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Abstract
Tensor decomposition has been very popular in unsupervised
modelling and multi-aspect data mining. In an exploratory
setting, where no labels or ground truth are available how can
we automatically decide how many components to extract?
How can we assess the quality of our results, so that a domain
expert can factor this quality measure in the interpretation of
our results? In this paper, we introduce AUTOTEN, a novel
automatic unsupervised tensor mining algorithm with min-
imal user intervention, which leverages and improves upon
heuristics that assess the result quality. We extensively evalu-
ate AUTOTEN’s performance on synthetic data, outperform-
ing existing baselines on this very hard problem. Finally,
we apply AUTOTEN to a variety of real datasets, providing
insights and discoveries.

1 Introduction
Tensor decompositions and their applications in mining
multi-aspect datasets are ubiquitous and ever increasing in
popularity. Data Mining application of these techniques has
been largely pioneered by [21] where the authors introduce
a topical aspect to a graph between webpages, and extend
the popular HITS algorithm in that scenario. Henceforth, the
field of multi-aspect/tensor data mining has witnessed rich
growth with prime examples of applications being social net-
works [22, 25, 18], citation networks [22], and computer
networks [22], to name a few.

Tensor decompositions are undoubtedly a very powerful
analytical tool with a rich variety of applications. However
there exist research challenges in the field of data mining that
need to be addressed, in order for tensor decompositions to
claim their position as a de-facto tool for practitioners.

One challenge, which has received considerable atten-
tion, is the one of making tensor decompositions scalable
to today’s web scale. However, recently and especially for
sparse tensors, there has been a substantial body of work
with the first pioneering step by Kolda et al. [21, 2] ex-
ploiting sparsity for scalability; subsequently there have been
distributed approaches based on the latter formulation [19],
and other scalable approaches [30, 11]. By no means do we
claim that scalability is a solved problem, however, we point
out that there has been significant attention to it.

The main focus of this work, however, is on another,
relatively less explored territory; that of assessing the quality
of a tensor decomposition. In a great portion of tensor
data mining, the task is exploratory and unsupervised: we
are given a dataset, usually without any sort of ground
truth, and we seek to extract interesting patterns or concepts
from the data. It is crucial, therefore, to know whether a
pattern that we extract actually models the data at hand, or
whether it is merely modelling noise in the data. Especially
in the age of Big Data, where feature spaces can be vast,
it is imperative to have a measure of quality and avoid
interpreting noisy, random variation that always exists in
the data. Determining the number of components in a
tensor is a very hard problem [16]. This is why, many
seminal exploratory tensor mining papers, understandably,
set the number of components manually [21, 32, 22]. When
there is a specific task at hand, e.g. link prediction [9],
recommendation [31], and supervised learning [14], that
entails some measure of success, then we can use cross-
validation for selecting a good number of latent components
which unfortunately cannot generalize to the case where
labels or ground truth are absent.

However, not all hope is lost. There exists highly influ-
ential work in the Chemometrics literature [5] that introduces
heuristics for determining the quality of a decomposition,
taking into account properties of the PARAFAC decompo-
sition [13] and being application independent, requiring no
prior knowledge about the data. Inspired by and drawing
from [5], we provide a comprehensive method for mining
large and potentially sparse multi-aspect datasets using ten-
sor decompositions.

Our contributions are:
• Technology Transfer To the best of our knowledge,

this is the first data mining work that employs the Core
Consistency Diagnostic for the quality assessment of a
tensor decomposition; our sincere hope is to popularize
such approaches in the data mining community, con-
ducting a technology transfer from the Chemometrics
community.

• Algorithms We propose AUTOTEN, a comprehensive,
parallelizable methodology on mining multi-aspect
datasets using tensors, which minimizes manual trial-
and-error intervention and provides quality characteri-



zation of the solution (Section 3.2). Furthermore, we
extend the Core Consistency Diagnostic of [5] assum-
ing KL-divergence loss, which is more effective in mod-
elling highly sparse, count data [7] (Section 3.1).

• Evaluation & Discovery We conduct a large scale
study on 10 real datasets, exploring the structure of
hidden patterns within these datasets (Section 5.1).
To the best of our knowledge, this is the first such
broad study. As a data mining case study, we use
AUTOTEN on real data discovering meaningful patterns
(Section 5.2 and supplementary material1). Finally, we
extensively evaluate our proposed method on synthetic
data (Section 4).

