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Is there room for improvements?

Why do we need a new tool???
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Introduction

Yes, there is!!!

Problems of Existing Systems...

Single node database (low scalability)
ArcGIS, PostGIS, Oracle Spatial.

Disk-oriented cluster computation (low performance)
Hadoop-GIS, SpatialHadoop, GeoMesa.

No sophisticated query planner and optimizer
SpatialSpark, GeoSpark

No native support for spatial operators
Spark SQL, MemSQL
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Introduction

Contributions

Simba: Spatial In Memory Big data Analytics.
1 Extends Spark SQL to support spatial queries and offers simple APIs

for both SQL and DataFrame.
2 Support two-layer spatial indexing over RDDs (low latency).
3 Designs a SQL context to run important spatial operations in parallel

(high throughput).
4 Introduces spatial-aware and cost-based optimizations to select good

spatial plans.
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Simba Architecture Overview

Spark SQL Overview

Spark SQL is Apache Spark’s module for working with structured data.

Seamlessly mixes SQL queries with Spark programs.

Connects to any data source the same way.

Includes a highly extensible cost-based optimizer (Catalyst).

Spark SQL is a full-fledged query engine based on the underlying
Spark core.
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Simba Architecture Overview

Spark SQL Overview

# Apply functions to results of SQL queries.

context = HiveContext(sc)

results = context.sql("""

SELECT

*

FROM

people""")

names = results.map(lambda p: p.name)

# Query and join different data sources.

context.jsonFile("s3n://...").registerTempTable("json")

results = context.sql("""

SELECT

*

FROM

people

JOIN

json ...""")
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Simba Architecture

Simba is an extension of Spark SQL across the system stack.
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Figure 1: Simba architecture.

in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited
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Figure 3: Data Representation in Simba.
from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.
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in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited
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from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.
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in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited
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from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.
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in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited
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from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.
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in DataFrame API also allows Simba to interact with other Spark
components easily, such as MLlib, GraphX, and Spark Streaming.
Lastly, we introduce index management commands to Simba’s pro-
gramming interface, in a way which is similar to that in traditional
RDBMS. We will describe Simba’s programming interface with
more details in Section 4 and Appendix A.
Indexing. Spatial queries are expensive to process, especially for
data in multi-dimensional space and complex operations like spatial
joins and kNN. To achieve better query performance, Simba intro-
duces the concept of indexing to its kernel. In particular, Simba
implements several classic index structures including hash maps,
tree maps, and R-trees [14, 23] over RDDs in Spark. Simba adopts
a two-level indexing strategy, namely, local and global indexing.
The global index collects statistics from each RDD partition and
helps the system prune irrelevant partitions. Inside each RDD par-
tition, local indexes are built to accelerate local query processing
so as to avoid scanning over the entire partition. In Simba, user can
build and drop indexes anytime on any table through index manage-
ment commands. By the construction of a new abstraction called
IndexRDD, which extends the standard RDD structure in Spark, in-
dexes can be made persistent to disk and loaded back together with
associated data to memory easily. We will describe the Simba’s
indexing support in Section 5.
Spatial operations. Simba supports a number of popular spatial
operations over point and rectangular objects. These spatial oper-
ations are implemented based on native Spark RDD API. Multiple
access and evaluation paths are provided for each operation, so that
the end users and Simba’s query optimizer have the freedom and
opportunities to choose the most appropriate method. Section 6
discusses how various spatial operations are supported in Simba.
Optimization. Simba extends the Catalyst optimizer of Spark SQL
and introduces a cost-based optimization (CBO) module that tailors
towards optimizing spatial queries. The CBO module leverages
the index support in Simba, and is able to optimize complex spa-
tial queries to make the best use of existing indexes and statistics.
Query optimization in Simba is presented in Section 7.
Workflow in Simba. Figure 2 shows the query processing work-
flow of Simba. Simba begins with a relation to be processed, either
from an abstract syntax tree (AST) returned by the SQL parser or
a DataFrame object constructed by the DataFrame API. In both
cases, the relation may contain unresolved attribute references or
relations. An attribute or a relation is called unresolved if we do
not know its type or have not matched it to an input table. Simba
resolves such attributes and relations using Catalyst rules and a
Catalog object that tracks tables in all data sources to build log-
ical plans. Then, the logical optimizer applies standard rule-based
optimization, such as constant folding, predicate pushdown, and
spatial-specific optimizations like distance pruning, to optimize the
logical plan. In the physical planning phase, Simba takes a logical
plan as input and generates one or more physical plans based on
its spatial operation support as well as physical operators inherited

SQL Query

DataFrame
API

Optimized
Logical Plan

Logical Plan
Physical

Plans
Selected

Physical Plan
Simba Parser RDDs

Catalog

Index Manager

Cache Manager

Statistics

Analysis
Logical

Optimization
Physical
Planning

Cost-Based
Optimization

Figure 2: Query processing workflow in Simba.
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Figure 3: Data Representation in Simba.
from Spark SQL. It then applies cost-based optimizations based
on existing indexes and statistics collected in both Cache Manager
and Index Manager to select the most efficient plan. The phys-
ical planner also performs rule-based physical optimization, such
as pipelining projections and filters into one Spark map operation.
In addition, it can push operations from the logical plan into data
sources that support predicate or projection pushdown. In Figure 2,
we highlight the components and procedures where Simba extends
Spark SQL with orange color.

