
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor

Factorizations by 200x - Supplementary Material

Evangelos E. Papalexakis∗

epapalex@cs.cmu.edu
Tom M. Mitchell ∗

tom.mitchell@cmu.edu
Nicholas D. Sidiropoulos †

nikos@ece.umn.edu

Christos Faloutsos ∗

christos@cs.cmu.edu
Partha Pratim Talukdar ∗

partha.talukdar@cs.cmu.edu
Brian Murphy ‡

brian.murphy@qub.ac.uk

This supplementary document serves as an ap-
pendix to the main manuscript. In Section 1, we pro-
vide an overview of one of our baselines, the Alternat-
ing Least Squares (ALS) algorithm, and we provide a
modification thereof that yields significant speedup. In
Section 2, we show how we can make Turbo-SMT,
when using ALS, robust to missing values (in [2], the
authors propose a version of their algorithm that deals
with missing values). In Section 3, we compare Turbo-
SMT to approaches that might consider compressing
the tensor using a Tucker3 model. Finally, in Section
4, we showcase the generality of the CMTF framework,
and consequently of Turbo-SMT, with an application
to a time evolving social network, with side information.

In Table 1, we provide an overview of the symbols
used.

Symbol Description
CMTF Coupled Matrix-Tensor Factorization
ALS Alternating Least Squares
x,x,X,X scalar, vector, matrix, tensor (respectively)
A�B Khatri-rao product.
A⊗B Kronecker product.
A ∗B Hadamard (elementwise) product.

A† Pseudoinverse of A
‖A‖F Frobenius norm of A.
a ◦ b ◦ c (a ◦ b ◦ c) (i, j, k) = a(i)b(j)c(k)
X(i) i-th mode unfolding of tensor X (see [6]).

Table 1: Table of symbols

1 The Alternating Least Squares Algorithm

One of the most popular algorithms to solve PARAFAC
(as introduced in Figure 1) is the so-called Alternating
Least Squares (ALS); the basic idea is that by fixing
two of the three factor matrices, we have a least squares
problem for the third, and we thus do so iteratively,
alternating between the matrices we fix and the one

∗Carnegie Mellon University
†University of Minnesota
‡Queen’s University of Belfast

we optimize for, until the algorithm converges, usually
when the relative change in the objective function
between two iterations is very small.

X

≈

voxels

words

persons

a1

b1
c1

+

Concept1

a2

b2
c2

+

Concept2

aR

bR
cR

Concept R

. . . +

Figure 1: PARAFAC decomposition of a three-way tensor
of a brain activity tensor as sum of F outer products
(rank-one tensors), reminiscent of the rank-F singular value
decomposition of a matrix. Each component corresponds to
a latent concept of, e.g. ”insects”, ”tools” and so on, a set
of brain regions that are most active for that particular set
of words, as well as groups of persons.

Solving CMTF using ALS follows the same strategy,
only now, we have up to three additional matrices in our
objective.

In Algorithm 1, we provide a detailed outline of the
baseline algorithm, ALS for CMTF, also described in
[1].

The Moore-Penrose Pseudoinverse of a matrix is
computed as X† = VΣ−1U

T
given the Singular Value

Decomposition of a matrix X = UΣVT . The Kronecker
product of two matrices A,B (of sizes I×J and K×M
respectively) is defined as

A⊗B =

A(1, 1)B · · · A(1, J)B
...

. . .
...

A(I, 1)B · · · A(I, J)B


The Khatri-Rao product of two matrices A,B with

sizes I × F and J × F is

A�B =
[
A(:, 1)⊗B(:, 1) · · · A(:, F )⊗B(:, F )

]



Algorithm 1: Baseline: Alternating Least Squares
(ALS) Algorithm for CMTF

Input: X of size I × J ×K, matrices Yi, i = 1 · · · 3, of
size I × I2, J × J2, and K ×K2 respectively, number of
factors F .

Output: A of size I ×F , B of size J ×F , C of size K×F ,
D of size I2 × F , G of size J2 × F , E of size K2 × F .

1: Unfold X into X(1), X(2), X(3) (see [6]).
2: Initialize A, B, C using PARAFAC of X. Initialize

D,G,E as discussed on the text.
3: while convergence criterion is not met do

4: A =

[
X(1)

Y1

]T ([
(B�C)

D

]†)T

5: B =

[
X(2)

Y2

]T ([
(C�A)

G

]†)T

6: C =

[
X(3)

Y3

]T ([
(A�B)

E

]†)T

7: D = Y1

(
A†
)T

, G = Y2

(
B†
)T

, E = Y3

(
C†
)T

8: end while

1.1 Speeding up the ALS algorithm In addition
to our main contribution in terms of speeding CMTF in
general, we are able to further speed the ALS algorithm
up, by making a few careful interventions to the core
algorithm (Algorithm 1).

