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Abstract

Community detection in real-world graphs has been
shown to benefit from using multi-aspect information,
e.g., in the form of “means of communication” be-
tween nodes in the network. An orthogonal line of
work, broadly construed as semi-supervised learning,
approaches the problem by introducing a small per-
centage of node assignments to communities and prop-
agates that knowledge throughout the graph. In this
paper we introduce SMACD, a novel semi-supervised
multi-aspect community detection method along with
an automated parameter tuning algorithm which essen-
tially renders SMACD parameter-free. To the best
of our knowledge, SMACD is the first approach to
incorporate multi-aspect graph information and semi-
supervision, while being able to discover overlapping
and non-overlapping communities. We extensively eval-
uate SMACD’s performance in comparison to state-of-
the-art approaches across eight real and two synthetic
datasets, and demonstrate that SMACD, through com-
bining semi-supervision and multi-aspect edge informa-
tion, outperforms the baselines.

1 Introduction

Community detection in real graphs is a widely perva-
sive problem with applications in social network analy-
sis and collaboration networks, to name a few. There
have been continuing research efforts in order to solve
this problem. Traditionally, research has focused plain
graphs where the only piece of information present is
the nodes and the edges [18] .

In most real applications, however, the information
available usually goes beyond a plain graph that cap-
tures relations between different nodes. For instance, in
an online social network such as Facebook, relations and
interactions between users are inherently multi-aspect or
multi-view, i.e., they are naturally represented by a set
of edge types rather than a single type of edge. Such dif-
ferent edge-types can be “who messages whom”, “who
pokes whom”, “who-comments on whose timeline” and
so on. There exists a significant body of work that uses
this multi-view nature of real graphs for community de-
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Figure 1: SMACD vs state-of-art techniques: Our
proposed method SMACD successfully combines
multi-view graph information and semi-supervision
and outperforms state-of-the-art techniques.

tection. Indicatively, [23, 5, 10, 8] proposed algorithm
combines multiple views of a graph in order to detect
communities more accurately.

Another line of work leverages partial ground truth
information that may be available to us. Such partial
ground truth information manifests as a small percent-
age of nodes for which we know the community where
they belong. These partial node labels may be obtained
via questionnaires or by leveraging domain expert opin-
ion, however, since the process of obtaining those labels
may be costly and time-consuming, we assume that they
represent a small percentage of the nodes in our graph.
The most popular school of thought that takes such par-
tial ground truth into account are the so called “Guilt-
by-Association” or label propagation techniques where
the main idea is that affinity between nodes implies af-
filiation with the same community and those techniques
iteratively propagate the known node labels through-
out the graph estimating the unknown labels. Belief
propagation [17] is one of the widely used “Guilt-by-
Association” method and has been very successful in
various real life scenarios including community detec-
tion. In view of that method which only gives non



zero weight to every graph Karsuyama et al. [15] pro-
posed another multiple graph learning method (SMGI),
where weight can be sparse. Auto-weighted Multiple-
Graph Learning (AWGL) [19] framework learn the set of
weights automatically for all graphs and classify graphs
into different classes.

In this paper we propose a new approach to the
problem of community detection that effectively
integrates and leverages both (a) the multi-view
nature of real graphs, and (b) partial supervision
in the form of community labels for a small number
of the nodes. To the best of our knowledge,
this is the first approach that combines (a) and
(b), and detects overlapping and non-overlapping
communities.

Our main contributions are:
• Novel Approach: We introduce SMACD, a

semi-supervised multi-aspect1 community 2 detec-
tion algorithm. To the best of our knowledge, this is
the first principled method for leveraging multiple
views of a graph and an existing (small) percentage
of node labels for community detection and is able
to handle overlapping communities.

• Algorithm: Under the hood of SMACD runs our
proposed algorithm for Non-Negative Sparse Cou-
pled Matrix-Tensor Factorization (NNSCMTF)
which jointly decomposes a tensor that represents a
multi-view graph, and a matrix which contains par-
tial node label information. NNSCMTF introduces
latent sparsity and non-negativity constraints to
the Coupled Matrix-Tensor Factorization model [1],
which are well suited for community detection.