Simba supports analytical jobs on various data sources such as
CVS, JSON and Parquet [5]. Figure 3 shows how data are rep-
resented in Simba. Generally speaking, each data source will be
transformed to an RDD of records (i.e., RDD[Row]) for further
evaluation. Simba allows users to materialize (often referred as
“cache”) hot data in memory using columnar storage, which can
reduce memory footprint by an order of magnitude because it re-
lies on columnar compression schemes such as dictionary encoding
and run-length encoding. Besides, user can build various indexes
(e.g. hash maps, tree maps, R-trees) over different data sets to ac-
celerate interactive query processing.
Novelty and contributions. To the best of our knowledge, Simba
is the first full-fledged (i.e., support SQL and DataFrame with a
sophisticated query engine and query optimizer) in-memory spa-
tial query and analytics engine over a cluster of machines. Even
though our architecture is based on Spark SQL, achieving efficient
and scalable spatial query parsing, spatial indexing, spatial query
algorithms, and a spatial-aware query engine in an in-memory, dis-
tributed and parallel environment is still non-trivial, and requires
significant design and implementation efforts, since Spark SQL is
tailored to relational query processing. In summary,
• We propose a system architecture that adapts Spark SQL to

support rich spatial queries and analytics.
• We design the two-level indexing framework and a new RDD

abstraction in Spark to build spatial indexes over RDDs na-
tively inside the engine.
• We give novel algorithms for executing spatial operators with

efficiency and scalability, under the constraints posed by the
RDD abstraction in a distributed and parallel environment.
• Leveraging the spatial index support, we introduce new logi-

cal and cost-based optimizations in a spatial-aware query op-
timizer; many such optimizations are not possible in Spark
SQL due to the lack of support for spatial indexes. We also
exploit partition tuning and query optimizations for specific
spatial operations such as kNN joins.
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Programming Interface

Support rich query types natively in the kernel...
The 5 nearest entries to point (2,3).

SELECT

*

FROM

points

SORT BY

(x - 2) * (x - 2) +

(y - 3) * (y - 3)

LIMIT

5

=⇒

SELECT

*

FROM

points

WHERE

POINT(x, y) IN

KNN(POINT(2, 3), 5)
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Spatial Predicates

RANGE, CIRCLERANGE and KNN...
Show me the points inside a rectangle:

SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN RANGE(POINT(10, 5), POINT(15, 8)).

Show me the points laying 10m around:

SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN CIRCLERANGE(POINT(4, 5), 10)

Show me the 3 nearest points:

SELECT

*

FROM

points p

WHERE

POINT(p.x, p.y) IN KNN(POINT(4, 5), 3)

Spark + Simba April 24, 2018 15 / 46
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Spatial Joins

KNN JOIN and DISTANCE JOIN...
List the 5 nearest hotels around Points of Interest.

SELECT

*

FROM

hotels AS h

KNN JOIN

pois AS p

ON

POINT(p.x, p.y) IN KNN(POINT(h.x, h.y), 5)

Show me drones that are close to each other (less that 20m).

SELECT

*

FROM

drones AS d1

DISTANCE JOIN

drones AS d2

ON

POINT(d2.x, d2.y, d2.z) IN CIRCLERANGE(POINT(d1.x, d1.y, d1.z), 20.0).
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Index Management

CREATE INDEX and DROP INDEX...

Create a 3D index on the sensor table using a R-tree:

CREATE INDEX pointIndex ON sensor(x, y, z) USE RTREE

DROP INDEX pointIndex ON sensor

Generic use:
CREATE INDEX idx_name ON R(x1, ..., xm) USE idx_type

DROP INDEX idx_name ON table_name

Dataset/Dataframe API:

dataset.index(RTreeType, "rtDataset", Array("x", "y"))

dataset.dropIndex()

Spark + Simba April 24, 2018 17 / 46
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Compound Queries

Fully compatible with standard SQL operators...

Let’s count the number of restaurants around 200m of a POI (sort
locations by the count):

SELECT

p.id, count(*) AS n

FROM

pois AS p

DISTANCE JOIN

restaurants AS r

ON

POINT(r.lat, r.lng) IN CIRCLERANGE(POINT(p.lat, p.lng), 200.0)

GROUP BY

p.id

ORDER BY

n
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Dataset/DataFrame Support

Same level of flexibility for Dataset/DataFrames...

Let’s count the number of restaurants around 200m of a POI (sort
locations by the count):

pois.distanceJoin(restaurants, Array("pois_lat",

"pois_lon"), Array("rest_lat", "rest_lon"), 200.0)↪→

.groupBy(pois("id"))

.agg(count("*").as("n"))

.sort("n").show()

Updated examples at
https://github.com/InitialDLab/Simba/.../examples

Spark + Simba April 24, 2018 19 / 46
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Table Indexing

In Spark SQL:

Record → Row

Table → RDD[Row]

Spark SQL makes a full scan of RDDs.

Inefficient for spatial queries!!!

Solution: native two-level indexing over RDDs

Spark + Simba April 24, 2018 21 / 46
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Table Indexing

IndexRDD

Pack all Row objects within a RDD partition into an array (O(1) cost
for access).
IPartition data structure:

case class IPartition[Type](Data: Array[Type], I: Index)

Index can be HashMap, TreeMap or RTree.

So, by using Type=Row:

type IndexRDD[Row] = RDD[IPartition[Row]]
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Two-level indexing strategy
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Figure 4: Two-level indexing strategy in Simba.
key. Spark provides two predefined partitioners, range partitioner
and hash partitioner, which is sufficient when the partition key is
one-dimensional, but does not fit well to multi-dimensional cases.

