
```

DROP INDEX pointIndex ON sensor

• Generic use:

CREATE INDEX idx_name ON $R(x_1, ..., x_m)$ USE idx_type

```
DROP INDEX idx_name ON table_name
```

Dataset/Dataframe API:

```
dataset.index(RTreeType, "rtDataset", Array("x", "y"))
dataset.dropIndex()
```

▶ ▲ 臣 ▶ ▲

Compound Queries

- Fully compatible with standard SQL operators...
 - Let's count the number of restaurants around 200m of a POI (sort locations by the count):

```
SELECT

p.id, count(*) AS n

FROM

pois AS p

DISTANCE JOIN

restaurants AS r

ON

POINT(r.lat, r.lng) IN CIRCLERANGE(POINT(p.lat, p.lng), 200.0)

GROUP BY

p.id

ORDER BY

n
```

→ ∃ →

Dataset/DataFrame Support

- Same level of flexibility for Dataset/DataFrames...
 - Let's count the number of restaurants around 200m of a POI (sort locations by the count):

```
pois.distanceJoin(restaurants, Array("pois_lat",

→ "pois_lon"), Array("rest_lat", "rest_lon"), 200.0)

.groupBy(pois("id"))

.agg(count("*").as("n"))

.sort("n").show()
```

 Updated examples at https://github.com/InitialDLab/Simba/.../examples

Outline

1 Simba Architecture Overview

• Programming Interface

Indexing

- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

Table Indexing

- In Spark SQL:
 - Record ightarrow Row
 - Table \rightarrow RDD[Row]
- Spark SQL makes a full scan of RDDs.
 - Inefficient for spatial queries!!!
- Solution: native two-level indexing over RDDs

Table Indexing

IndexRDD

- Pack all Row objects within a RDD partition into an array (O(1) cost for access).
- IPartition data structure:
 - case class IPartition[Type](Data: Array[Type], I: Index)
 - Index can be HashMap, TreeMap or RTree.
- So, by using Type=Row:
 - type IndexRDD[Row] = RDD[IPartition[Row]]

Two-level indexing strategy

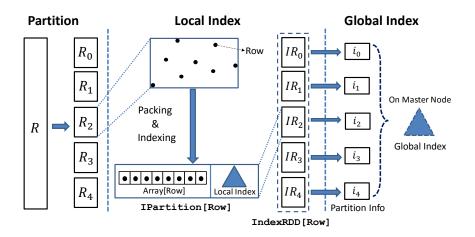


Image: Image:

Three-Phases Index Construction

Partition

- Concerns: Partition size, Data locality and Load balancing.
- Partitioner abstract class.
- STRPartitioner (based on Sort-Tile-Recursive algorithm) by default².

Local Index

- $RDD[Row] \rightarrow IndexRDD[Row].$
- Collects statistics from each partition (number of records, partition boundaries, ...).

Global Index

- Enables to prune irrelevant partitions.
- Can use different types of indexes³ and keep them in memory.

²https://github.com/InitialDLab/Simba/.../index

 $^{^{3}}$ https://github.com/InitialDLab/Simba/.../partitioner

Outline

Simba Architecture Overview

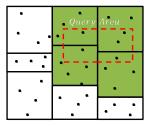
- Programming Interface
- Indexing
- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

Range Queries

- range(Q, R)
- Two steps: Global filtering + Local processing.



SELECT * FROM points p WHERE POINT(p.x, p.y) IN RANGE(POINT(5,5), POINT(10,8))

Range Queries

```
case class PointData(x: Double, y: Double, z: Double, other: String)
```

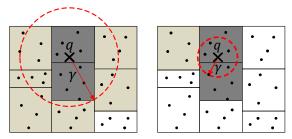
```
import simba.implicits._
val points = Seq(PointData(1.0, 1.0, 3.0, "1"),
    PointData(2.0, 2.0, 3.0, "2"),
    PointData(2.0, 2.0, 3.0, "3"),
    PointData(2.0, 2.0, 3.0, "4"),
    PointData(3.0, 3.0, 3.0, "5"),
    PointData(4.0, 4.0, 3.0, "6")).toDS()
```