In order to encourage reproducibility, most of the
datasets used are public, and we make our code pub-
licly available at http://www.cs.cmu.edu/˜epapalex/
src/AutoTen.zip.

2 Background
Table 1 provides an overview of the notation used in this and
subsequent sections.

Symbol Definition
X,X,x, x Tensor, matrix, column vector, scalar
� Outer product
vec( ) Vectorization operator
⌦ Kronecker product
⇤ ↵ Element-wise multiplication and division
A

† Moore-Penrose Pseudoinverse of A
DKL(a||b) KL-Divergence
kAkF Frobenius norm

KRONMATVEC
Efficient computation of
y = (A1 ⌦ A2 ⌦ · · · ⌦ An)x [6]

x(i) i-th entry of x (same for matrices and tensors)
X(:, i) Spans the entire i-th column of X (same for tensors)
x

(k) Value at the k-th iteration
CP ALS Frobenius norm PARAFAC [3]
CP APR KL-Divergence PARAFAC [7]

Table 1: Table of symbols

2.1 Brief Introduction to Tensor Decompositions Given
a tensor X, we can decompose it according to the
CP/PARAFAC decomposition [13] (henceforth referred to as
PARAFAC) as a sum of rank-one tensors:

X ⇡
FX

f=1

a

f

� b
f

� c
f

where the (i, j, k) entry of a
f

�b
f

� c
f

is a
f

(i)b
f

(j)c
f

(k).
Usually, PARAFAC is represented in its matrix form
[A,B,C], where the columns of matrix A are the a

f

vectors
(and accordingly for B,C). The PARAFAC decomposition
is especially useful when we are interested in extracting the
true latent factors that generate the tensor. In this work, we
choose the PARAFAC decomposition as our tool, since it ad-
mits a very intuitive interpretation of its latent factors: each

1http://www.cs.cmu.edu/˜epapalex/papers/
sdm16-autoten-supplementary.pdf

component can be seen as soft co-clustering of the tensor, us-
ing the high values of vectors a

f

,b
f

, c
f

as the membership
values to co-clusters.

Another very popular Tensor decomposition is Tucker3
[23], where a tensor is decomposed into outer product of
factor vectors multiplied by a core tensor:

X ⇡
PX

p=1

QX

q=1

RX

r=1

G(p, q, r)u
p

� v
q

�w
r

.

The Tucker3 model is especially used for compression.
Furthermore, PARAFAC can be seen as a restricted Tucker3
model, where the core tensor G is super-diagonal, i.e. non-
zero values are only in the entries where i = j = k and
p = q = r.

2.2 Brief Introduction to Core Consistency Diagnostic
As outlined in the Introduction, in the chemometrics lit-
erature, there exists a very intuitive heuristic by the name
of Core Consistency Diagnostic or CORCONDIA (hence-
forth used interchangeably) [5], which can serve as a guide
in judging how well a given PARAFAC decomposition is
modelling a tensor. In a nutshell, the idea behind the Core
Consistency Diagnostic is the following: Given a tensor
X and its PARAFAC decomposition A,B,C, one could
imagine fitting a Tucker3 model where matrices A,B,C
are the factors of the Tucker3 decomposition and G is the
core tensor (which we need to solve for). Since, as we
already mentioned, PARAFAC can be seen as a restricted
Tucker3 decomposition with super-diagonal core tensor, if
our PARAFAC modelling of X using A,B,C is modelling
the data well, the core tensor G should be as close to super-
diagonal as possible. If there are deviations from the super-
diagonal, then this is a good indication that our PARAFAC
model is somehow flawed (either the decomposition rank is
not appropriate, or the data do not have the appropriate struc-
ture). We can pose the problem as the following least squares
problem:

min
G

kvec (X)� (A⌦B⌦C) vec (G) k2
F

with the least squares solution:

vec (G) = (A⌦B⌦C)† vec (X)