To address this problem, we have defined a new partitioner named
STRPartitioner in Simba. STRPartitioner takes a set of
random samples from the input table and runs the first iteration
of Sort-Tile-Recursive (STR) algorithm [26] to determine partition
boundaries. Note that the boundaries generated by the STR algo-
rithm are minimum bounded rectangles (MBRs) of the samples.
Thus, we need to extend theses MBRs so that they can properly
cover the space of the original data set. Finally, according to these
extended boundaries, STRPartitioner specifies which parti-
tion each record belongs to.

Simba makes no restriction on partition strategies. Instead of
using STRPartitioner, an end user can always supply his/her
own partitioner to Simba. We choose STRPartitioner as the
default partitioner of Simba due to its simplicity and proven effec-
tiveness by existing studies [19]. As shown in Figure 4, we assume
the input tableR is partitioned into a set of partitions {R1, . . . , Rm}
by the partitioner. The number of partitions, m, is determined by
Simba’s optimizer which will be discussed in Section 7.
Local index. In this phase, Simba builds a user-specified index
(e.g. R-tree) over data in each partition Ri as its local index. It
also alters the storage format of the input table from RDD[Row]
to IndexRDD[Row], by converting each RDD partition Ri to an
IPartition[Row] object, as shown in Figure 4.

Specifically, for each partition Ri, records are packed into an
Array[Row] object. Then, Simba builds a local index over this
Array[Row], and co-locates them in the IPartition[Row]
object. As we can see, the storage format of the input table is no
longer an RDD of Row objects, but an RDD of IPartition[Row]
objects, which is an IndexRDD of Row objects by the definition
above. While packing partition data and building local indexes,
Simba also collects several statistics from each partition, such as
the number of records and the partition boundaries, to facilitate the
construction of the global index as illustrated in Figure 4.
Global index. The last phase of index construction is to build a
global index which indexes all partitions. The global index enables
us to prune irrelevant partitions for an input query without invoking
many executors to look at data stored in different partitions.

In this phase, partition boundaries generated by the partitioner
and other statistics collected in the local index phase are sent to
the master node. Such information is utilized to bulk load an in-
memory index, which is stored in the driver program on the master
node. Users can specify different types of global indexes: When in-
dexing one-dimensional data, a sorted array of the range boundaries
is sufficient (the record count and other statistics for each partition
are also stored in each array element). In multi-dimensional cases,
more complex index structures, such as R-tree [14, 23] or KD-tree,
can be used. By default, Simba keeps the global indexes for differ-
ent tables in the memory of the master node at all time (i.e., in its

 

 

(a) Loose Pruning Bound

 

 

(b) Refined Pruning Bound
Figure 5: Pruning bound for kNN query at global index.

driver program). Nevertheless, Simba also allows users to persist
global indexes and corresponding statistics to the file system.

Even for big data, the number of partitions is not very large (from
several hundreds to tens of thousands). Thus, global index can eas-
ily fit in the memory of the master node. As shown in Figure 9(b) of
our experiments, the global index only consumes less than 700KB
for our largest data set with 4.4 billion records.

6. SPATIAL OPERATIONS
Simba introduces new physical execution plans to Spark SQL for

spatial operations. In particular, the support for local and global in-
dexes enables Simba to explore and design new efficient algorithms
for classic spatial operations in the context of Spark. Since range
query is the simplest, we present its details in Appendix B.

6.1 kNN Query
In Spark SQL, a kNN query can be processed in two steps: (1)

calculate distances from all points in the table to the query point;
(2) take k records with minimum distances. This procedure can
be naturally expressed as an RDD action takeOrdered, where
users can specify a comparison function and a value k to select k
minimum elements from the RDD. However, this solution involves
distance computation for every record, a top k selection on each
RDD partition, and shuffling of large intermediate results.

In Simba, kNN queries achieve much better performance by uti-
lizing indexes. It leverages two observations: (1) inside each parti-
tion, fast kNN selection over the local data is possible by utilizing
the local index; (2) a tight pruning bound that is sufficient to cover
the global kNN results can help pruning irrelevant partitions using
the global index. The first observation is a simple application of
classic kNN query algorithms using spatial index like R-tree [31].
The second observation deserves some discussion.

Intuitively, any circle centered at the query point q covering at
least k points from R is a safe pruning bound. To get a tighter
bound, we shrink the radius γ of this circle. A loose pruning bound
can be derived using the global index. Simba finds the nearest par-
tition(s) to the query point q, which are sufficient to cover at least
k data points. More than one partition will be retrieved if the near-
est partition does not have k points (recall global index maintains
the number of records in each partition). The distance between q
and a partition Ri is defined as maxdist(q,mbr(Ri)) [31]. With-
out loss of generality, assume the following MBRs are returned:
{mbr(R1), . . . ,mbr(R`)}. Then γ = max{maxdist(q,mbr(R1)),
. . . ,maxdist(q,R`)} is a safe pruning bound. Figure 5(a) shows
an example of this bound as a circle centered at q. The dark boxes
are the nearest MBRs retrieved to cover at least k points which
help deriving the radius γ. The dark and gray boxes are partitions
selected by the global index according to this pruning bound.

To tighten this bound, Simba issues a kNN query on the ` par-
titions selected from the first step (i.e., two partitions with dark
boxes in Figure 5(a)), and takes the k-th minimum distance from
q to the k` candidates returned from these partitions as γ. Figure
5(b) shows this new pruning bound which is much tighter in prac-

1076

Spark + Simba April 24, 2018 23 / 46



Simba Architecture Overview Indexing

Three-Phases Index Construction

Partition
Concerns: Partition size, Data locality and Load balancing.
Partitioner abstract class.
STRPartitioner (based on Sort-Tile-Recursive algorithm) by default2.