```
import simba.simbaImplicits._
points.range(Array("x", "y"),Array(1.0, 1.0),Array(3.0, 3.0)).show(10)
```

< □ > < □ > < □ > < □ > < □ > < □ >

kNN Queries

- *kNN*(*q*, *R*)
- Good performance thanks to:
 - Local indexes.
 - Pruning bound that is sufficient to cover global kNN results.



(a) Loose Pruning Bound (b) Refined Pruning Bound

SELECT * FROM points p WHERE POINT(p.x, p.y) IN KNN(POINT(5,8), 5)

kNN Queries

```
case class PointData(x: Double, y: Double, z: Double, other: String)
```

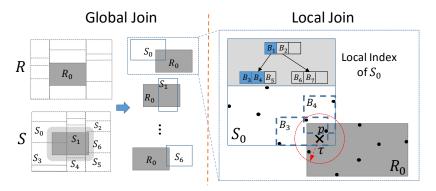
```
import simba.implicits._
val points = Seq(PointData(1.0, 1.0, 3.0, "1"),
    PointData(2.0, 2.0, 3.0, "2"),
    PointData(2.0, 2.0, 3.0, "3"),
    PointData(2.0, 2.0, 3.0, "4"),
    PointData(3.0, 3.0, 3.0, "5"),
    PointData(4.0, 4.0, 3.0, "6")).toDS()
```

```
import simba.simbaImplicits._
points.knn(Array("x", "y"), Array(1.0, 1.0), 4).show()
```

.

Distance Join

- $\bullet \ R \bowtie_\tau S$
- DJSpark algorithm.



SELECT * FROM R DISTANCE JOIN S ON POINT(S.x, S.y) IN CIRCLERANGE(POINT(R.x, R.y), 5.0)

Image: Image:

Distance Join

```
case class PointData(x: Double, y: Double, z: Double, other: String)
```

```
import simba.implicits._
val DS1 = (0 until 10000)
.map(x => PointData(x, x + 1, x + 2, x.toString))
.toDS
val DS2 = (0 until 10000)
.map(x => PointData(x, x, x + 1, x.toString))
.toDS
```

```
import simba.simbaImplicits._
DS1.distanceJoin(DS2, Array("x", "y"), Array("x", "y"), 3.0).show()
```

< □ > < 同 > < 回 > < 回 > < 回 >

kNN Join

- $R \bowtie_{kNN} S$
- General methodology:
 - Producing buckets: R and S are divided into n₁ (n₂) equal-sized blocks. Every pair of blocks (R_i, S_j) are shuffled to a bucket.
 - **2** Local kNN join:Performs $kNN(r, S_j)$ for every $r \in R$
 - **(3)** Merge: Finds global kNN of every $r \in R$ among its n_2k local kNNs.

kNN Join

```
case class PointData(x: Double, y: Double, z: Double, other: String)
```

```
import simba.implicits._
val DS1 = (0 until 10000)
   .map(x => PointData(x, x + 1, x + 2, x.toString))
   .toDS
val DS2 = (0 until 10000)
   .map(x => PointData(x, x, x + 1, x.toString))
   .toDS
```

```
import simba.simbaImplicits._
DS1.knnJoin(DS2, Array("x", "y"), Array("x", "y"), 3).show()
```

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

Simba Architecture Overview

- Programming Interface
- Indexing
- Spatial Operations
- Optimization
- 2 A simple example

3 Conclusions

Why does it extend Catalyst?

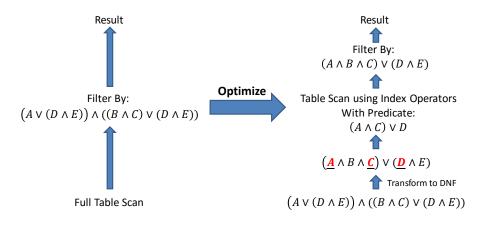
- The number of partition plays an important role in performance tuning.
- Spatial indexes demands new logical optimization rules and spatial predicates management.
- Indexing optimization cause more overheads than savings (Cost based optimization).

Partition estimation

- Cost model to estimate partition size:
 - Use of a sampling based approach to build estimators.
- Cost model + Partition strategy:
 - Partitions are balanced.
 - 2 Each partition fits in memory.
 - Sumber of partitions proportional to number of workers.

Optimization

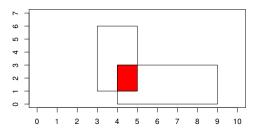
Index awareness optimizations



Spark + Simba

Spatial predicates merging

- Geometric properties to merge spatial predicates.
 - i.e. x > 3 AND x < 5 AND y > 1 AND y < 6 can be merged into a range query on (POINT(3, 1), POINT(5, 6)).
 - i.e. Two conjunctive range queries on (POINT(3, 1), POINT(5, 6)) AND (POINT(4, 0), POINT(9, 3)) can be merged into a single range query on (POINT(4, 1), POINT(5, 3)).



Selectivity + CBO

- Selectivity estimation + Cost-based Optimization.
 - Selectivity estimation over local indexes
 - Choose a proper plan: scan or use index.
- Broadcast join optimization: small table joins large table.
- Logical partitioning optimization for kNN joins.
 - Provides tighter pruning bounds.

Outline

Simba Architecture Overview

- Programming Interface
- Indexing
- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

A simple example...