After computing G, the Core Con-
sistency diagnostic can be computed as

c = 100

 
1�

P
F

i=1

P
F

j=1

P
F

k=1 (G(i, j, k)� I(i, j, k))2

F

!
,

where I is a super-diagonal tensor with ones on the (i, i, i)
entries. For a perfectly super-diagonal G (i.e. perfect
modelling), c will be 100. One can see that for rank-one
models, the metric will always be 100, because the rank
one component can trivially produce a single element
“super-diagonal” core; thus, CORCONDIA is applicable

http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip
http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip
http://www.cs.cmu.edu/~epapalex/papers/sdm16-autoten-supplementary.pdf
http://www.cs.cmu.edu/~epapalex/papers/sdm16-autoten-supplementary.pdf


for rank two or higher. According to [5], values below
50 show some imperfection in the modelling or the rank
selection; the value can also be negative, showing severe
problems with the modelling. In [5], some of the chemical
data analyzed have perfect, low rank PARAFAC structure,
and thus expecting c > 50 is reasonable. In many data
mining applications, however, due to high data sparsity, data
cannot have such perfect structure, but an approximation
thereof using a low rank model is still very valuable. Thus,
in our case, we expand the spectrum of acceptable solutions
with reasonable quality to include smaller, positive values of
c (e.g. 20 or higher).

2.3 Scaling Up CORCONDIA As we mention in the In-
troduction, CORCONDIA as introduced in [4] is suitable for
small and dense data. However, this contradicts the area of
interest of the vast majority of data mining applications. To
that end, very recently the authors of [28] extended COR-
CONDIA to the case where the data are large but sparse,
deriving a fast and efficient algorithm. Key behind [28]
is avoiding to pseudoinvert (A⌦B⌦C) and alternatively
carrying out a series of very efficient KRONMATVEC com-
putations [6]: y = (A1 ⌦A2 ⌦ · · ·⌦A

n

)x.
What [28] has achieved thus far is extending the COR-

CONDIA to large and sparse data, assuming Frobenius norm
loss. This assumption postulates that the underlying data dis-
tribution is Gaussian. However, recently [7] showed that for
sparse data that capture counts (e.g. number of messages
exchanged), it is more beneficial to postulate a Poisson dis-
tribution, therefore using the KL-Divergence as a loss func-
tion. This has been more recently adopted in [17] showing
very promising results in medical applications. Therefore,
one natural direction, which we follow in the first part of the
next section, is to extend CORCONDIA for this scenario.

3 Proposed Methods
In exploratory data mining applications, the case is very
frequently the following: we are given a piece of (usually
very large) data that is of interest to a domain expert, and
we are asked to identify regular and irregular patterns that
are potentially useful to the expert who is providing the data.
Very often, this is done in a entirely unsupervised way, since
ground truth and labels are either very expensive or hard to
obtain. In our context of tensor data mining, our problem,
thus, is given a potentially very large and sparse tensor, and
its F component decomposition, compute a quality measure
for that decomposition. Subsequently, using that quality
metric, we would like to identify a “good” number F of
components, and throughout this process, we would like to
minimize human intervention and trial-and-error fine tuning.

In order to attack the above problem, first, in Section
3.1 we describe how we can derive a fast and efficient
measure of quality for KL-Divergence loss. Finally, in 3.2,

we introduce AUTOTEN, our unified algorithm for automatic
tensor mining with minimal user intervention, and quality
characterization of the solution.

3.1 Quality Assessment with KL-Divergence As we saw
in the description of the Core Consistency Diagnostic with
Frobenius norm loss, its computation requires solving a least
squares problem. In the case of the CP APR modelling,
where the loss function is the KL-Divergence, the minimiza-
tion problem that we need to solve is:

(3.1) min
x

D
KL

(y||Wx), W = A⌦B⌦C.

Unlike the Frobenius norm case, where the solution
to the problem is the Least Squares estimate, in the KL-
Divergence case, the problem does not have a closed form
solution. Instead, iterative solutions apply. The most promi-
nent approach to this problem is via an optimization tech-
nique called Majorization-Minimization (MM) or Iterative
Majorization [15]. In a nutshell, in MM, given a function
that is hard to minimize directly, we derive a “majorizing”
function, which is always greater than the function to be
minimized, except for a support point where it is equal; we
minimize the majorizing function, and iteratively update the
support point using the minimizer of that function. This pro-
cedure converges to a local minimum. For the problem of
Eq. 3.1, [12] and subsequently [7], employ the following
update rule for the problem, which is used iteratively until
convergence to a stationary point.