Local Index
RDD[Row] → IndexRDD[Row].
Collects statistics from each partition (number of records, partition
boundaries, ...).

Global Index
Enables to prune irrelevant partitions.
Can use different types of indexes3 and keep them in memory.

2
https://github.com/InitialDLab/Simba/.../index

3
https://github.com/InitialDLab/Simba/.../partitioner
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Range Queries

range(Q,R)

Two steps: Global filtering + Local processing.

 

SELECT * FROM points p WHERE POINT(p.x, p.y) IN RANGE(POINT(5,5), POINT(10,8))
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Range Queries

case class PointData(x: Double, y: Double, z: Double, other: String)

import simba.implicits._

val points = Seq(PointData(1.0, 1.0, 3.0, "1"),

PointData(2.0, 2.0, 3.0, "2"),

PointData(2.0, 2.0, 3.0, "3"),

PointData(2.0, 2.0, 3.0, "4"),

PointData(3.0, 3.0, 3.0, "5"),

PointData(4.0, 4.0, 3.0, "6")).toDS()

import simba.simbaImplicits._

points.range(Array("x", "y"),Array(1.0, 1.0),Array(3.0, 3.0)).show(10)
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kNN Queries

kNN(q,R)

Good performance thanks to:

Local indexes.
Pruning bound that is sufficient to cover global kNN results.

Partition
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Indexing
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Figure 4: Two-level indexing strategy in Simba.
key. Spark provides two predefined partitioners, range partitioner
and hash partitioner, which is sufficient when the partition key is
one-dimensional, but does not fit well to multi-dimensional cases.

To address this problem, we have defined a new partitioner named
STRPartitioner in Simba. STRPartitioner takes a set of
random samples from the input table and runs the first iteration
of Sort-Tile-Recursive (STR) algorithm [26] to determine partition
boundaries. Note that the boundaries generated by the STR algo-
rithm are minimum bounded rectangles (MBRs) of the samples.
Thus, we need to extend theses MBRs so that they can properly
cover the space of the original data set. Finally, according to these
extended boundaries, STRPartitioner specifies which parti-
tion each record belongs to.

Simba makes no restriction on partition strategies. Instead of
using STRPartitioner, an end user can always supply his/her
own partitioner to Simba. We choose STRPartitioner as the
default partitioner of Simba due to its simplicity and proven effec-
tiveness by existing studies [19]. As shown in Figure 4, we assume
the input tableR is partitioned into a set of partitions {R1, . . . , Rm}
by the partitioner. The number of partitions, m, is determined by
Simba’s optimizer which will be discussed in Section 7.
Local index. In this phase, Simba builds a user-specified index
(e.g. R-tree) over data in each partition Ri as its local index. It
also alters the storage format of the input table from RDD[Row]
to IndexRDD[Row], by converting each RDD partition Ri to an
IPartition[Row] object, as shown in Figure 4.

Specifically, for each partition Ri, records are packed into an
Array[Row] object. Then, Simba builds a local index over this
Array[Row], and co-locates them in the IPartition[Row]
object. As we can see, the storage format of the input table is no
longer an RDD of Row objects, but an RDD of IPartition[Row]
objects, which is an IndexRDD of Row objects by the definition
above. While packing partition data and building local indexes,
Simba also collects several statistics from each partition, such as
the number of records and the partition boundaries, to facilitate the
construction of the global index as illustrated in Figure 4.
Global index. The last phase of index construction is to build a
global index which indexes all partitions. The global index enables
us to prune irrelevant partitions for an input query without invoking
many executors to look at data stored in different partitions.

In this phase, partition boundaries generated by the partitioner
and other statistics collected in the local index phase are sent to
the master node. Such information is utilized to bulk load an in-
memory index, which is stored in the driver program on the master
node. Users can specify different types of global indexes: When in-
dexing one-dimensional data, a sorted array of the range boundaries
is sufficient (the record count and other statistics for each partition
are also stored in each array element). In multi-dimensional cases,
more complex index structures, such as R-tree [14, 23] or KD-tree,
can be used. By default, Simba keeps the global indexes for differ-
ent tables in the memory of the master node at all time (i.e., in its
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(b) Refined Pruning Bound
Figure 5: Pruning bound for kNN query at global index.

driver program). Nevertheless, Simba also allows users to persist
global indexes and corresponding statistics to the file system.

Even for big data, the number of partitions is not very large (from
several hundreds to tens of thousands). Thus, global index can eas-
ily fit in the memory of the master node. As shown in Figure 9(b) of
our experiments, the global index only consumes less than 700KB
for our largest data set with 4.4 billion records.

6. SPATIAL OPERATIONS
Simba introduces new physical execution plans to Spark SQL for

spatial operations. In particular, the support for local and global in-
dexes enables Simba to explore and design new efficient algorithms
for classic spatial operations in the context of Spark. Since range
query is the simplest, we present its details in Appendix B.

6.1 kNN Query
In Spark SQL, a kNN query can be processed in two steps: (1)

calculate distances from all points in the table to the query point;
(2) take k records with minimum distances. This procedure can
be naturally expressed as an RDD action takeOrdered, where
users can specify a comparison function and a value k to select k
minimum elements from the RDD. However, this solution involves
distance computation for every record, a top k selection on each
RDD partition, and shuffling of large intermediate results.

