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Abstract. Existing methods for geolocating images use standard clas-
sification or image retrieval techniques. These methods have poor the-
oretical properties because they do not take advantage of the earth’s
spherical geometry. In some cases, they require training data sets that
grow exponentially with the number of feature dimensions. This paper
introduces the Mixture of von-Mises Fisher (MvMF) loss function, which
is the first loss function that exploits the earth’s spherical geometry to
improve geolocation accuracy. We prove that this loss requires only a
dataset of size linear in the number of feature dimensions, and empirical
results show that our method outperforms previous methods with orders
of magnitude less training data and computation.
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1 Introduction

Consider the two images below:

Most people recognize that the left image is of the Eiffel Tower, located in Paris,
France. A trained expert can further recognize that the right image is a replica of
the Eiffel Tower. The expert uses clues in the image’s background (e.g. replicas of
other famous landmarks, tall cement skyscrapers) to determine that this image
was taken in Shenzhen, China. We call these images strongly localizable because
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Fig. 1. To geolocate an image, we first generate features using the WideResNet50 [23],
then pass these features to our novel mixture of von Mises-Fisher (MvMF) output
layer. The MvMF outputs a probability distribution over the earth’s surface, and is
particularly well-suited for visualizing the output of hard-to-geolocate images.

the images contain all the information needed to exactly geolocate the images.
Existing geolocation algorithms work well on strongly localizable images. These
algorithms [e.g. 1, 22, 21, 16, 15] use deep neural networks to extract features,
and can therefore detect the subtle clues needed to differentiate these images.

Most images, however, are only weakly localizable because the image does not
contain enough information to exactly geolocate it. Consider the image in Figure
1 of two men hiking. An expert can use clues like the geology of the mountains,
the breed of cattle, and the people’s appearance to determine that this image was
taken in the Alps. But the Alps are a large mountain range, and there is simply
not enough information in the image to pinpoint exactly where in the Alps
the image was taken. Existing geolocation algorithms are overconfident when
predicting locations for these images. These algorithms use either image retrieval
[7, 8, 1, 21] or classification methods [22, 16, 15] to perform geolocation, and
these procedures do not take advantage of the earth’s spherical geometry. They
therefore cannot properly represent the ambiguity of these weakly localizable
images.

In this paper, we introduce the MvMF output layer for predicting GPS coor-
dinates with deep neural networks. The MvMF has three advantages compared
to previous methods:

1. The MvMF takes advantage of the earth’s spherical geometry and so works
with both strongly and weakly localizable images.

2. The MvMF has theoretical guarantees, whereas no previous method has a
theoretical analysis.

3. The MvMF interpolates between the image retrieval and classification ap-
proaches to geolocation, retaining the benefits of both with the drawbacks
of neither.

In our experiments, we use the WideResNet50 [23] convolutional neural network
to generate features from images, but we emphasize that any deep neural network
can be used with the MvMF layer. We provide TensorFlow code for the MvMF
layer at https://github.com/mikeizbicki/geolocation.
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In Section 2, we review prior work on the image geolocation problem. We
focus our exposition on how previous methods ignore the earth’s spherical geom-
etry, and how this causes them to require more training data. Section 3 presents
the MvMF output layer to fix these problems, while Section 4 provides the ex-
perimental results. Section 5 concludes the paper with a discussion on other
possible application areas for the MvMF output layer.

2 Prior Work

Prior image geolocation methods use either image retrieval or classification tech-
niques. This section describes the limitations of these techniques. We use stan-
dard theoretical results to show that these techniques require excessively large
training datasets, and conduct novel experiments to verify that these theoretical
flaws affect real world performance.

2.1 Image Retrieval

Im2GPS [7, 8] was the first image geolocation system. The most important com-
ponent of this system is a large database of images labelled with GPS coordinates
and manually constructed features. To determine the location of a new image,
Im2GPS performs a k-nearest neighbor query in the database, and outputs the
average GPS coordinates of the returned images. Im2GPS-deep [21] significantly
improved the results of the Im2GPS system by using deep neural networks to
generate features.