(3.2) x(j)(k) = x(j)(k�1)(

P
i

W(i, j)( y(j)
ỹ(j)(k�1) )

P
i

W(i, j)
)

where ỹ

(k�1) = Wx

(k�1), and k denotes the k-th iteration
index.

The above solution is generic for any structure of W.
Remember, however, that W has very specific Kronecker
structure which we should exploit. Additionally, suppose
that we have a 104 ⇥ 104 ⇥ 104 tensor; then, the large di-
mension of W will be 1012. If we attempt to materialize,
store, and use W throughout the algorithm, it will be catas-
trophic to the algorithm’s performance. We can exploit the
Kronecker structure of W so that we break down Eq. 3.2 into
pieces, each one which can be computed efficiently, given the
structure of W. The first step is to decompose the expression
of the numerator of Eq. 3.2. In particular, we equivalently
write x(k) = x

(k�1)⇤z2 where z2 = W

T

z1 and z1 = y↵ỹ.
Due to the Kronecker structure of W:

z2 = KRONMATVEC({AT ,BT ,CT }, z1)

Therefore, the update to x

(k) is efficiently calculated in the
three above steps. The normalization factor of the equation is



equal to: s(j) =
P

i

W(i, j). Given the Kronecker structure
of W however, the following holds:

CLAIM 1. The row sum of a Kronecker product matrix A⌦
B can be rewritten as

⇣P
I

i=1 A(i, :)
⌘
⌦
⇣P

J

j=1 B(j, :)
⌘

Proof. We can rewrite the row sums
P

I

i=1 A(i, :) = i

T

I

A

and
P

J

j=1 B(j, :) = i

T

J

B where i

I

and i

J

are all-ones col-
umn vectors of size I and J respectively. For the Kronecker
product of the row sums and by using properties of the Kro-
necker product, and calling A⌦B = W we have⇣
i

T

I

A

⌘
⌦
⇣
i

T

J

B

⌘
= (i

I

⌦ i

J

)T (A⌦B) = i

T

IJ

W =
IJX

i=1

W(i, :)

which concludes the proof. ⌅
Thus, s = (

P
i

A(i, :))⌦
⇣P

j

B(j, :)
⌘
⌦ (

P
n

C(n, :)) .

Putting everything together, we end up with Algorithm
1 which is an efficient solution to the minimization problem
of Equation 3.1. As in the naive case, we also use Iterative
Majorization in the efficient algorithm; we iterate updating
x

(k) until we converge to a local optimum or we reach a
maximum number of iterations. After computing the core
tensor, we then calculate the Core Consistency Diagnostic as
before, by measuring its deviation from the super-diagonal
tensor.

Algorithm 1: Efficient Majorization Minimization
for solving min

x

D
KL

(y|| (A⌦B⌦C)x)

Input: Vector y and matrices A,B,C.
Output: Vector x

1: Initialize x

(0) randomly
2: ỹ = KRONMATVEC({A,B,C},x(0))

3: s =
�P

i

A(i, :)
�
⌦
⇣P

j

B(j, :)
⌘
⌦
�P

n

C(n, :)
�

4: while convergence criterion is not met do
5: z1 = y ↵ ỹ

6: z2 = KRONMATVEC({AT ,BT ,CT }, z1)
7: x

(k) = x

(k�1) ⇤ z2
8: ỹ = KRONMATVEC({A,B,C},x(k))
9: end while

10: Normalize x

(k) using s

3.2 AutoTen: Automated Unsupervised Tensor Mining
At this stage, we have the tools we need in order to design an
automated tensor mining algorithm that minimizes human
intervention and provides quality characterization of the
solution. We call our proposed method AUTOTEN, and
we view this as a step towards making tensor mining a
fully automated tool, used as a black box by academic and
industrial practitioners. AUTOTEN is a two step algorithm,
where we first search through the solution space and at
the second step, we automatically select a good solution
based on its quality and the number of components it offers.
A sketch of AUTOTEN follows, and is also outlined in
Algorithm 2.