In Simba, kNN queries achieve much better performance by uti-
lizing indexes. It leverages two observations: (1) inside each parti-
tion, fast kNN selection over the local data is possible by utilizing
the local index; (2) a tight pruning bound that is sufficient to cover
the global kNN results can help pruning irrelevant partitions using
the global index. The first observation is a simple application of
classic kNN query algorithms using spatial index like R-tree [31].
The second observation deserves some discussion.

Intuitively, any circle centered at the query point q covering at
least k points from R is a safe pruning bound. To get a tighter
bound, we shrink the radius γ of this circle. A loose pruning bound
can be derived using the global index. Simba finds the nearest par-
tition(s) to the query point q, which are sufficient to cover at least
k data points. More than one partition will be retrieved if the near-
est partition does not have k points (recall global index maintains
the number of records in each partition). The distance between q
and a partition Ri is defined as maxdist(q,mbr(Ri)) [31]. With-
out loss of generality, assume the following MBRs are returned:
{mbr(R1), . . . ,mbr(R`)}. Then γ = max{maxdist(q,mbr(R1)),
. . . ,maxdist(q,R`)} is a safe pruning bound. Figure 5(a) shows
an example of this bound as a circle centered at q. The dark boxes
are the nearest MBRs retrieved to cover at least k points which
help deriving the radius γ. The dark and gray boxes are partitions
selected by the global index according to this pruning bound.

To tighten this bound, Simba issues a kNN query on the ` par-
titions selected from the first step (i.e., two partitions with dark
boxes in Figure 5(a)), and takes the k-th minimum distance from
q to the k` candidates returned from these partitions as γ. Figure
5(b) shows this new pruning bound which is much tighter in prac-
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SELECT * FROM points p WHERE POINT(p.x, p.y) IN KNN(POINT(5,8), 5)

Spark + Simba April 24, 2018 28 / 46



Simba Architecture Overview Spatial Operations

kNN Queries

case class PointData(x: Double, y: Double, z: Double, other: String)

import simba.implicits._

val points = Seq(PointData(1.0, 1.0, 3.0, "1"),

PointData(2.0, 2.0, 3.0, "2"),

PointData(2.0, 2.0, 3.0, "3"),

PointData(2.0, 2.0, 3.0, "4"),

PointData(3.0, 3.0, 3.0, "5"),

PointData(4.0, 4.0, 3.0, "6")).toDS()

import simba.simbaImplicits._

points.knn(Array("x", "y"), Array(1.0, 1.0), 4).show()
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Distance Join

R onτ S

DJSpark algorithm.

tice. Note that ` is small for typical k values (often ` = 1), thus,
this step has very little overhead.

Global index returns the partition IDs whose MBRs intersect
with the circle centered at q with radius γ, Simba marks these par-
titions using PartitionPruningRDD and invokes local kNN
queries using the aforementioned observation (1). Finally, it merges
the k candidates from each of such partitions and takes the k records
with minimum distances to q using RDD action takeOrdered.

6.2 Distance Join
Distance join is a θ-join between two tables. Hence, we can

express a distance join R 110.0 S in Spark SQL as:
SELECT * FROM R JOIN S
ON (R.x - S.x) * (R.x - S.x) + (R.y - S.y) * (R.y - S.y)

<= 10.0 * 10.0

Spark SQL has to use the Cartesian product of two input tables
for processing θ-joins. It then filters from the Cartesian product
based on the join predicates. Producing the Cartesian product is
rather costly in Spark: If two tables are roughly of the same size, it
leads to O(n2) cost when each table has n partitions.

Most systems reviewed in Section 2 did not study distance joins.
Rather, they studied spatial joins: it takes two tablesR and S (each
is a set of geometric objects such as polygons), and a spatial join
predicate θ (e.g., overlaps, contains) as input, and returns
the set of all pairs (r, s) where r ∈ R, s ∈ S such that θ(r, s) is
true; θ(r, s) is evaluated as object r ‘θ’ (e.g., overlaps) object s.

That said, we design the DJSpark algorithm in Simba for dis-
tance joins. DJSpark consists of three steps: data partition, global
join, and local join, as shown in Figure 6.
Data partition. Data partition phase is to partition R and S so as
to preserve data locality where records that are close to each other
are likely to end up in the same partition. We also need to consider
partition size and load balancing issues. Therefore, we can re-use
the STRPartitioner introduced in Section 5. The main difference
is how we decide the partition size for R and S. Simba has to
ensure that it can keep two partitions (one from R and one from
S) rather than one (when handling single-relation operations like
range queries) in executors’ heap memory at the same time.

Note that the data partition phase can be skipped for R (or S) if
R (or S) has been already indexed.
Global join. Given the partitions of table R and table S, this step
produces all pairs (i, j) which may contribute any pair (r, s) such
that r ∈ Ri, s ∈ Sj , and |r, s| ≤ τ . Note that for each record s ∈
S, s matches with some records in Ri only if mindist(s,Ri) ≤
τ . Thus, Simba only needs to produce the pairs (i, j) such that
mindist(Ri, Sj) ≤ τ . After generating these candidate pairs of
partition IDs, Simba produces a combined partition P = {Ri, Sj}
for each pair (i, j). Then, these combined partitions are sent to
workers for processing local joins in parallel.
Local join. Given a combined partition P = {Ri, Sj} from the
global join, local join builds a local index over Sj on the fly (if S
is not already indexed). For each record r ∈ Ri, Simba finds all
s ∈ Sj such that |s, r| ≤ τ by issuing a circle range query centered
at r over the local index on Sj .