Lemma 1.1. We may do the following simplification
to each pseudoinversion step of the ALS algorithm
(Algorithm 1):[
A�B

M

]†
=
(
ATA ∗BTB + MT ∗M

)† [
(A�B)

T
,MT

]
Proof. For the Moore-Penrose pseudoinverse of the
Khatri-Rao product, it holds that [4], [9]

(A�B)
†

=
(
ATA ∗BTB

)†
(A�B)

T

Furthermore [4] (A�B)
T

(A�B) = ATA ∗ BTB

For a partitioned matrix P =

[
P1

P2

]
, it holds that its

pseudoinverse may be written in the following form [5][
P1

P2

]†
=
(
PT

1 P1 + PT
2 P2

)† [
PT

1 , PT
2

]
Putting things together, it follows:[
A�B

M

]†
=
(
ATA ∗BTB + MT ∗M

)† [
(A�B)

T
,MT

]
which concludes the proof.

The above lemma implies that substituting the

naive pseudoinversion of

[
A�B

M

]
with the simpli-

fied version, offers significant computational gains
to Algorithm 1. More precisely, if the dimensions
of A,B and M are I × R, J × R and I × I2,
then computing the pseudoinverse naively would cost
O
(
R2 (IJ + I2)

)
, whereas our proposed method yields

a cost of O
(
R2 (I + J + I2)

)
because of the fact that

we are pseudoinverting only a small R×R matrix. We
have to note here that in almost all practical scenarios
R� I, J, I2.

Table 2 provides a solid impression of the speedup
achieved on the core ALS algorithm, as a result of the
simplification of the pseudo-inversion step, as derived
above. In short, we can see that the speedup achieved
is in most realistic cases 2x or higher, adding up to being
a significant improvement on the traditional algorithm.

2 Accounting for missing values

In many practical scenarios, we often have corrupted
or missing data. For instance, when measuring brain
activity, a few sensors might stop working, whereas the
majority of the sensors produce useful signal. Despite
these common data imperfections, it is important for a
data mining algorithm to be able to operate.

The work of Tomasi et. al [10] provides a very
comprehensive study on how to handle missing values
for plain tensor decompositions.

We carefully ignore the missing values from the
entire optimization procedure: Notice that is not the
same as simply zeroing out all missing values, since 0
might have a valid physical interpretation. Specifically,
we define a ’weight’ tensor W which has ’0’ in all
coefficients where values are missing, and ’1’ everywhere
else. Similarly, we introduce three weight matrices
Wi for each of the coupled matrices Yi. Then, the
optimization function of the CMTF model becomes

min
A,B,C,D,E,G

‖W ∗

(
X−

∑
k

ak ◦ bk ◦ ck

)
‖2F +

‖W1 ∗
(
Y1 −ADT

)
‖2F + ‖W2 ∗

(
Y2 −BET

)
‖2F +

‖W3 ∗
(
Y3 −CGT

)
‖2F

As we show in Algorithm 1, we may solve CMTF
by solving six least squares problems in an alternating
fashion. A fortuitous implication of this fact is that in
order to handle missing values for CMTF, it suffices to
solve



R I = 10 I = 100 I = 1000 I = 10000 I = 100000
1 2.4686 ± 0.3304 2.4682 ±0.3560 2.4479 ± 0.2948 2.4546 ± 0.3214 2.4345 ± 0.3144
5 2.2496 ± 0.3134 2.2937 ± 0.1291 2.2935 ± 0.1295 2.2953 ± 0.1291 2.2975 ± 0.1318
10 2.6614 ± 0.1346 2.6616 ± 0.1368 2.6610 ± 0.1380 2.6591 ± 0.1377 2.6593 ± 0.1428

Table 2: Pseudoinversion speedup (100000 runs)

(2.1) min
B
‖W ∗

(
X−ABT

)
‖2F

where W is a weight matrix in the same sense as
described a few lines earlier.