Solution Search The user provides a data tensor, as
well as a maximum rank that reflects the budget that she is
willing to devote to AUTOTEN’s search. We neither have
nor require any prior knowledge whether the tensor is highly
sparse, or dense, contains real values or counts, hinting
whether we should use, say, CP ALS postulating Frobenius
norm loss, or CP APR postulating KL-Divergence loss.

Fortunately, our work in this paper, as well as our
previous work [28] has equipped us with tools for handling
all of the above cases. Thus, we follow a data-driven
approach, where we let the data show us whether using
CP ALS or CP APR is capturing better structure. For a
grid of values for the decomposition rank (bounded by the
user provided maximum rank), we run both CP ALS and
CP APR, and we record the quality of the result as measured
by the Core Consistency diagnostic into vectors c

Fro

and
c

KL

truncating negative values to zero.
Result Selection At this point, for both CP ALS and

CP APR we have points in two dimensional space (F
i

, c
i

),
reflecting the quality and the corresponding number of com-
ponents. Given points (F

i

, c
i

) we need to find one that max-
imizes the quality of the decomposition, as well as finding as
many hidden components in the data as possible. Intuitively,
we are seeking a decomposition that discovers as many la-
tent components as possible, without sacrificing the quality
of those components. Essentially, we have a multi-objective
optimization problem, where we need to maximize both c

i

and F
i

. However, if we, say, get the Pareto front of those
points (i.e. the subset of all non-dominated points), we end
up with a family of solutions without a clear guideline on
how to select one. We propose to use the following, effec-
tive, two-step maximization algorithm that gives an intuitive
data-driven solution:
• Max c step: Given vector c, run 2-means clustering

on its values. This will essentially divide the vector
into a set of good/high values and a set of low/bad
ones. If we call m1,m2 the means of the two clusters,
then we select the cluster index that corresponds to the
maximum between m1 and m2.

• Max F step: Given the cluster of points with maximum
mean, we select the point that maximizes the value of
F . We call this point (F ⇤, c⇤).

After choosing the “best” points (F ⇤
Fro

, c⇤
Fro

) and
(F ⇤

KL

, c⇤
KL

), at the final step of AUTOTEN, we have
to select between the results of CP ALS and CP APR.
In order to do so, we select the results that produce the
maximum value between F ⇤

Fro

and F ⇤
KL

. For more potential
strategies, we refer the reader to the supplementary material.

Discussion As we’ve mentioned above, the maximum
number of components F

max

is chosen by the user according
to the computational budget. However, there also exist
rigorous theoretical bounds on F

max

that can help guide the



Algorithm 2: AUTOTEN: Automatic Unsupervised
Tensor Mining

Input: Tensor X and maximum budget for component search
F
max

Output: PARAFAC decomposition A,B,C of X and
corresponding quality metric c⇤.

1: for f = 2 · · ·F
max

, in parallel do
2: Run CP ALS for f components. Update c

Fro

(f) using
Algorithm in [28].

3: Run CP APR for f components. Update c

KL

(f) using
Algorithm 1.

4: end for
5: Find (F ⇤

Fro

, c⇤
Fro

) and (F ⇤
KL

, c⇤
KL

) using the two-step
maximization as described in the text.

6: Choose between CP ALS and CP APR using the strategy
described in the text.

7: Output the chosen c⇤ and the corresponding decomposition.

choice. In particular, the main result in [8] states that for a
tensor of dimensions I ⇥ J ⇥ K, assuming I  J  K,
the maximum number of components that can be uniquely
identified using the PARAFAC decomposition is F

max


(I+1)(J+1)

16 , which is an upper bound to the choice of the
F
max

parameter in AUTOTEN. We point out that lines 2-
3 of Algorithm 2, i.e. all the F

max

computations, can be
run entirely in parallel, speeding up the computation of each
individual decomposition. Finally, it is important to note
that AUTOTEN not only seeks to find a good number of
components for the decomposition, combining the best of
both worlds of CP ALS and CP APR, but furthermore is
able to provide quality assessment for the decomposition: if
for a given F

max

none of the solutions that AUTOTEN sifts
through yields a satisfactory result, the user will be able to
tell because of the very low (or zero in extreme cases) c⇤

value.