These image retrieval systems have two basic disadvantages due to the curse
of dimensionality. First, they have poor theoretical guarantees. Let d denote the
dimensionality of the image feature vector (d ≈ 1×105 for Im2GPS and d = 512
for Im2GPS-deep). Then standard results for k-nearest neighbor queries show
that in the worst case, a database with Ω(dd/2) images is needed for accurate
queries (see Theorem 19.4 of [17]); that is, the amount of training data should
grow exponentially with the number of feature dimensions. This is unrealistic
for the feature dimensions used in practice. Second, image retrieval systems are
slow. The nearest neighbor search is performed over millions of images, and
because the dimensionality of the space is large, data structures like kd-trees do
not speed up the search as much as we would like.

In Section 3.3 below, we show that the MvMF model this paper introduces
can be interpreted as an image retrieval system. The MvMF, however, takes
advantage of the earth’s spherical geometry to avoid the curse of dimensionality.

2.2 Classification

Classification-based geolocation methods were introduced to overcome the per-
formance limitations of image retrieval methods. The basic idea is as follows.
First, the surface of the earth is partitioned into a series of classes. Then the
standard cross entropy loss is used to classify images. The estimated position is
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Fig. 2. The PlaNet [22] method’s performance is highly sensative to the number of
classes c. Consider the highlighted region. When c = 26, PlaNet assigns no probability
to the region. (Brighter red indicates classes with higher probability.) When c = 27,
PlaNet has split many other cells, causing the probability of the highlighted region to
increase. When c = 28, PlaNet splits the highlighted region, causing the probability
to drop again. This effect is exaggerated for weakly localizable images because many
classes should be assigned high probability. In comparison, when the number of classes
increases for the MvMF loss, the output smoothly takes on the shape of the underlying
geography, which is the desired output for a weakly localizable image of grass.

the center of the predicted class. These methods have better theoretical guar-
antees than the image retrieval methods and are faster because they avoid the
expensive nearest neighbor queries. Unfortunately, these methods have two flaws:
tuning the number of classes is difficult, and the cross entropy loss is not well
correlated with geolocation performance.

We illustrate these flaws on the PlaNet algorithm [22], which is the earliest
and most influential example of classification-based geolocation methods. The
algorithm divides the world into a series of classes using an adaptive partition-
ing scheme based on Google’s S2 geometry library. The classes are constructed
according to the following recursive procedure: the world is initially divided into
6 classes; the class with the most images is then subdivided into smaller classes;
and this procedure is repeated until the desired number of classes c is reached.
Figure 2 shows an example class tiling generated using the PlaNet method for
three different values of c.

The number of classes c is a hyperparameter that must be manually tuned,3

and tuning this parameter is an instance of the classic bias-variance trade off.
Recall that the bias of a model (also called the approximation error) is the error
of the best possible model in a given class, and the variance (also called the
estimation error) is the statistical error induced by the finite size of the training
set. We make the following claim about PlaNet’s geolocation method.

Claim 1 Increasing the number of classes c reduces the model’s bias but in-
creases the model’s variance.
3 The original PlaNet paper chose a value of c ≈ 215.
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Fig. 3. Previous classification-based geolocation methods minimize the cross entropy
loss [22, 16, 15], but these plots show that minimizing the cross entropy does not
necessarily improve geolocation accuracy. (Top) Stochastic gradient descent directly
minimizes the cross entropy loss, so the cross entropy decreases as training progresses.
(Middle) The cross entropy loss is a convex surrogate for the classification accuracy, so
classification accuracy increases as training progresses. (Bottom) The cross entropy is
not a convex surrogate for the accuracy @750km (which is the fraction of data points
whose estimated location is within 750km of their true location), so the geolocation
accuracy does not necessarily increase as training progresses. In this particular run,
the cross entropy loss at iteration 4.5× 106 improves dramatically, but the geolocation
accuracy worsens dramatically. This effect can be observed at all distance scales and
for all hyperparameter values.