• Automated Parameter Turning: Sparsity in-
troduced by NNSCMTF is controlled by a param-
eter which if chosen arbitrarily may not yield the
best possible performance. In Section 2 we intro-
duce SelSPF, an automated parameter tuning al-
gorithm that does not rely on the partial node la-
bels and selects a value for the sparsity parameter
which yields performance in terms of community
detection accuracy which is on par with the one
obtained when doing an exhaustive search for that
parameter based on all the ground truth available
to us.

• Evaluation on Real Data: We conduct extensive
experiments in order to evaluate SMACD’s perfor-
mance in comparison to state-of-the-art methods.

1Note that in the paper we use the terms multi-view and multi-

aspect interchangeably
2Note that in the paper we use the terms community and

cluster interchangeably

Reproducibility: We encourage reproducibility
and extension of our results by making our Matlab im-
plementation and the synthetic data we used available
at link3. Note also that all the datasets we use for eval-
uation are publicly available.

2 Problem Formulation & Proposed Method

2.1 Problem Definition Graphs are effective way
to represent a large variety of data and relations between
data entities. Each entity represented by node or
vertex (V ) and relation between entities are defined by
weighted or unweighted edges (Ei, wi). In this paper
we focus on multi-view or multi-aspect graphs, i.e.,
a collection of graphs for the same set of nodes and
different set of edges per view or layer. In the remainder
of the paper we use the terms “view”, “aspect”, and
“layer” interchangeably. Each graph can be represented
using an adjacency matrix, a square node-by-node
matrix that indicates an edge (and a potential weight
associated to it) between two nodes. A multi-view graph
can be, thus, represented as a collection of adjacency
matrices.

The goal of our paper is to identify communities
in that multi-view graph, which essentially boils down
to assigning each node into one of R community labels.
In order to simplify our problem definition, we assume
that R is given to us. (there exist, however, heuristics
in tensor literature [20] that can deal with an unknown
R). The problem that we solve is the following:

Problem 1. Given (a) a multi-view or multi-
aspect graph, and (b) a p% of node labels to R
communities, find an assignment of all nodes of
the graph to one (or more) of the R communities.

2.2 Preliminary Definitions A multi-view graph
with K views is a collection of K adjacency matrices
X1, · · ·XK with dimensions I×I (where I is the number
of nodes). This collection of matrices is naturally
represented as a tensor X of size I × I × K. A
tensor is a higher order generalization of a matrix.
In order to avoid overloading the term “dimension”,
we call an I × J × K tensor a three “mode” tensor,
where “modes” are the numbers of indices used to
index the tensor. Table 1 contains the symbols used
throughout the paper. We refer the interested reader to
several surveys that provide more details and a wide
variety of tensor applications [16] . In the interest
of space, we also refer the reader to [16] for the
definitions of Kronecker and Khatri-Rao products which

3http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SHOCD.
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are not essential for following the basic derivation of our
approach but are needed for fully appreciating the math
behind it. One of the most popular and widely used

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar
R Set of Real Numbers
◦ Outer product

[A; B] Vertical stacking of A,B
[A B] Horizontal stacking of A,B
‖A‖ Frobenius norm

X(:, r) rth column of X

X(r, :) rth row of X

x(r) rth element of x
⊗ Kronecker product
� Khatri-Rao product (column-wise Kronecker product [16])

Table 1: Table of symbols and their description

tensor decompositions is the Canonical Polyadic (CP)
or CANDECOMP/PARAFAC decomposition [4, 13],
henceforth referred to this decomposition as CP. In CP,
the tensor is decomposed into a sum of rank-one tensors,
i.e., a sum of outer products of three vectors (for three-

mode tensors): X ≈
∑R

r=1 A(:, r)◦B(:, r)◦C(:, r) where
A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, and the outer
product is given by (A(:, r) ◦B(:, r) ◦C(:, r))(i, j, k) =
A(i, r)B(j, r)C(k, r) for all i, j, k. The connection of
CP to community detection is found in [10] where the
authors use each column of factor matrices A and B as
a community membership indicator for each node.

There are cases where in addition to the tensor,
we also have a matrix whose rows (without loss of
generality) have one-to-one correspondence with one of
the modes of the tensors. We refer to this matrix and
tensor as “coupled” and we can jointly analyze them
using the Coupled Matrix-Tensor Factorization [1], a
model which will be the basis for our proposed method.