6.3 kNN Join
Several solutions [27,39] for kNN join were proposed on MapRe-

duce. In Simba, we have redesigned and implemented these meth-
ods with the RDD abstraction of Spark. Furthermore, we design a
new hash-join like algorithm, which shows the best performance.

6.3.1 Baseline methods
The most straightforward approach is the BKJSpark-N method

(block nested loop kNN join in Spark).
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Figure 6: The DJSpark algorithm in Simba.
Producing buckets. R (and S) is divided into n1 (n2) equal-sized
blocks, which simply puts every |R|/n1 (or |S|/n2) records into a
block. Next, every pair of blocks, i.e., (Ri, Sj) for i ∈ [1, n1], j ∈
[1, n2] are shuffled to a bucket (so a total of n1n2 buckets).
Local kNN join. Buckets are processed in parallel. Within each
bucket (Ri, Sj), Simba performs knn(r, Sj) for every r ∈ Ri
through a nested loop over Ri and Sj .
Merge. This step finds the global kNN of every r ∈ R among
its n2k local kNNs found in the last step (a total of |R|n2k candi-
dates). Simba runs reduceByKey (where the key is a record in
R) in parallel to get the global kNN of each record in R.

A simple improvement is to build a local R-tree index over Sj
for every bucket (Ri, Sj), and use the R-tree for local kNN joins.
We denoted it as BKJSpark-R (block R-tree kNN join in Spark).

6.3.2 Voronoi kNN Join and z-Value kNN Join
The baseline methods need to check roughly n2 buckets (when

O(n1) = O(n2) = O(n)), which is expensive for both compu-
tation and communication in distributed systems. A MapReduce
algorithm leveraging a Voronoi diagram based partitioning strategy
was proposed in [27]. It executes only n local joins by partition-
ing both R and S into n partitions respectively, where the partition
strategy is based on the Voronoi diagram for a set of pivot points
selected from R. In Simba, We adapt this approach and denote it
as the VKJSpark method (Voronoi kNN join in Spark).

Another MapReduce based algorithm for kNN join was pro-
posed in [39], which exploits z-values to map multi-dimensional
points into one dimension and uses random shift to preserve spatial
locality. This approach also produces n partitions for R and S re-
spectively, such that for any r ∈ Ri and i ∈ [1, n], knn(r, S) ⊆
knn(r, Si) with high probability. Thus, it is able to provide high
quality approximations using only n local joins. The partition step
is much simpler than the Voronoi kNN join, but it only provides
approximate results and there is an extra cost for producing exact
results in a post-processing step. We adapt this approach in Simba,
and denote it as ZKJSpark (z-value kNN join in Spark).

6.3.3 R-Tree kNN Join
We leverage indexes in Simba to design a simpler yet more effi-

cient method, the RKJSpark method (R-tree kNN join in Spark).
RKJSpark partitionsR into n partitions {R1, . . . , Rn} using the

STR partitioning strategy (as introduced in Section 5), which leads
to balanced partitions and preserves spatial locality. It then takes a
set of random samples S′ from S, and builds an R-tree T over S′

in the driver program on the master node.
The key idea in RKJSpark is to derive a distance bound γi for

each Ri, so that we can use γi, Ri, and T to find a subset Si ⊂ S
such that for any r ∈ Ri, knn(r, S) = knn(r, Si). This partition-
ing strategy ensures that R 1knn S = (R1 1knn S1)

⋃
(R2 1knn

S2)
⋃ · · ·⋃(Rn 1knn Sn), and allows the parallel execution of

only n local kNN joins (on each (Ri, Si) pair for i ∈ [1, n])).
We use cri to denote the centroid of mbr(Ri). First, for each

Ri, Simba finds the distance ui from the furthest point in Ri to cri
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SELECT * FROM R DISTANCE JOIN S ON POINT(S.x, S.y) IN CIRCLERANGE(POINT(R.x, R.y), 5.0)
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Distance Join

case class PointData(x: Double, y: Double, z: Double, other: String)

import simba.implicits._

val DS1 = (0 until 10000)

.map(x => PointData(x, x + 1, x + 2, x.toString))

.toDS

val DS2 = (0 until 10000)

.map(x => PointData(x, x, x + 1, x.toString))

.toDS

import simba.simbaImplicits._

DS1.distanceJoin(DS2, Array("x", "y"), Array("x", "y"), 3.0).show()
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kNN Join

R onkNN S

General methodology:
1 Producing buckets: R and S are divided into n1 (n2) equal-sized blocks.

Every pair of blocks (Ri ,Sj) are shuffled to a bucket.
2 Local kNN join:Performs kNN(r ,Sj) for every r ∈ R
3 Merge: Finds global kNN of every r ∈ R among its n2k local kNNs.
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kNN Join

case class PointData(x: Double, y: Double, z: Double, other: String)

import simba.implicits._

val DS1 = (0 until 10000)

.map(x => PointData(x, x + 1, x + 2, x.toString))

.toDS

val DS2 = (0 until 10000)

.map(x => PointData(x, x, x + 1, x.toString))

.toDS

import simba.simbaImplicits._

DS1.knnJoin(DS2, Array("x", "y"), Array("x", "y"), 3).show()
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Simba Architecture Overview Optimization

Why does it extend Catalyst?

1 The number of partition plays an important role in performance
tuning.

2 Spatial indexes demands new logical optimization rules and spatial
predicates management.

3 Indexing optimization cause more overheads than savings (Cost based
optimization).
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Partition estimation

Cost model to estimate partition size:

Use of a sampling based approach to build estimators.