To understand this claim, observe that when c is small, the geographic area of
each class is large, so fine-grained predictions are not possible, and the model
has large bias. Increasing the number of classes c reduces the size of each class,
allowing more fine-grained predictions, and reducing the model’s bias. To see
how c effects the model’s variance, we appeal to Theorem 4 of Hazan et al. [9]
that shows that the variance of a classifier using the cross entropy loss grows as
Ω(cd). Therefore, as c increases, the variance must increase as well. Finding the
optimal value of c is a difficult balancing act, as shown in Figure 2.

In order to reduce the variance inherent in classification methods, the CPlaNet
method [16] and the ISN method [15] use multiple cross entropy output layers
to reduce the total number of classes needed. Both methods lack theoretical
guarantees, and the optimal number of classes c still requires careful tuning.

A second problem with PlaNet, CPlaNet, and ISN is these methods all use
the cross entropy loss for training. The cross entropy is closely associated with
classification accuracy, but as we show in Figure 3, is not necessarily correlated
with geolocation performance. The fundamental problem is that the cross en-
tropy loss does not incorporate knowledge about the earth’s spherical geometry.

In Section 3.2 below, we show that our MvMF method has an interpretation
as a classification-based geolocation method. In contrast to all previous methods,
however, the MvMF uses a loss function that exploits the earth’s spherical ge-
ometry and so is highly correlated with geolocation performance. We also show
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that the variance of the MvMF grows as O(d), and so increasing the number of
classes c reduces the model’s bias without increasing the variance.

3 Geolocation via the MvMF

The MvMF is the first geolocation method that exploits the earth’s spherical
geometry, and it is specifically designed to overcome the disadvantages of the
image retrieval and classification methods for geolocation. In this section, we
first introduce the MvMF as a probabilistic model, then describe two alternative
interpretations of the MvMF as a classification model with a non-standard loss or
as an image retrieval model using non-standard features. A powerful property of
the MvMF model is that it can interpolate between the classification and image
retrieval approaches to geolocation, getting the best of both techniques while
avoiding the limitations of both. We prove that when the MvMF’s parameters
are properly initialized, only O(d) training data points are needed.

3.1 The probabilistic interpretation

This subsection formally introduces the MvMF output layer as a mixture of von
Mises-Fisher distributions. Then we describe the training and inference proce-
dures.

The von Mises-Fisher (vMF) distribution is one of the standard distributions
in the field of directional statistics, which is the study of distributions on spheres.
The vMF can be considered the spherical analogue of the Gaussian distribution
[e.g. 13] and enjoys many of the Gaussian’s nice properties. Thus, the mixture of
vMF (MvMF) distribution can be seen as the spherical analogue of the commonly
used Gaussian mixture model (GMM). While the MvMF model has previously
been combined with deep learning for clustering [5] and facial recognition [6], we
are the first to combine the MvMF and deep learning to predict GPS coordinates.

Formally, the vMF distribution is parameterized by the mean direction µ ∈
S2, and the concentration parameter κ ∈ R+. The density is defined for all points
y ∈ S2 as

vMF(y;µ, κ) =
κ

sinhκ
exp(κiµ

>y). (1)

An important property of the vMF distribution is that it is symmetric about µ
for all µ ∈ S2. As shown in Figure 4, a gaussian distribution over GPS coordi-
nates does not account for the earth’s spherical geometry, and is therefore not
symmetrical when projected onto the sphere.

The mixture of vMF (MvMF) distribution is a convex combination of vMF
distributions. If the mixture contains c component vMF distributions, then it is
parameterized by a collection of mean directions M = (µ1, ..., µc), a collection
of concentration parameters K = (κ1, ..., κc), and a vector of mixing weights
Γ ∈ Rc satisfying

∑c
i=1 Γi = 1. Notice that we use capital Greek letters for

the parameters of the mixture distribution and lowercase Greek letters for the
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Fig. 4. The vMF distribution takes into account the curvature of the earth’s surface,
and so contour lines are equidistant from the center at all scales and locations. The
Gaussian distribution over GPS coordinates, in contrast, becomes elongated far from
the equator, and has discontinuities at the poles and at longitude ±180◦.