2.3 SMACD: Semi-supervised Multi-Aspect
Community Detection As [10] has demonstrated,
using higher-order information for the edges of a graph,
such as the ”means of communication”, results in more
accurate community detection. What if we additionally
have semi-supervision in the form of community labels
for a small subset of the individuals? In this Section we
introduce SMACD which formulates this problem as
a matrix-tensor couple, where the matrix contains the
community labels for the small subset of users that are
known, and missing values for the rest of its entries. The
key rationale behind SMACD is the following: Using
the coupled matrix that contains partial label informa-
tion for each node will provide a soft guide to the tensor
decomposition with respect to the community structure
that it seeks to identify. Thus, using this side informa-
tion we essentially guide the decomposition to compute
a solution which bears a community structure as close
to the partial labels as possible (in the least squares
sense).

In [3] the authors propose semiBAT, where they
follow a different approach of incorporating semi-
supervision in the context of matrix-tensor coupling:
instead of a bilinear decomposition for Y (the partial
label matrix) which provides soft guidance to the struc-
ture discovery, semiBAT explicitly uses a classification
loss in the objective function. In [3] the goal classifica-
tion of brain states, rather than discovering community
structure, thus explicitly using the classification loss in-
stead of taking a low-rank factorization of the label ma-
trix seems more appropriate.

At a high level, SMACD takes as input a tensor
X ∈ RI×I×K which contains the multi-view graph, a
matrix Y ∈ RI×R containing the node assignments to
communities, and the number of communities R (which
is given implicitly through matrix Y. SMACD consists
of the following two steps.
Step 1: Decomposition Given X,Y compute an
R − 1 component Sparse and Non-negative MTF (as
shown below in Section 2.3.1). The columns of A
and B contain soft assignments of each node to one
of R − 1 communities. Both matrices contain similar
information (which in practice ends up being almost
identical, especially in cases where we have symmetric
tensors in the first two modes).
Step 2: Hard Assignment In this step we assign each
node to a single community by finding the community
with maximum membership. This translates to finding
the maximum column index for each row (which cor-
responds to each node). In the previous step we have
computed a sparse decomposition which causes a num-
ber of the nodes to have all-zero rows in A, i.e., they
have no assignment to any of the R−1 communities. We
assign those nodes to the R-th community which essen-
tially is meant for capturing all remaining variation that
our CP model in the CMTF decomposition was unable
to capture. Step 2 is necessary only in the case where we
have non-overlapping communities. However, SMACD
works for overlapping communities as well, simply by
eliminating Step 2 and computing Step 1 for R commu-
nities instead of R− 1 as we show in Section 2.4.

2.3.1 Non-negative Sparse Coupled Matrix-
Tensor Factorization (NNSCMTF) In this section
we describe our model along with an Alternating Least
Squares algorithm that computes a locally optimal solu-
tion. We propose two constraints on top of the CMTF
model , motivated by community detection:
Non-negativity Constraint: SMACD uses the fac-
tor matrices A,B as community assignments. Such as-
signments are inherently non-negative numbers (a neg-
ative assignment to a community is hard to interpret
and is not natural). Thus, in NNSCMTF we im-



pose element-wise non-negativity constraints (denoted
as A ≥ 0) to all factor matrices.
Latent Sparsity Constraint: In order to (a) further
enhance interpretability and (b) suppress noise, we
impose latent sparsity to the factors of the model.
Intuitively, we would like the coefficients of the factor
matrices to be non-zero only when a node belongs to
a particular community, thus eliminating the need for
ad-hoc thresholding. To that end we introduce `1 norm
regularization for all factors which promotes a sparse
solution.

The proposed model is:

min
A≥0,B≥0,C≥0,D≥0

‖X−
∑
r

A(:, r) ◦B(:, r) ◦C(:, r)‖2F + ‖Y −AD
T ‖2F

+ λ
∑
i,r

|A(i, r)| + λ
∑
j,r

|B(j, r)| + λ
∑
k,r

|C(k, r)| + λd

∑
l,r

|D(l, r)|
(2.1)