On our way tackling the above problem, we first
need to investigate its scalar case, i.e. the case where
we are interested only in B(j, f) for a fixed pair of j and
f . The optimization problem may be rewritten as

min
B(j,f)

‖W(:, j) ∗X(:, j)− (W(:, j) ∗A(: f)) B(j, f)T ‖

which is essentially a scalar least squares problem of the
form: minb ‖x − ab‖22 with solution in analytical form:

b = xT a
‖a‖22
We may, thus, solve this problem of Equation 2.1

using element-wise coordinate descent, where we up-
date each coefficient of B iteratively, until convergence.
Therefore, with the aforementioned derivation, we are
able to modify our original algorithm in order to take
missing values into account.

2.1 Experimental evaluation In order to measure
resilience to missing values we define the Signal-to-Noise

Ratio (SNR) as simply as SNR =
‖Xm‖

2
F

‖Xm−X0‖2F
, where

Xm is the reconstructed tensor when a m fraction of
the values are missing. In Figure 2, we demonstrate
the results of that experiment; we observe that even
for a fair amount of missing data, the algorithm per-
forms reasonably well, achieving high SNR. Moreover,
for small amounts of missing data, the speed of the al-
gorithm is not degraded, while for larger values, it is
considerably slower, probably due to Matlab’s imple-
mentation issues. However, this is encouraging, in the
sense that if the amount of missing data is not over-
whelming, Turbo-SMT is able to deliver a very good
approximation of the latent subspace. This experiment
was, again, conducted on a portion of BrainQ.

3 Comparison to Compression

One existing approach used for speeding up the
PARAFAC decomposition is the so-called COMFAC al-
gorithm [8]; COMFAC first uses Tucker3 in order to
compress the original tensor to a smaller, core tensor,

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

4

fraction of missing values

S
N

R
 

 

F = 1

F = 2

Figure 2: This Figure shows the Signal-to-Noise ratio
(SNR)-as defined in the main text- as a function of the
percentage of missing values. We can observe that, even
for a fair amount of missing values, the SNR is quite
high, signifying that Turbo-SMT is able to handle
such ill-conditioned settings, with reasonable fidelity.

then fits the PARAFAC decomposition on the core ten-
sor, and finally, projects the factor matrices to the orig-
inal space. In Section 5.3 of [8], it is implied that one
could do the same for the CMTF problem. Before pro-
ceeding with a brief sketch of the approach which, to the
best of our knowledge, has not been published yet, we
provide a brief overview of the Tucker3 decomposition.

Consider the I × J × K tensor X. Then, its
{Q,R, P} Tucker3 decomposition consists of a P×Q×R
core tensor, say, G and three assorted, unitary, matrices
U,V,Z with sizes I×P , J ×Q and K×R respectively.
The Tucker3 objective function is:

min
G,A,B,C

‖X−
P∑

p=1

Q∑
q=1

R∑
r=1

G(p, q, r)up ◦ vq ◦ zr‖2F

and we may write the decomposition, compactly, as:

X ≈
[
G(P×Q×R),U(I×P ),V(J×Q),Z(K×R)

]
Having a tensor X coupled with matrices Yi, i =

1 · · · 3, we may first obtain the Tucker3 decomposition of



X. Consequently, we may use U in order to project Y1

to the compressed space, and respectively V for Y2 and
Z for Y3. We, thus, obtain a new set of coupled data:
the core tensor G, and the projected side matrices.
Then, we fit a CMTF model to the compressed data,
and as a final step, we use U in order to project A,D
to their original dimension (and accordingly for the rest
of the factor matrices).

This method, however, lacks a few key features that
Turbo-SMT has:
• Tucker3 is now a bottleneck; its computation (even

though there exist memory efficient implementa-
tions in the literature [3], [7], which we use in our
implementation) is very costly, compared to the
simple sampling scheme that Turbo-SMT is us-
ing.

• This method, in contrast to Turbo-SMT, is not
parallelizable, at least not in an obvious way, that
would make its computation more efficient.

• This compression-based technique is not triple-
sparse: The output of Tucker3 is dense, hence the
core tensor G and the projected side matrices are
going to be dense. Additionally, both ALS and
CTMF-OPT [1] produce dense factors. Therefore,
this technique is prone to storage and interpretabil-
ity issues.
We implemented this compression-based technique,

using Tensor Toolbox’s [3] memory efficient implemen-
tation of the Tucker3 decomposition. In Fig. 3, we illus-
trate the wall-clock time of this approach, compared to
Turbo-SMT, on the entire BrainQ dataset; we chose
s = 5 for Turbo-SMT, and we chose P = Q = R = 60
for the compression-based technique. We observe that
Turbo-SMT performs significantly better, while, ad-
ditionally, producing sparse outputs.