parameters of the corresponding component distributions. The density is given
by

MvMF(y;M,K,Γ ) =

c∑
i=1

Γi vMF(y,Mi,Ki). (2)

To construct the MvMF loss function from this density, we assume that the
mean direction and concentration parameters do not depend on the input fea-
tures. The mixing weights are parameterized using the standard softmax function
as

Γi(x;W ) =
exp(−x>wi)∑c
j=1 exp(−x>wj)

. (3)

where W = (w1, ...,wc) and each wi ∈ Rd. Taking the negative log of Equation
(2) and substituting Γi gives us the final MvMF loss:

`MvMF(x,y;M,K,W ) = − log

c∑
i=1

(
Γi(x;W ) vMF(y,Mi,Ki)

)
. (4)

When training a model with the MvMF loss, our goal is to find the best values for
M , K, and W for a given dataset. Given a training dataset (x1,y1), ..., (xn,yn)
the training procedure solves the optimization

M̂, K̂, Ŵ = arg min
M,K,W

1

n

n∑
i=1

`MvMF(xi,yi;M,K,W ). (5)

Training mixture models is difficult due to their non-convex loss functions, and
good initial conditions are required to ensure convergence to a good local min-
imum. We use the following initialization in our experiments: initialize the W
randomly using the Glorot method [4]; initialize µi to the center of the ith class
used by the PlaNet method; and initialize all κi to the same initial value κ0. We
suggest using κ0 = exp(16) based on experiments in Section 4.
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Fig. 5. (Left) Classes near London created using the PlaNet method. (Middle) Classes
of the MvMF method with the µi initialized from the centers of the PlaNet classes.
(Right) After training with the MvMF loss, the µi have shifted slightly to better fit
the data, resulting in a new class partition.

The estimated GPS coordinate ŷ of a feature vector x is the coordinate with
minimum loss. That is,

ŷ = arg min
y∈S2

`MvMF(x,y;M,K,W ). (6)

Notice that this optimization is distinct from (5). This optimization does not get
evaluated during model training, but only during inference. This optimization
is non-convex, and may have up to c distinct local minima. Algorithms exist for
finding the minima of mixture models [3], but these algorithms require significant
computation. Calculating ŷ for a single image may be feasible, but calculating
ŷ for an entire test set is prohibitive. The classification interpretation of the
MvMF loss presents an easy to interpret, computationally more efficient method
for inference.

3.2 Interpretation as a classifier

The MvMF model can be interpreted as a classification model where each com-
ponent represents a class. The mixture weights Γi(x,W ) then become the prob-
ability associated with each class. The estimated location ỹ is then the mean
direction of the class with largest weight. Formally,

ỹ = µĩ, where ĩ = arg max
i∈{1,...,c}

Γi(x,W ). (7)

Because this optimization is over a discrete space, it is extremely fast. When
the mean directions M are initialized using the centers of the PlaNet classes,
then there is a one-to-one correspondence between the MvMF classes and the
PlaNet classes, albeit with the class shapes differing slightly (see Figure 5). In
our experiments in Section 4, we use ỹ as the estimated position.

Another advantage of the MvMF classes over the PlaNet classes is that the
MvMF classes are fully parameterized by M . This means by jointly optimizing
both W and M , we can learn not only which classes go with which images, but
where on the earth the classes should be located.
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3.3 Interpretation as an image retrieval method

We now describe how the MvMF model interpolates between classification mod-
els and image retrieval models. Recall that

Γi(x,W ) =
exp(−x>wi)∑c
j=1 exp(−x>wj)

∝ exp(−x>wi). (8)

Solving for the ĩ in Equation (7) that maximizes Γi is therefore equivalent to
finding the wi that minimizes the inner product with x. Minimum inner product
search is a well studied problem, and in particular, it can be reduced to nearest
neighbor search [2]. Therefore, when the number of classes equals the number
of data points (i.e. c = n), and for each i we have µi = yi and wi = xi, then
solving Equation (7) to find the output class is equivalent to solving a nearest
neighbor problem.