4 Experimental Evaluation
We implemented AUTOTEN in Matlab, using the Tensor
Toolbox [3], which provides efficient manipulation and stor-
age of sparse tensors. We use the public implementation for
the algorithm of [28], and we make our code publicly avail-
able2. The online version of our code contains a test case
that uses the same code that we used for the following eval-
uation. All experiments were carried out on a workstation
with 4 Intel(R) Xeon(R) E7- 8837 and 512Gb of RAM.

4.1 Evaluation on Synthetic Data In this section, we em-
pirically measure AUTOTEN’s ability to uncover the true
number of components hidden in a tensor. We create
synthetic tensors of size 50 ⇥ 50 ⇥ 50 in the two fol-

2Download our code at http://www.cs.cmu.edu/˜epapalex/
src/AutoTen.zip

lowing ways that model realistic data mining scenarios
where we have highly sparse data: 1) using the function
create problem of the Tensor Toolbox for Matlab as a
standardized means of generating synthetic tensors, we gen-
erate sparse random factors with integer values, with total
number of non-zeros equal to 500, 2) following the synthetic
data generation methodology of [7], which generates poisson
distributed sparse factors. We generate these for true rank F

o

ranging from 2-5.
We compare AUTOTEN against four baselines:

• Baseline 1: A Bayesian tensor decomposition ap-
proach, as introduced very recently in [36] which au-
tomatically determines the rank.

• Baseline 2: This is a very simple heuristic approach
where, for a grid of values for the rank, we run CP ALS
and record the Frobenius norm loss for each solution. If
for two consecutive iterations the loss does not improve
more than a small positive number ✏ (set to 10�6 here),
we declare as output the result of the previous iteration.

• Baseline 3: Same as Baseline 2 with sole difference
being that we use CP APR and accordingly instead of
the Frobenius norm reconstruction error, we measure
the log-likelihood, and we stop when it stops improv-
ing more than ✏. We expect Baseline 3 to be more ef-
fective than Baseline 2 in sparse data, due to the more
delicate and effective treatment of sparse, count data by
CP APR.

• Baseline 4: A Bayesian framework based on Automatic
Relevance Determination (ARD) that is adapted to the
rank estimation of PARAFAC and Tucker models [27].
According to [27] this baseline works comparably to
Core Consistency in the cases the authors examined.
AUTOTEN as well as Baselines 2 & 3 require a maxi-

mum bound F
max

on the rank; for fairness, we set F
max

=
2F

o

for all three methods. In Figures 1(a) and 1(b) we show
the results for both test cases. The error is measured as
|F

est

� F
o

| where F
est

is the estimated number of com-
ponents by each method. Due to the randomized nature of
the synthetic data generation, we ran 100 iterations and we
show the average results. We calculated statistical signifi-
cance of our results (p < 0.01) using a two-sided sign test.
We observe that AUTOTEN generally achieves lower error in
estimating the true number of components. There is a sin-
gle instance in Fig. 1(b) where the log likelihood criterion
(Baseline 3) works slightly better than the proposed method,
and this is probably because the criterion of Baseline 3 is
highly in sync with the generative model of the synthetic
data, however, overall we conclude that AUTOTEN largely
outperforms the baselines in synthetic data that emulates re-
alistic tensor mining applications. The problem at hand is an
extremely hard one, and we are not expecting any tractable
method to solve it perfectly. Thus, the results we obtain here
are very encouraging and show that AUTOTEN is a practical

http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip
http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip


solution that, as we demonstrate in the next Section, can help
data mining practitioners.
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Figure 1: Rank estimation error on synthetic data.

5 Data Mining Case Study
Section 5.1 takes 10 diverse real datasets shown in Table 2
and investigates their rank structure. In Section 5.2 we apply
AUTOTEN to one of the datasets of Table 2 and we analyze
the results, as part of an exploratory data mining study.