4 Generality: Mining Social Networks with
Additional Information

We have demonstrated the expressive power of Turbo-
SMT for the BrainQ dataset, but in this subsection,
we stress the fact that the method is actually appli-
cation independent and may be used in vastly differ-
ent scenarios. To that end, we analyze a Facebook
dataset, introduced in [11]1. This dataset consists of
a 63890 × 63890 × 1847 (wall, poster, day) tensor with
about 740.000 non-zeros, and a 63890 × 63890 who is
friends with whom matrix, with about 1.6 million non-
zeros. In contrast to BrainQ, this dataset is very sparse
(as one would expect from a social network dataset).
However, Turbo-SMT works in both cases, demon-

1Download Facebook at http://socialnetworks.mpi-sws.

org/data-wosn2009.html

F = 1 F = 5 F = 10
0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
 (

s
e
c
)

 

Scoup−SMT

Compression

Figure 3: Comparison of Turbo-SMT and a
compression-based technique, that uses the Tucker3 de-
composition, as described in Sec. 3. Turbo-SMT sig-
nificantly outperforms the alternative method.

strating that it can analyze data efficiently, regardless
of their density.

We decomposed the data into 25 rank one compo-
nents, using sI = 1000, sJ = 1000, sK = 100 and sI for
both dimensions of the matrix, and manually inspected
the results. A fair amount of components captured nor-
mal activity of Facebook users who occasionally post on
their friends’ walls; here we only show one outstanding
anomaly, due to lack of space: In Fig. 4 we show what
appears to be a spammer, i.e. a person who, only on a
certain day, posts on many different friends’ walls: the
first subfigure corresponds to the wall owners, the sec-
ond subfigure corresponds to the people who post on
these walls, and the third subfigure is the time (mea-
sured in days); we thus have one person, posting on
many peoples’ walls, on a single day.

We chose to include this particular result in order
to showcase the modelling versatility of CMTF models,
and thus of the Turbo-SMT algorithm, since we are
able to express a variety of problems in the CMTF
framework, and additionally, solve them very efficiently
by using Turbo-SMT. The Facebook dataset merits
its own detailed analysis, however, here we include a
small, preliminary result, due to space considerations.

References

[1] E. Acar, T.G. Kolda, and D.M. Dunlavy. All-at-once
optimization for coupled matrix and tensor factoriza-
tions. arXiv preprint arXiv:1105.3422, 2011.

[2] E. Acar, G.E. Plopper, and B. Yener. Coupled analysis
of in vitro and histology tissue samples to quantify



0 2 4 6 8

x 10
4

−1

0

1

0 2 4 6 8

x 10
4

−2000

0

2000

0 500 1000 1500 2000
−500

0

500

One user

Users who posted on those walls

Multiple Walls

Wall

Day

Figure 4: This is a pattern extracted using Turbo-
SMT, which shows what appears to be a spammer on
the Facebook dataset: One person, posting to many
different walls on a single day.

structure-function relationship. PloS one, 7(3):e32227,
2012.

[3] B.W. Bader and T.G. Kolda. Matlab tensor toolbox
version 2.2. Albuquerque, NM, USA: Sandia National
Laboratories, 2007.

[4] R. Bro. Multi-way analysis in the food industry:
models, algorithms, and applications. PhD thesis,
Københavns Universitet, 1998.

[5] C. Hung and T.L. Markham. The moore-penrose
inverse of a partitioned matrix m= adbc. Linear
Algebra and its Applications, 11(1):73–86, 1975.

[6] H.A.L. Kiers. Towards a standardized notation and
terminology in multiway analysis. Journal of Chemo-
metrics, 14(3):105–122, 2000.

[7] Tamara G Kolda and Jimeng Sun. Scalable tensor
decompositions for multi-aspect data mining. In Data
Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 363–372. IEEE, 2008.

[8] T.G. Kolda and B.W. Bader. Tensor decompositions
and applications. SIAM review, 51(3), 2009.

[9] S. Liu and G. Trenkler. Hadamard, khatri-rao, kro-
necker and other matrix products. International Jour-
nal of Information and Systems Sciences, pages 160–
177, 2008.

[10] G. Tomasi and R. Bro. Parafac and missing val-
ues. Chemometrics and Intelligent Laboratory Systems,
75(2):163–180, 2005.

[11] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and
Krishna P. Gummadi. On the evolution of user inter-
action in facebook. In SIGCOMM Workshop on Social
Networks, 2009.