3.4 Analysis

Our analysis states that the MvMF’s estimation error converges to zero at a rate
of O(

√
d/n), where d is the number of feature dimensions and n the number of

data points. This is in contrast to nearest neighbor methods (which converge at
the exponential rate Ω(dn1/d) [Theorem 19.4 of 17]), and the cross entropy loss
(which converges at a rate of Ω(

√
cd/n) [Theorem 4 of 9]). Because c and d are

both large in the geolocation setting, the MvMF loss requires significantly less
training data to converge.

We use three assumptions to simplify our analysis. The first assumption
states that our analysis only applies to the convergence of the W parameter. We
argue that this is a mild assumption because W is the most important parameter
to learn. The second assumption states that our features have bounded size,
which is true of all image deep neural networks. The final assumption states
that our analysis requires a good initial parameter guess. This is unsurprising as
mixture models are known to be highly sensitive to their initial conditions. We
now state these assumptions formally and describe their implications in more
detail.

Assumption 1 We optimize only W using stochastic gradient descent (SGD).
In particular, we do not optimize M , K, or the deep network generating features.

SGD is an iterative algorithm, where each iteration t considers only a sin-
gle data point (xt,yt) sampled uniformly at random from the underlying data
distribution. On each iteration t, the model weights are denoted by Wt. These
weights are updated according to the rule

Wt+1 = Wt − ηt
d

dWt
`MvMF(xt,yt;M,K,Wt)

starting from some initial W0. The variable ηt is called the step size.
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SGD is the most common algorithm for optimizing deep neural networks,
and in practice it is common to train all parameters of a network at the same
time. Analyzing such training procedures, however, is a difficult open problem
due to the highly non-convex nature of neural networks. To better understand
these systems, it is common to analyze the convergence of a single parameter
while holding all others fixed, and that is our strategy.

The W parameter is the most important to analyze because it determines
which class an image will be assigned to. The M and K parameters determine
properties of the classes, and their convergence does not significantly effect ge-
olocation. The M parameter is initialized to the classes of the PlaNet method,
so improvements in M can only make it better than the PlaNet method. And
the K value does not affect the classification-based inference in Equation (7).

Assumption 2 For all x, we have ‖x‖ ≤
√
d.

This is a standard assumption for the analysis of SGD algorithms, and it is
equivalent to assuming that the individual features are bounded. Let xi denote
the ith feature in x, and assume that each feature xi ∈ [−1, 1]. Then,

‖x‖2 =

d∑
i=1

x2
i ≤

d∑
i=1

1 = d.

It is common to scale images so that each pixel value is in the range [−1, 1], and
all deep neural networks are designed to keep their output features bounded.

Assumption 3 Let W ∗ be a (possibly local) minimizer of `MvMF. Let W be a
convex subset of Rd×c containing W ∗ such that `MvMF is convex in W. Finally,
for all time steps t, we assume that Wt ∈ W.

This is our most complicated assumption. Informally, it states that we limit
our analysis of `MvMF to a convex region around a possibly local minimum W ∗.
We must limit our analysis to this convex region because existing analyses of
SGD work only for convex losses and the `MvMF is non-convex.

We argue this is not a limiting assumption for two reasons. First, SGD will
eventually converge to a region satisfying the properties of W. To see this, ob-
serve that SGD will converge to a local minimum with probability 1, and (due
to the smoothness of `MvMF) every local minimum of `MvMF is contained in a
convex setW over which `MvMF is convex. Second, if SGD does not converge to a
sufficiently good local minimum, the procedure can be repeated from a different
random initialization until a good local minimum is reached. In our experiments,
however, we found that it was never necessary to rerun SGD from a different
initialization.

Theorem 1. Under Assumptions 1-3, at each iteration t, the MvMF’s estima-
tion error is bounded by

E
(
`MvMF(x,y;M,K,Wt)− `MvMF(x,y;M,K,W ∗)

)
≤ 2

√
d

n
. (9)
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training
method images features output method

Im2GPS [7, 8] 6× 106 custom retrieval
Im2GPS-deep [21] 28× 106 VGG [18] retrieval
PlaNet [22] 126× 106 InceptionV1 [19] classification
CPlaNet [16] 30× 106 InceptionV3 [20] classification (modified)
ISN [15] 16× 106 ResNet [10] + custom classification (modified)

Table 1. Details of the training environment for previous work on image geolocation.