where λ is the sparsity regularizer penalty. The
above objective function is highly non-convex and thus
hard to directly optimize. However, we use Alternating
Least Squares (ALS), a form of Block Coordinate De-
scent (BCD) optimization algorithm, in order to solve
the problem of Eq. 2.1. The reason why we choose
ALS over other existing approaches, such as Gradient
Descent [1], , is the fact that ALS offers ease of im-
plementation and flexibility of adding constraints and
regularizers, does not introduce any additional parame-
ters that may influence convergence, and as a family of
algorithms has been very extensively studied and used
in the context of tensor decompositions. The main idea
behind ALS is the following: when fixing all optimiza-
tion variables except for one, the problem essentially
boils down to a constrained and regularized linear least
squares problem which can be solved optimally. Thus,
ALS cycles over all the optimization variables and up-
dates them iteratively until the value of the objective
function stops changing between consecutive iterations.
In ALS/BCD approaches, such as the one proposed
here, when every step of the algorithm is solved opti-
mally, then the algorithm decreases the objective func-
tion monotonically.

In the following lines we demonstrate the derivation
of one of the ALS steps. Let us denote X(i) the
i-th mode matricization or unfolding of X, i.e., the
unfolding of all slabs of X into an I × JK matrix
(we refer the interested reader to [16] for a discussion
on matricization), then because of properties of the
CP/PARAFAC model [16], fixing B,C,D we have

min
A≥0

‖X(1) −A[(B�C)
T ‖2F + ‖Y −AD

T ‖2F + λ
∑
i,r

|A(i, r)| ⇒

min
A≥0
‖[ X(1) ; Y]−A[(B�C)

T
D

T
]‖2F + λ

∑
i,r

|A(i, r)| ⇒

min
A≥0
‖[L−AM]‖2F + λ

∑
i,r

|A(i, r)|(2.2)

where L = [ X(1) ; Y] , and M = [(B � C)T DT ].
This problem is essentially a Lasso regression on the
columns of A [24] and we use coordinate descent to solve
it optimally . The update formulas for B,C,D follow
the same derivation after fixing all but the matrix that is
being updated. We omit the full listing of the algorithm
due to space restrictions.

2.4 Overlapping Communities Our goal is
to design an algorithm which consumes ten-
sor X = {X1, X2....., XN} along with small
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Figure 2: SMACD suc-
cessfully combines multi-
view graph information and
semi-supervision.

amount of labels Y and
it outputs the set of
collection of subsets of
Nodes V which we con-
sidered as overlapping
clusters. Thus, we will
refer to nodes with mul-
tiple classes as overlap-
ping nodes. In real-
world networks, these
nodes represent bridges
between different com-
munities. For this rea-
son, the ability to iden-

tify these bridges or overlapping nodes, although often
neglected, is necessary for evaluating the accuracy of
any community detection algorithms. Given X and Y,
CP decomposition is used to learn latent factors which
detect community structure.

Multi-view connectivity of tensor and coupling with
label matrix can increase the robustness of community
detection in the case of highly-mixed communities.
Overlapping communities amounts to soft clustering
over the nodes, as opposed to hard clustering which
forces each node to belong to a unique community. The
advocated approach only requires slight modifications
in Step 2 to yield soft community assignments, that is,
by treating Ank as the normalized affiliation of node n
to community k, and requiring Ank ≥ t per node n.

Once the algorithm returns the solution for
NNSCMTF, the rows of factor matrix A provides the
community association in networks with overlapping
communities where a node can be associated with more
than one community. To evaluate SMACD’s result with
ground truth communities, we compared resultant Ai,j

with threshold t and node is assigned with community
’r’ if A(i, j) ≥ t. Each node’s predicted label ( or labels)
is ordered incrementally based on corresponding value
of A(i, j).

PredictedLabel(s){i} =

{
indices(A(i, j)), if A(i, j) ≥ t
R+ 1, otherwise



2.4.1 SelSPF: Automated Selection of the
Sparsity Penalty λ The SMACD model contains the
λ sparsity penalty, which if not chosen correctly may
have an impact on the final result. Traditionally, such
parameters are chosen via trial-and-error, and in fact,
all the baseline methods that we compare against in Sec-
tion 3 follow this empirical approach for their parame-
ter tuning. On the other hand, as part of SMACD
we introduce SelSPF (based on principle of Armijo-
Goldstein’s rule 4 for selecting step size in backtracking
line search methods), an automated algorithm that se-
lects a “good” value of λ which achieves accuracy which
is on-par with a brute force selection of λ based on
community detection accuracy, which obviously entails
knowing all community labels.