Cost model + Partition strategy:
1 Partitions are balanced.
2 Each partition fits in memory.
3 Number of partitions proportional to number of workers.
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Index awareness optimizations

(i.e., ui = maxr∈Ri |r, cri|) in parallel. Simba collects these ui
values and centroids in the driver program on the master node.

Next, Simba finds knn(cri, S′) using the R-tree T for i ∈ [1, n].
Without loss of generality, suppose knn(cri, S

′) = {s1, . . . , sk}
(in ascending order of their distances to cri). Finally, Simba sets:

γi = 2ui + |cri, sk| for partition Ri, (1)
and finds Si = {s|s ∈ S, |cri, s| ≤ γi} using a circle range query
centered at cri with radius γi over S. This guarantees the desired
property described above, due to:
Theorem 1 For any partition Ri where i ∈ [1, n], we have:
∀r ∈ Ri, knn(r, S) ⊂ {s|s ∈ S, |cri, s| ≤ γi}, for γi defined in (1).
The proof is shown in Appendix C. This leads to the design of
RKJSpark. Specifically, for every s ∈ S, RKJSpark includes a
copy of s in Si if |cri, s| ≤ γi. Theorem 1 guarantees that for any
r ∈ Ri, knn(r, S) = knn(r, Si).

Then, Simba invokes a zipPartitions operation for each
i ∈ [1, n] to place Ri and Si together into one combined RDD par-
tition. In parallel, on each combined RDD partition, Simba builds
an R-tree over Si and executes a local kNN join by querying each
record from Ri over this tree. The union of these n outputs is the
final answer for R 1knn S.

7. OPTIMIZER AND FAULT TOLERANCE
7.1 Query Optimization

Simba tunes system configurations and optimizes complex spa-
tial queries automatically to make the best use of existing indexes
and statistics. We employed a cost model for determining a proper
number of partitions in different query plans. We also add new log-
ical optimization rules and cost-based optimizations to the Catalyst
optimizer and the physical planner of Spark SQL.

The number of partitions plays an important role in performance
tuning for Spark. A good choice on the number of partitions not
only guarantees no crashes caused by memory overflow, but also
improves system throughput and reduces query latency. Given the
memory available on a slave node in the cluster and the input table
size, Simba partitions the table so that each partition can fit into the
memory of a slave node and has roughly equal number of records
so as to ensure load balancing in the cluster.

Simba builds a cost model to estimate the partition size under
a given schema. It handles two cases: tables with fixed-length
records and tables with variable-length records. The first case is
easy and we omit its details. The case for variable-length record
is much harder, since it is difficult to estimate the size of a parti-
tion even if we know how many records are going into a partition.
Simba resolves this challenge using a sampling based approach,
i.e., a small set of samples (using sampling without replacement)
is taken to build estimators for estimating the size of different par-
titions, where the sampling probability of a record is proportional
to its length. This is a coarse estimation depending on the sam-
pling rate; but it is possible to formally analyze the performance of
this estimator with respect to a given partitioning strategy, and in
practice, this sampling approach is quite effective.

Using the cost model and a specified partition strategy, Simba
then computes a good value for the number of partitions such that:
1) partitions are balanced in size; 2) size of each partition fits the
memory size of a worker node; and 3) the total number of partitions
is proportional to the number of workers in the cluster. Note that
the size of different partitions should be close but not greater than
a threshold, which indicates how much heap memory Spark can
reserve for query processing. In Spark, on each slave node, a frac-
tion of memory is reserved for RDD caching, which is specified as
a system configuration spark.storage.memoryFraction

Filter By: 

                 

Full Table Scan

Table Scan using Index Operators
With Predicate:

     

                 

           

Filter By: 
           

Result Result

Transform to DNF

Optimize

Figure 7: Index scan optimization in Simba.
(we denote this value as α). In our cost model, the remaining mem-
ory will be evenly split to each processing core.

Suppose the number of cores is c and total memory reserved for
Spark on each slave node is M . The partition size threshold β is
then calculated as: β = λ((1 − α)M/c), where λ is a system pa-
rameter, whose default value is 0.8, to take memory consumption of
run-time data structures into consideration. With such cost model,
Simba can determine the number of records for a single partition,
and the numbers of partitions for different data sets.

To better utilize the indexing support in Simba, we add new rules
to the Catalyst optimizer to select those predicates which can be op-
timized by indexes. First, we transform the original select condition
to Disjunctive Normal Form (DNF), e.g. (A∧B)∨C∨(D∧E∧F ).
Then, we get rid of all predicates in the DNF clause which cannot
be optimized by indexes, to form a new select condition θ. Simba
will filter the input relation with θ first using index-based operators,
and then apply the original select condition to get the final answer.

Figure 7 shows an example of the index optimization. The select
condition on the input table is (A∨(D∧E))∧((B∧C)∨(D∧E)).
Assuming that A, C and D can be optimized by utilizing existing
indexes. Without index optimization, the engine (e.g., Spark SQL)
simply does a full scan on the input table and filters each record by
the select condition. By applying index optimization, Simba works
out the DNF of the select condition, which is (A∧B ∧C)∨ (D ∧
E), and invokes a table scan using index operators under a new
condition (A ∧ C) ∨D. Then, we filter the resulting relation with
original condition once more to get the final results.