We sketch the proof of Theorem 1 here and defer a full proof to the Appendix
for space reasons. Standard results show that the estimation error of SGD is
bounded by ρ/

√
n, where ρ is an upper bound on the gradient of the loss function.

We show that for the MvMF loss, the gradient is bounded by ρ ≤
√
d. The cross

entropy loss used by other classification-based geolocation methods has worse
performance guarantees because its gradient is bounded by ρ ≤

√
cd. The

√
cd/n

convergence rate for the cross entropy loss is known to be tight [9], and so the
MvMF loss has strictly better convergence.

4 Experiments

The empirical performance of an image geolocation system is determined by
three factors: the training data, the feature generation method, and the output
method. Prior work on image geolocation introduced improvements in all three
areas, making it difficult to determine exactly which improvement was responsi-
ble for better performance (see Table 1 for a summary). In particular, no prior
work attempts to isolate the effects of the output method, and no prior work
compares different output methods side by side.

In our experiments, we follow a careful procedure to generate a standard
training dataset with standard features so that we can isolate the effects of the
output method. Because prior work does not follow this procedure, an exhaustive
empirical comparison would require reimplementing all previous methods from
scratch. This is infeasible from both a manpower and computational perspective,
so we focus our comparison on the PlaNet method, since it is representative
of classification methods using the cross entropy loss. We show that the cross
entropy-based methods require careful tuning of the hyperparameter c, but that
our MvMF’s performance always improves when increasing the number of classes
c (as our theory predicts). This leads to significantly better performance of the
MvMF method.

4.1 Procedure

We now describe our standardized training procedure. We pay special attention
to how it improves upon previous training procedures for comparing output
methods.
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Training Data. The previous methods’ training datasets are not only of dif-
ferent sizes, but also sampled from entirely different distributions. The Im2GPS
[7, 8] and Im2GPS-deep [21] methods download data from Flickr, then filter
the images using user specified tags to remove weakly localizable images. For
example, it is assumed that images with the tag #birthday are likely to be of
indoor scenes with few geographic clues, and so images with this tag are removed
from the dataset. The CPlaNet [16] and ISN [15] datasets are also acquired from
Flickr, and they introduce other criteria for filtering the data to ensure only
high quality images are included. The PlaNet [22] dataset uses geotagged im-
ages crawled from all over the web with no filtering. The dataset is much larger,
but is significantly harder to train from, because the data is noisier with more
weakly localizable images. Most of these datasets are proprietary and not pub-
licly available.

For our training data, we use a previously existing publicly available dataset
of geotagged images from Mousselly et. al. [14]. This dataset contains about 6
million images crawled from Flickr,4 and the crawl was designed to be as rep-
resentative as possible of Flickr’s image database. The only filtering the dataset
performed was to remove low resolution images. This dataset therefore comes
from a distribution more similar to the PlaNet dataset than the other datasets.

Features. Even if all previous models had been trained on the same data, it
would still be impossible to directly compare the efficacy of output methods be-
cause each model uses different features. We use the WideResnet50 model [23] to
generate a standard set of features in our experiments. WideResnet50 was origi-
nally trained on the ImageNet dataset for image classification, so we “fine-tune”
the model’s parameters to the geolocation problem. We chose the WideResnet50
model because empirical results show that fine-tuning works particularly well on
resnet models [12], and the WideResnet50 is the best performing resnet model.

Fine-tuning a model is computationally cheaper than training from scratch,
but it is still expensive. We therefore fine-tune the model only once, and use the
resulting features in all experiments. To ensure that our fine-tuned features do
not favor the MvMF method, we create a simple classification problem to fine-
tune the features on. We associate each image with the country the image was
taken in or “no country” for images from Antarctica or international waters. In
total, this gives us a classification problem with 194 classes. We then fine-tune
the WideResnet50 model for 20 epochs using the cross entropy loss, WideRes-
net50’s standard feature augmentation, and the Adam [11] variant of SGD with
a learning rate of 1× 10−5. This took about 2 months on a 4 CPU system with
a Tesla K80 GPU and 64GB of memory. Because this fine-tuning procedure uses
a cross entropy loss, the resulting features should perform especially well with
cross entropy geolocation methods. Nonetheless, we shall see that the MvMF
loss still outperforms cross entropy methods.