The intuition behind SelSPF is simple: Start
with a very high λ which gives all-zero community
assignments. Start decreasing λ on a logarithmic scale
until a solution is reached for which all communities
have at least one node assigned to them. Subsequently
focus the search on a grid that starts from the previous
stopping point and increase λ to the last point before at
least one of the communities is empty again. SelSPF
is based on the fact that λ and sparsity levels in the
latent factors are directly related. We provide a detailed
outline of SelSPF in Algorithm 1. Essentially with
the introduction of SelSPF, there is no need for hand-
tuning SMACD via trial-and-error.

Algorithm 1: SelSPF for automated selec-
tion of λ

Input: Tensor X , Shared matrix Y, R, initial λhigh,
τ = Step Size.

Output: Best λ value for our SMACD.
1: Set λ = λhigh and iteration counter j=0.
2: Until Rank{f(X,Y, λj)} ≥ R is satisfied, increment

j and set λj = τ λj−1

3: Break (λj ,λj−1) into a grid of 1
τ

values and repeat
step 2 with the λj−1.

4: return λ as the solution.

3 Experimental Evaluation

In this section we extensively evaluate the performance
of SMACD on two synthetic and eight real datasets,
and compare its performance with state-of-the-art ap-
proaches which either use multi-view graphs or semi-
supervision (but not both) for community detection.
We implemented SMACD in Matlab using the func-
tionality of the Tensor Toolbox for Matlab [2] which
supports efficient computations for sparse tensors.

4https://en.wikipedia.org/wiki/Backtracking_line_

search

3.1 Data-set description

3.1.1 Synthetic data generation In order to fully
control the community structure in our experiments we
generate synthetic multi-view graphs with different clus-
ter density. We generally follow the synthetic data cre-
ation of [10]. We partition the adjacency matrices corre-
sponding to different graph views into different blocks,
each one corresponding to a community. We then as-
sign different nodes to each block with a probability
which is a function of the density of the block (i.e., com-
munity) we desire; if this probability is not close to 1,
then there will be a considerable amount of nodes falling
outside of those blocks, effectively acting as noise. We
further corrupt those datasets with random Gaussian
noise with variance 0.05. We construct two synthetic
datasets: Synthetic-1 has 5 views and 5 communities
and has very few “cross-edges”, whereas Synthetic-2 has
3 views and higher number of “cross-edges”, making it
a harder dataset. We include those synthetic datasets
in our code package.

3.1.2 Real Data Description In order to truly
evaluate the effectiveness of SMACD, we test its per-
formance against six real datasets that have been used
in the literature. Those datasets are: DBLP-I, DBLP-
II, Cora, CiteSeer, WebKB, and MIT reality mining
dataset. DBLP-I and DBLP-II datasets are collected
from the DBLP online database and were used in [10].
In DBLP-I and DBLP-II, the first graph view represents
citations of one author to another. The second view rep-
resents co-authorship relations. Finally the third view
relates two authors if they share any three terms in a ti-
tle or in abstract of their publication. The Cora dataset
[22] was collected from the LINQS online database, and
consists of 2708 machine learning publications and ci-
tations. This network consists of 5429 edges and 7
different communities. CiteSeer dataset [22]consists
of 3312 publications related to AI, DB, IR, ML and
HCI research categories. The WebKB dataset [22] is
small dataset of 878 web pages of Washington universi-
ties which belong to 5 categories, namely courses, facil-
ities, student, project and staff. We considered these
categories as ground truth classes. Finally, the MIT
reality mining [7], collected by researchers at MIT, con-
sists of 87 mobile users information collected on campus.
Ground truth is the self-reported affiliation of the users.

3.1.3 Overlapping community real dataset de-
scription The “Insight Resources (IR) Repository”
(a.k.a IRR) consists of five multi-view datasets with
manual annotation of user stances (e.g., political or
sports). Our interest is in Rugby Union dataset[12]. It

https://en.wikipedia.org/wiki/Backtracking_line_search
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is a collection of 854 international Rugby Union players,
clubs , and organizations active on Twitter. The ground
truth consists of communities corresponding to 15 coun-
tries. The communities are overlapping, as players can
be assigned to both their home nation and the nation
in which they play club rugby. SNOW2014G dataset
is first introduced in [21] and author extracted largest
connected component and retweet social interactions to
form the graph edges from the tweet collection. It con-
sists of top 10992 users, 3 views and clustered them into
90 classes.