5.1 Rank Structure of Real Datasets Since exploration
of the rank structure of a dataset, using the Core Consistency
diagnostic, is an integral part of AUTOTEN, we deem neces-
sary to dive deeper into that process. In this case study we are
analyzing the rank structure of 10 real datasets, as captured
by the Core Consistency under Frobenius norm loss (using
our algorithm from [28], as well as Core Consistency with
KL-Divergence loss (introduced here). Most of the datasets
we use are publicly available. ENRON3 is a social network
dataset, recording the number of emails exchanged between
employees of the company for a period of time, during the
company crisis. Reality Mining [10] is a multi-view
social network dataset, recording relations between MIT stu-
dents (who calls whom, who messages whom, who is close
to whom and so on). Facebook [33] is a time evolving
snapshot of Facebook, recording people posting on other
peoples’ Walls. Taxi4 is a dataset of taxi trajectories in Bei-
jing; we discretize latitude and longitude to a 100⇥100 grid.
DBLP is a dataset recording which researcher to researcher
connections, from three different viewpoints (first view is co-
authorship, second view is citation, and third view records
whether two authors share at least three keywords in their
title or abstract of their papers). Netflix comes from the
Netflix prize dataset and records movie ratings by users over
time. Amazon co-purchase data records items bought
together, and the category of the first of the two products.
Amazon metadata records customers who reviewed a

3http://www.cs.cmu.edu/˜enron/
4http://research.microsoft.com/apps/pubs/?id=

152883

product, and the corresponding product category. Yelp con-
tains reviews of Yelp users for various businesses (from the
data challenge5). Finally, Airport6 contains records of
flights between different airports, and the operating airline.

We ran our algorithms for F = 2 · · · 50, and truncated
negative values to zero. For KL-Divergence and datasets
Facebook, Netflix, Yelp, and Airport we used
smaller versions (first 500 rows for Netflix and Yelp,
and first 1000 rows for Facebook and Airport), due to
high memory requirements of Matlab; this means that the
corresponding figures describe the rank structure of a smaller
dataset, which might be different from the full one. Figure 2
shows the Core Consistency when using Frobenius norm as
a loss, and Fig. 3 when using KL-Divergence. The way to
interpret these figures is the following: assuming a CP ALS
(Fig. 2) or a CP APR (Fig. 3) model, each figure shows the
modelling quality of the data for a given rank. This sheds
light to the rank structure of a particular dataset (although
that is not to say that it provides a definitive answer about
its true rank). For the given datasets, we observe a few in-
teresting differences in structure: for instance, ENRON and
Taxi in Fig. 2 seem to have good quality for a few com-
ponents. On the other hand, Reality Mining, DBLP,
and Amazon metadata have reasonably acceptable qual-
ity for a larger range of components, with the quality de-
creasing as the number gets higher. Another interesting ob-
servation is that Yelp seems to be modelled better using a
high number of components. Figures that are all-zero merely
show that no good structure was detected for up to 50 com-
ponents, however, this might indicate that such datasets (e.g.
Netflix) have an even higher number of components. Fi-
nally, contrasting Fig. 3 to Fig. 2, we observe that in many
cases using the KL-Divergence is able to discover better
structure than the Frobenius norm (e.g. ENRON and Amazon
co-purchase).
5.2 AutoTen in practice We used AUTOTEN to analyze
the Taxi dataset shown in Table 2.The data we have span an
entire week worth of measurements, with temporal granular-
ity of minutes. First, we tried quantizing the latitude and lon-
gitude into a 1000⇥ 1000 grid; however, AUTOTEN warned
us that the decomposition was not able to detect good and
coherent structure in the data, perhaps due to extreme spar-
sity. Subsequently, we modelled the data using a 100 ⇥ 100
grid and AUTOTEN was able to detect good structure. In par-
ticular, AUTOTEN output 8 rank-one components, choosing
Frobenius norm as a loss function.

In Figure 4 we show 4 representative components of the
decomposition. In each sub-figure, we overlay the map of
Beijing with the coordinates that appear to have high activity
in the particular component; every sub-figure also shows the
temporal profile of the component. The first two components

5https://www.yelp.com/dataset_challenge/dataset
6http://openflights.org/data.html

http://www.cs.cmu.edu/~enron/
http://research.microsoft.com/apps/pubs/?id=152883
http://research.microsoft.com/apps/pubs/?id=152883
https://www.yelp.com/dataset_challenge/dataset
http://openflights.org/data.html