4 The dataset originally contained about 14 million images, but many of them have
since been deleted from Flickr and so were unavailable to us.
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Fig. 6. Higher values of κ0 result in better performance at fine grained prediction, and
lower values of κ0 result in better performance for course-grained prediction.

4.2 Results

We perform 3 experiments using the standardized training data and features
described above.

Tuning the MvMF’s hyperparameters. In this experiment, we set c = 215

and train MvMF models with κ0 = 0...20. The results are shown in Figure
6. Accuracy @Xkm is a standard method for evaluating the performance of a
geolocation system, and is equal to the fraction of data points whose estimated
location is within Xkm of the true location. (Higher values are better.) For
small X, Accuracy @Xkm measures the ability to geolocate strongly localizable
images, and for large X, Accuracy @Xkm measures the ability to geolocate
weakly localizable images.

We see that large values of κ0 cause better geolocation for strongly localizable
images, and small values of κ0 cause better geolocation for weakly localizable
images. This behavior has an intuitive explanation. When κ0 is small, the vari-
ance of each component vMF distribution is large. So on each SGD step, weights
from vMF components that are far away from the training data point will be
updated. If the image is weakly localizable, then there are many locations where
it might be placed, so many component weights should be updated. Conversely,
when κ0 is large, the component variances are small, and so only a small number
of components get updated with each SGD step. Strongly localizable images can
be exactly located to a small number of components, and so only a few compo-
nents should be updated. We suggest using a value of κ0 = 16 as a good balance,
and use this value in all other experiments.

Tuning the number of classes c. This experiment demonstrates that c must
be carefully tuned in the PlaNet method, but that increasing c always increases
performance of the MvMF method. We emphasize that the original PlaNet paper
[22] does not report results on the tuning of c, and so observing these limitations
of the PlaNet method is one of the contributions of our work.
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MvMF
PlaNet

accuracy

(@1km)

MvMF

PlaNet
accuracy

(@200km)

24 26 28 210 212 214 216

MvMF
PlaNet

accuracy

(@2500km)

number of classes/components (c), log scale

Fig. 7. The performance of the MvMF output layer increases monotonically as we in-
crease the number of mixture components c, whereas the perfomance of PlaNet depends
unpredictably on c.

We train a series of models using the MvMF loss and PlaNet loss, varying
c from 24 to 217. Theoretically, both methods support class sizes larger than
c = 217, but our GPU hardware only had enough memory for 217 classes. Figure
7 shows the results. For all X, we observe that PlaNet’s performance is highly
unpredictable as c varies, but the MvMF method always has improved accuracy
as c increases.

Note that Figure 2 shows qualitatively why the PlaNet method is more sen-
sitive to c than the MvMF. In that figure, as c increases and classes get split, the
probability that was previously assigned to those classes gets completely reallo-
cated. Similarly, Figure 3 illustrates a single training run of the PlaNet method.
Because the cross entropy loss does not directly optimize the desired outcome
(geolocation), improvements to the cross entropy loss sometimes result in worse
geolocation performance.

Fine-tuned performance. In this experiment, we select several cross entropy
and MvMF models and perform a second round of fine-tuning, this time with
their true loss functions. We fine-tune with the Adam optimizer running for
5 epochs with learning rate 1 × 10−5, which takes approximately 2 weeks per
model on a single GPU. We evaluate the resulting model against the standard
Im2GPS test set introduced by [7]. The results are shown in Table 2. When
using the standardized training data and features, the MvMF loss significantly
outperforms the cross entropy loss.