3.2 Evaluation Measures We evaluate the com-
munity detection performance in terms of three dif-
ferent quality measures: Normalized Mutual Informa-
tion (NMI), Adjacent Random Index (ARI) and Pu-
rity. These measures provide a quantitative way to com-
pare the obtained communities Ω = w1, w2, ......, wr to
ground truth classes C= c1, c2, ......, cr.

More Specifically, NMI(Ω, C) = I(Ω,C)
[H(Ω)+H(C)]

where I(Ω,C) is mutual information between cluster Ω
and C, H(Ω) and H(C) are entropy of cluster and classes.
Next, Purity is defined as the ratio of number of nodes
correctly extracted to total number of nodes. Formally,
Purity(Ω, C) = 1

N

∑N
k=0max|wk ∩ ck| where wk and

ck are the number of objects in a community and a
class respectively. |wk ∩ ck| is the interaction of ob-
jects of wk and ck. Finally when interpreting com-
munities as binary decisions of each object pair, Ad-
jacent Random Index(ARI) is defined as: ARI(Ω, c) =

tp+tn
tp+fp+fn+tn , ω(c1, c2) = ωu(c1,c2)−ωe(c1,c2)

1−ωe(c1,c2) where tp,

tn, fp and fn are true positive, true negative, false pos-
itive and false negative, respectively. Omega index (ω)
is the overlapping version of the Adjusted Random In-
dex (ARI). Omega index considers the number of nodes
pairs belong together in no clusters, how many are be-
long together in exactly single cluster or exactly two
clusters, and so on. NMI, Purity and ARI (or Omega
index for overlapping community) are defined on the
scale [0, 1] and the higher the score, the better the com-
munity quality is.

3.3 Baselines for Comparison Here we briefly
present the state-of-the-art baselines. For each base-
line we use the reported parameters that yielded the
best performance in the respective publications. For
fairness, we also compare against the parameter config-
uration for SMACD that yielded the best performance
in terms of NMI. However, moving one step further,
we also evaluate SelSPF and demonstrate that an un-
supervised selection of parameters yields qualitatively
the same performance for SMACD as the brute force
selection. All comparisons were carried out over 50 it-

erations each, and each number reported is an average
with a standard deviation attached to it.
GraphFuse [10]: GraphFuse is a tensor decomposition
based approach which can be seen as a special case of
SMACD when there is no semi-supervision. The spar-
sity penalty factor λ for DBLP-I, DBLP-II, CiteSeer,
Cora, WebKB and MIT is set for λ= 0.000001, 0.0001,
0.000001, 0.1, 0.00005 and 0.00001, respectively and a
maximum of 150 iterations was used for convergence.
WSSNMTF and NG-WSSNMTF [11]: The de-
tails for the methods are described in [11]. We used the
SVD matrix initialization. The sparsity penalty param-
eter η for WSSNMTF and NG-WSSNMTF are chosen
as DBLP-I and DBLP-II (η1 = η2 = 0.01), for CiteSeer
(η1 = η2 = 1) , Cora (η1 = 0.01, η2 = 10) ,WebKB
(η1 = η2 = 0.01) and MIT (η1 = 1, η2 = 1000). These
η values are chosen to lead to best clustering perfor-
mance and max 100 iterations are used for reaching the
convergence.
Fast Belief Propagation (FaBP) [17]: FaBP is a
fast, iterative Guilt-by-Association technique, in partic-
ular conducting Belief Propagation. A belief in our case
is a community label for each node. We used one-vs-all
technique for multi-clustering.
ZooBP [9]: ZooBP works on any undirected heteroge-
neous graph with multiple edge types. As in FaBP, a
belief here is a community label for each node.
SMGI [15]: Sparse Multiple Graph Integration
method is another method of integrating multiple
graphs for label propagation, which introduces sparse
graph weights which eliminate the irrelevant views in
the multi-view graph.
AWGL [19]: Parameter-Free Auto-Weighted Multiple
Graph Learning is the latest auto-weighted multiple
graph learning framework, which can be applied to
multi-view unsupervised (AWGL-C) as well as semi-
supervised (AWGL) clustering task.
Parameter Tuning In order to be on-par with the
baselines, we tuned SMACD’s parameter λ so that
we obtain the maximum performance. We provided
≤10% labels in matrix and rest of labels are empty.
The maximum number of iterations for SMACD is set
to 103. We perform experiments with various values
of λ ranging from 10−8 to 106 on all real multi-view
networks to explore the behaviour of our algorithm.
λ is chosen to give best clustering results in terms of
NMI, for DBLP-I, DBLP-II, CiteSeer, Cora, WebKB
and MIT values for λ= 0.3,0.09, 0.0001,1, 0.9 and 600,
respectively. For both the synthetic data, penalty factor
is set to 1. For overlapping communities, we use t=0.1
for both datasets.