Table 2: Datasets analyzed
Name Description Dimensions Number of nonzeros
ENRON (sender, recipient, month) 186 ⇥ 186 ⇥ 44 9838
Reality Mining [10] (person, person, means of communication) 88 ⇥ 88 ⇥ 4 5022
Facebook [33] (wall owner, poster, day) 63891 ⇥ 63890 ⇥ 1847 737778
Taxi [35, 34] (latitude, longitude,minute) 100 ⇥ 100 ⇥ 9617 17762489
DBLP [29] (paper, paper, view) 7317 ⇥ 7317 ⇥ 3 274106
Netflix (movie, user, date) 17770 ⇥ 252474 ⇥ 88 50244707
Amazon co-purchase [24] (product, product, product group) 256 ⇥ 256 ⇥ 5 5726
Amazon metadata [24] (product, customer, product group) 10000 ⇥ 263011 ⇥ 5 441301
Yelp (user, business, term) 43872 ⇥ 11536 ⇥ 10000 10009860
Airport (airport, airport, airline) 9135 ⇥ 9135 ⇥ 19305 58443
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Figure 2: Core Consistency for CP ALS
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Figure 3: Core Consistency for CP APR

(Fig. 4(a), (b)) spatially refer to a similar area, roughly
corresponding to the tourist and business center in the central
rings of the city. The difference is that Fig. 4(a) shows high
activity during the weekdays and declining activity over the
weekend (indicated by five peaks of equal height, followed
by two smaller peaks), whereas Fig. 4(b) shows a slightly
inverted temporal profile, where the activity peaks over the
weekend; we conclude that Fig. 4(a) most likely captures

business traffic that peaks during the week, whereas Fig.
4(b) captures tourist and leisure traffic that peaks over the
weekend. The third component (Fig. 4(c)) is highly active
around the Olympic Center and Convention Center area,
with peaking activity in the middle of the week. Finally,
the last component (Fig. 4(d) ) shows high activity only
outside of Beijing’s international airport, where taxis gather
to pick-up customers; on the temporal side, we see daily



(a) Tourist & Business Center: High activity during weekdays, low over
the weekend

(b) Downtown: Consistent activity throughout the week

(c) Olympic Center: Activity peak during the week (d) Airport: High activity during weekdays, low over the weekend
Figure 4: Latent components of the Taxi dataset, as extracted using AUTOTEN.

peaks of activity, with the collective activity dropping during
the weekend, when there is significantly less traffic of people
coming to the city for business. By being able to analyze
such trajectory data into highly interpretable results, we can
help policymakers to better understand the traffic patterns of
taxis in big cities, estimate high and low demand areas and
times and optimize city planning in that respect. There has
been very recent work [34] towards the same direction, and
we view our results as complementary.

6 Related Work
Model order selection for Tensors As we have men-

tioned throughout the text, CORCONDIA [5] is using prop-
erties of the PARAFAC decomposition in order to hint to-
wards the right number of components. In [28], the authors
introduce a scalable algorithm for CORCONDIA (under the
Frobenius norm). Moving away from the PARAFAC de-
compostion, Kiers and Kinderen [20] introduce a method
for choosing the number of components for Tucker3. There
has been recent work using Minimum Description Length
(MDL): In [1] the authors use MDL in the context of com-
munity detection in time-evolving social network tensors,
whereas in [26], Metzler and Miettinen use MDL to score
the quality of components for a binary tensor factorization.
Finally, there have also been recent advances using Bayesian
methods in order to automatically decide the number of com-
ponents: in particular [36] does so for the PARAFAC decom-
position, and [27] (based on Automatic Relevance Determi-

nation) does so for both PARAFAC and Tucker models.

7 Conclusions
In this paper, we work towards an automatic, unsupervised
tensor mining algorithm that minimizes user intervention.
We encourage reproducibility by making our code publicly
available at http://www.cs.cmu.edu/˜epapalex/
src/AutoTen.zip. Our main contributions are:
• Technology Transfer This is the first work to apply

ideas such as the Core Consistency Diagnostic [5]
in data mining, aiming to popularize it within the
community.

• Algorithms We propose AUTOTEN, a novel automatic,
parallel, and unsupervised tensor mining algorithm,
which can provide quality characterization of the so-
lution. We extend the Core Consistency Diagnostic of
[5] for KL-Divergence loss and provide a novel and ef-
ficient algorithm.

• Evaluation & Discovery We evaluate our methods
in synthetic data, showing their superiority compared
to the baselines, as well as a wide variety of real
datasets. Finally, we apply AUTOTEN to two real
datasets discovering meaningful patterns (Section 5.2
and supplementary material).
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