In Table 2, we also include results reported in the original PlaNet paper [22].
These results use a training data set that is 2 orders of magnitude larger than
the standardized training set, and so have significantly better performance than
the cross entropy loss on the standard training set. This illustrates that the
training data has a huge impact on the final model’s performance. Surprisingly,
the MvMF loss trained on standardized training set with only 6 million data
points outperforms the PlaNet method trained on 126 million images. Other
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accuracy @

loss data/features c 1km 25km 200km 750km 2500km

cross entropy PlaNet [22] ≈ 215 8.4 24.5 37.6 53.6 71.3

cross entropy standardized 213 1.0 4.1 10.1 24.8 44.8
cross entropy standardized 215 0.6 2.0 7.3 26.1 49.9
cross entropy standardized 217 1.8 6.0 11.8 27.9 51.3

MvMF standardized 213 4.6 28.0 35.4 50.5 73.4
MvMF standardized 215 6.0 31.2 41.1 58.0 75.7
MvMF standardized 217 8.4 32.6 39.4 57.2 80.2

Table 2. Results on the Im2GPS test set [7]. The MvMF loss significantly outperforms
the cross entropy loss at all distances when using standardized data and features.
The MvMF loss trained on the standardized features even outperforms the PlaNet
method, which was trained on a much larger dataset and required significantly more
computation.

models have been evaluated on the Im2GPS test set as well [e.g. 7, 8, 22, 21,
16, 15], but we do not report their performance here because we could not do a
fair comparison where all models were trained using the same training data and
features.

5 Conclusion

The MvMF is the first method for image geolocation that takes advantage of
the earth’s geometry. The MvMF has better theoretical guarantees than previ-
ous image retrieval and classification methods, and these guarantees translate
into better real world performance. We emphasize that the MvMF layer can be
applied to any geolocation problem, not just image geolocation.
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A Proof of Theorem 1

Our proof is based on the following theorem on the convergence of SGD due to
Shalev-Swartz and Ben-David [Theorem 14.8 of 17].

Theorem 2. Let f be a convex function and let w∗ ∈ arg minw:‖w‖≤1 f(w).

Assume that SGD is run for T iterations with η =
√

1
ρ2T . Assume also that for

all t, ‖∇f(wt)‖ ≤ ρ with probability 1. Then

E f(w̄)− f(w∗) ≤ ρ√
T
. (10)

We apply Theorem 2 to f = `MvMF. According to Assumption 3, the op-
timization is restricted to an area where `MvMF is convex, so we satisfy the
theorem’s conditions. To complete the proof, all we need to do is show that
ρ = ‖ d

dw `MvMF(x,y;M,K,W )‖ ≤ 2
√
d.

We rewrite the MvMF loss as

`MvMF(x,y;M,K,W ) = − log

c∑
i=1

Γ (x;W ) vMF(y;Mi,Ki)

= − log

c∑
i=1

exp(−xw>i )∑c
j=1 exp(−xw>j )

vMF(y;Mi,Ki)

= − log

c∑
i=1

exp(−xw>i ) vMF(y;Mi,Ki) + log

c∑
j=1

exp(−xw>j )

Now let

αk =
exp(−xw>k ) vMF(y;Mk,Kk)∑c
j=1 exp(−xw>j ) vMF(y;Mj ,Kj)

βk =
exp(−xw>k )∑c
j=1 exp(−xw>j )

.

Then we have that

‖ d

dwk
`MvMF(x,y;M,K,W )‖2 = ‖x(αk + βk)‖2

≤ ‖x‖2|(αk + βk)|2

≤ 2‖x‖2(α2
k + β2

k)
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And finally

‖ d
dw

`MvMF(x,y;M,K,W )‖2 =

c∑
k=1

‖ d

dwk
`MvMF(x,y;M,K,W )‖2 (11)

≤
c∑

k=1

2‖x‖2(α2
k + β2

k) (12)

≤ 2‖x‖2
c∑

k=1

(α2
k + β2

k) (13)

≤ 2‖x‖2
c∑

k=1

(αk + βk) (14)

= 4‖x‖2 (15)

≤ 4d (16)

Line (14) follows because by definition, all αk and βk are in [0, 1]. Line (15)
follows because by definition,

∑c
k=1 αk =

∑c
k=1 βk = 1.