3.4 Experimental Results Below we extensively
evaluate SMACD and compare it against baseline



Figure 3: Experimental results for NMI, ARI and Purity. SMACD mostly outperforms baselines and, in
particular, works better in very hard scenarios such as the MIT dataset.

methods.

3.4.1 Comparison with Baselines For all datasets
we compute Normalized Mutual Information, Purity
and Adjacent Random Index. For SMACD, AWGL
, SMGI, ZooBP and FaBP we use labels for 10% of
the nodes in each dataset. We observe that SMACD
performed better than other approaches when applied
on SYN-I and SYN-II. SYN-I is designed with high
cluster density in layer 2 and 3, and noisy links, and
has high number of cross-community edges between
nodes. Given that, we found that SMACD achieved
the highest NMI, ARI and Purity. We omit the figure
of the results due to space restrictions.
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Figure 4: (a) SMACD vs. Guilt-by-
Association(FaBP and ZooBP), AWGL and SMGI
for different degrees of semi-supervision for DBLP-
I. (b) Performance of SMACD as a function of the
number of labels. These results confirm the intu-
ition, since performance improves as the number of
labels increases.

The most interesting comparison, however, is on the
real datasets, since they present more challenging cases
than the synthetic ones, shown in Figure 3. SMACD
outperforms the other state-of-the-art approaches in
most of the real multi-view networks, with the excep-
tion of Cora. In the cases of DBLP-I and DBLP-II,
SMACD gave better results compared to the baselines
, specifically in terms of NMI and Purity. For Citeseer,
SMACD has comparable behavior with the baselines
in terms of NMI. Most importantly, however, SMACD
achieves the highest NMI, ARI, and Purity for WebKB
and MIT, arguably the hardest of the six real datasets

we examined and have been analyzed in the literature.

λ DBLP-I DBLP-II Cora Citeseer MIT WebKB
SelSPF 0.3 0.09 1 0.001 600 0.9

Brute force 0.5 0.001 1 0.0001 100 0. 1

Figure 5: λ selection using SelSPF vs. brute force
approach. SelSPF is able to choose a value for λ
which yields similar accuracy as the expensive and
grossly impractical brute force approach, effectively
rendering SMACD parameter-free.

3.4.2 SMACD Performance on overlapping
communities We report the accuracy of our method
for real world Rugby and SNOW2014G datasets with
overlapping communities. Figure 6 shows the results.
SMACD outpeforms all other state-of-art methods in
accuracy (or purity) measures. In particular our method
has always the highest purity score and in all but one
case it has the best NMI score with small (i.e. 2.5%)
number of prior label information. This shows that
coupled tensor and matrix allows the overlapping com-
munity structure to be more easily and accurately de-
tectable. We ran SMACD and other state-of-art meth-
ods for 20 times using 2.5-30% prior label information.
In Figure 6 we present our clustering accuracy on both
data-sets. For SNOW2014G dataset our algorithm out-
performed by predicting cluster with ≈ 3x, 4x, 2x
and 5x more accuracy than AWGL, SMGI, ZooBP and
FaBP respectively.

3.4.3 Performance vs. Degree of Semi-
supervision Next, we evaluate the performance of
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Figure 6: Experimental results for NMI, Purity and Omega index . SMACD consistently outperforms
the baseline with an upward trend as the number of available labels increases and works better in small
amounts of labels.