Simba also exploits various geometric properties to merge spa-
tial predicates, to reduce the number of physical operations. Simba
merges multiple predicates into segments or bounding boxes, which
can be processed together without involving expensive intersec-
tions or unions on intermediate results. For example, x > 3 AND
x < 5 AND y > 1 AND y < 6 can be merged into a range
query on (POINT(3, 1), POINT(5, 6)), which is natively
supported in Simba as a single range query. Simba also merges
query segments or bounding boxes prior to execution. For instance,
two conjunctive range queries on (POINT(3, 1), POINT(5,
6)) and (POINT(4, 0), POINT(9, 3)) can be merged into
a single range query on (POINT(4, 1), POINT(5, 3)).

Index optimization improves performance greatly when the pred-
icates are selective. However, it may cause more overheads than
savings when the predicate is not selective or the size of input ta-
ble is small. Thus, Simba employs a new cost based optimization
(CBO), which takes existing indexes and statistics into considera-
tion, to choose the most efficient physical plans. Specifically, we
define the selectivity of a predicate for a partition as the percentage
of records in the partition that satisfy the predicate.

If the selectivity of the predicate is higher than a user-defined
threshold (by default 80%), Simba will choose to scan the parti-
tion rather than leveraging indexes. For example, for range queries,
Simba will first leverage the local index to do a fast estimation on
the predicate selectivity for each partition whose boundary inter-
sects the query area, using only the top levels of local indexes for
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DNF: Disjunctive Normal Form
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Spatial predicates merging

Geometric properties to merge spatial predicates.

i.e. x > 3 AND x < 5 AND y > 1 AND y < 6 can be merged into a range
query on (POINT(3, 1), POINT(5, 6)).
i.e. Two conjunctive range queries on
(POINT(3, 1), POINT(5, 6)) AND (POINT(4, 0), POINT(9, 3)) can be
merged into a single range query on (POINT(4, 1), POINT(5, 3)).
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Selectivity + CBO

Selectivity estimation + Cost-based Optimization.

Selectivity estimation over local indexes
Choose a proper plan: scan or use index.

Broadcast join optimization: small table joins large table.

Logical partitioning optimization for kNN joins.

Provides tighter pruning bounds.
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A simple example...

package org.apache.spark.sql.simba.examples

import org.apache.spark.sql.simba.SimbaSession

import org.apache.spark.sql.types.StructType

import org.apache.spark.sql.catalyst.ScalaReflection

object Project {

case class POI(pid: Long, tags: String, poi_lon: Double, poi_lat: Double)

def main(args: Array[String]): Unit = {

val simba = SimbaSession

.builder()

.master("local[4]")

.appName("Project")

.config("simba.index.partitions", "16")

.getOrCreate()

...
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A simple example...

...

import simba.implicits._

import simba.simbaImplicits._

val schema = ScalaReflection.schemaFor[POI].dataType.asInstanceOf[StructType]

val pois = simba.read.

option("header", "true").

schema(schema).

csv("/home/and/Documents/PhD/TA/CS236FinalProject/Datasets/POIs.csv").

as[POI]

pois.show(truncate = false)

println(s"Number of records: ${pois.count()}")

simba.stop()

}

}
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A simple example...

and@and-laptop:~$ spark-submit --class org.apache.spark.sql.simba.examples.Project

/home/and/Documents/PhD/TA/CS236FinalProject/Simba-master/target/scala-2.11/simba_2.11-1.0.jar↪→
+--------+-----------------------------------------------------+-----------------+----------------+

|pid |tags |poi_lon |poi_lat |

+--------+-----------------------------------------------------+-----------------+----------------+

|26466687|amenity=pub |-65737.144394621 |3363447.42056986|

|26466690|amenity=pub,name:en=Maya |-65480.6907087017|3364134.18568005|

|26466717|amenity=pub |-61189.2883719679|3362555.34129586|

|26484067|amenity=parking |-65748.3494233086|3359156.83818014|

|26488397|amenity=cafe,name:en=Starbucks |-64758.6595641028|3364843.62027897|

|26607397|amenity=restaurant |-63449.5236124868|3361023.47129964|

|26882571|amenity=fuel,name:en=Sinopec |-64517.7142340408|3367488.92447102|

|26932786|amenity=fuel,name:en=Sinopec |-60843.6688328821|3365846.16210334|

|27117771|amenity=pub |-65638.2572549942|3363934.59573984|

|27181039|amenity=cafe,name:en=Starbucks |-62686.3406153971|3362704.11640486|

|27181040|amenity=cafe,name:en=Starbucks |-62773.2588839596|3363103.01586046|

|27246222|amenity=restaurant,name:en=New White Deer Restaurant |-62984.0964777985|3363947.50760504|

|27262500|amenity=fast_food,name:en=KFC |-62543.1297553628|3363095.07490381|

|27262504|amenity=fast_food,name:en=KFC |-62620.7551165471|3363061.87760935|

|27262513|amenity=fast_food,name:en=KFC |-66170.913779046 |3365787.87254387|

|27262517|amenity=restaurant,name:en=Chuan Wei Guan |-61980.578202843 |3363451.94953999|

|27446997|amenity=bus_station,name:en=Hangzhou West Bus Station|-69565.5633025697|3364138.23749985|

+--------+-----------------------------------------------------+-----------------+----------------+

only showing top 20 rows

Number of records: 61660
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Conclusions

Conclusions

Simba: A distributed in-memory spatial analytics engine.

Indexing support for efficient query processing.

Spatial operator implementation tailored towards Spark.

Spatial and index-aware optimizations.

User-friendly SQL and DataFrame API.

Superior performance compared against other systems.
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Conclusions Thanks...

Thank you!!!

Do you have any question?
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