```
package org.apache.spark.sql.simba.examples
import org.apache.spark.sql.simba.SimbaSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.catalyst.ScalaReflection
object Project {
  case class POI(pid: Long, tags: String, poi_lon: Double, poi_lat: Double)
 def main(args: Array[String]): Unit = {
   val simba = SimbaSession
      .builder()
      .master("local[4]")
      .appName("Project")
      .config("simba.index.partitions", "16")
      .getOrCreate()
```

< □ > < □ > < □ > < □ > < □ > < □ >

A simple example...

```
import simba.implicits._
import simba.simbaImplicits._
val schema = ScalaReflection.schemaFor[POI].dataType.asInstanceOf[StructType]
val pois = simba.read.
  option("header", "true").
  schema(schema).
  csv("/home/and/Documents/PhD/TA/CS236FinalProject/Datasets/POIs.csv").
  as [POI]
pois.show(truncate = false)
println(s"Number of records: ${pois.count()}")
simba.stop()
```

} }

A simple example...

	tags 		poi_lat
	amenity=pub	-65737.144394621	
26466690	amenity=pub,name:en=Maya	-65480.6907087017	3364134.1856800
26466717	amenity=pub	-61189.2883719679	3362555.3412958
26484067	amenity=parking	-65748.3494233086	3359156.8381801
26488397	amenity=cafe,name:en=Starbucks	-64758.6595641028	3364843.6202789
6607397	amenity=restaurant	-63449.5236124868	3361023.4712996
6882571	amenity=fuel,name:en=Sinopec	I-64517.7142340408	3367488.9244710
6932786	amenity=fuel,name:en=Sinopec	I-60843.6688328821	3365846.1621033
7117771	amenity=pub	-65638.2572549942	3363934.5957398
7181039	amenity=cafe,name:en=Starbucks	<pre> -62686.3406153971</pre>	3362704.1164048
	amenity=cafe,name:en=Starbucks	-62773.2588839596	
7246222	amenity=restaurant,name:en=New White Deer Restaurant	-62984.0964777985	3363947.5076050
7262500	amenity=fast_food,name:en=KFC	I-62543.1297553628	3363095.0749038
7262504	amenity=fast_food,name:en=KFC	I-62620.7551165471	3363061.8776093
7262513	amenity=fast_food,name:en=KFC	-66170.913779046	3365787.8725438
7262517	amenity=restaurant,name:en=Chuan Wei Guan	-61980.578202843	3363451.9495399
27446997	amenity=bus_station,name:en=Hangzhou West Bus Station	-69565.5633025697	3364138.2374998

only showing top 20 rows

Number of records: 61660

• • • • • • • • • • • •

Outline

Simba Architecture Overview

- Programming Interface
- Indexing
- Spatial Operations
- Optimization

2 A simple example

3 Conclusions

- Simba: A distributed in-memory spatial analytics engine.
- Indexing support for efficient query processing.
- Spatial operator implementation tailored towards Spark.
- Spatial and index-aware optimizations.
- User-friendly SQL and DataFrame API.
- Superior performance compared against other systems.

Thank you!!!

Do you have any question?

April 24, 2018 46 / 46