SMACD compared to Guilt-by-Association as a func-
tion of the degree of semi-supervision, i.e., the percent-
age of available labels. We performed experiments for
the DBLP-I dataset for 5%, 10% and 20% labeled nodes
and we show the results in Figure 4(a) showing a consis-
tent trend between the two methods. We further mea-
sure the performance of SMACD as the number of la-
bels grows, and summarize the results in Figure 4(b)
where we can see that what we would expect intuitively
holds true: the more labels we have the higher the com-
munity accuracy. Due to limited space, we show the
trend only for DBLP-I but we observe similar behavior
for the rest of the datasets.

3.4.4 Evaluation of SelSPF We evaluate the effec-
tiveness of SelSPF in choosing a λ that yields good
community quality. We compare SMACD’s perfor-
mance with respect to the λ chosen using a brute force
evaluation (on 50 iterations per λ) of the performance
according to NMI (using all the labels), against the se-
lection made by SelSPF. Figure 5 demonstrates that,
in terms of NMI, both parameter selections in fact yield
very comparable (if not identical) performance. This
result indicates that SMACD can be used by practi-
tioners as a black box, without the need for specialized
and tedious trial-and-error tuning.

3.4.5 Why SMACD? The ability to effectively
leverage the multi-view nature of a graph stems from the
model that SMACD uses under the hood. The under-
lying CP model has well-studied uniqueness properties
[16] which have implications about the quality of the
decomposition, and hence the community assignments.
In short, CP is unique under mild conditions, which es-
sentially guarantees that the computed decomposition
is the only combination of factors (thus, community as-
signments) which can reconstruct the data, and not any
rotated version thereof. On the other hand, matrix-
based approaches, such as [11], typically suffer from ro-
tational ambiguity (this is easy to see since, for a bilin-
ear model, X ≈ ABT = AQQ−1BT = ÃB̃T for any
invertible Q) and fail to guarantee that the computed
community assignments are the best possible, and not

any rotation thereof. Finally, coupling with the matrix
containing partial community labels is a “soft” man-
ner of imposing semi-supervision. Instead of making
hard assignments of the nodes for which we have labels,
SMACD is using the underlying structure of the Y la-
bel matrix in order to “guide” the low-rank structure
discovered by the CP decomposition on the tensor X.
Thus, in combination with CP’s uniqueness, soft semi-
supervision of Y guides the decomposition to a set of
unique community assignments, as close as possible to
the partially observed community assignments.

4 Related Work

We provide review of work related to our problem.
Multi-vew Clustering/Community Detection:
There is work in the literature (such as some of the base-
lines we compare against) that leverages multiple graph
views for community detection, including Weighted Si-
multaneous Symmetric Non-negative Matrix Trifactor-
ization (WSSNMTF) and Natural Gradient Weighted
Simultaneous Symmetric Non-negative Matrix Trifac-
torization (NG-WSSNMTF) [11] and GraphFuse [10].
Heterogeneous Information Networks (HIN):
Heterogeneous Information Networks are versatile rep-
resentations of networks that involve multiple typed ob-
jects (or nodes) and multiple typed links denoting dif-
ferent relations (or edges). There is a fairly rich body
of work in the literature working on related problems to
ours [14, 25], however, we were unable to find an imple-
mentation directly applicable to the problem at hand
for experimental comparison.
Guilt-by-Association techniques: Prior work that
has leveraged label propagation for community detec-
tion, including FaBP [17] and ZooBP [9], with the latter
also leveraging the multi-view nature of the graph.
Tensor and Coupled Models: To the best of our
knowledge the NNSCMTF model has not been previ-
ously proposed. Most relevant to our proposed frame-
work, Cao et al. [3], propose a semi-supervised learning
framework, based on matrix-tensor coupling. We were
unable to directly compare the method of [3] as released
because the focus of [3] is 4-mode tensors.



5 Conclusions

We introduce SMACD, a novel approach on semi-
supervised multi-aspect community detection based on
a novel coupled matrix-tensor model. We propose an
automated parameter tuning algorithm, which effec-
tively renders SMACD parameter-free. We extensively
evaluate SMACD’s effectiveness over the state-of-the-
art, in a wide variety of real and synthetic datasets,
demonstrating the merit of leveraging semi-supervision
and higher-order edge information towards high quality
overlapping and non-overlapping community detection.
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