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Abstract. How can we efficiently decompose a tensor into sparse fac-
tors, when the data does not fit in memory? Tensor decompositions have
gained a steadily increasing popularity in data mining applications, how-
ever the current state-of-art decomposition algorithms operate on main
memory and do not scale to truly large datasets. In this work, we propose
ParCube, a new and highly parallelizable method for speeding up tensor
decompositions that is well-suited to producing sparse approximations.
Experiments with even moderately large data indicate over 90% sparser
outputs and 14 times faster execution, with approximation error close
to the current state of the art irrespective of computation and mem-
ory requirements. We provide theoretical guarantees for the algorithm’s
correctness and we experimentally validate our claims through exten-
sive experiments, including four different real world datasets (Enron,
Lbnl, Facebook and Nell), demonstrating its effectiveness for data
mining practitioners. In particular, we are the first to analyze the very
large Nell dataset using a sparse tensor decomposition, demonstrating
that ParCube enables us to handle effectively and efficiently very large
datasets.

Keywords: Tensors, PARAFAC decomposition, sparsity, sampling, randomized
algorithms, parallel algorithms

1 Introduction

Tensors and tensor decompositions have recently attracted considerable atten-
tion in the data mining community. With the constantly increasing volume of
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today’s multi-dimensional datasets, tensors are often the ‘native’ format in which
data is stored, and tensor decompositions the natural modeling toolset - albeit
still suffering from major scalability issues. The state of the art toolboxes for ten-
sors [8,4] still operate on main memory and cannot possibly handle disk-resident
tensor datasets, in the orders of millions or billions of non-zeros.

Motivated by the success of random sampling - based matrix algorithms such
as [11], it is natural to ask whether we can we use similar tools in the case of
tensors. Is it possible to randomly under-sample a tensor multiple times, process
the different samples in parallel and cleverly combine the results at the end to
obtain high approximation accuracy at low complexity and main memory costs?
There exists important work on how to use sampling in order to achieve a sparse
matrix decomposition, the CUR decomposition [11]; this method has also been
extended in order to handle tensors [15]. However, both these methods are tied
to a specific decomposition, while we desire to disconnect sampling from the
specific decomposition that follows.

This paper introduces ParCube, a fast and parallelizable method for speed-
ing up tensor decompositions by leveraging random sampling techniques. A nice
side-benefit of our algorithm is its natural tendency to produce sparse outer-
product approximations, i.e., the model-synthesized approximation of the given
tensor data is naturally very sparse, which is a desirable property in many appli-
cations. Our core contribution is in terms of the merging algorithm that collects
the different ‘punctured’ decompositions and combines them into one overall
decomposition in an efficient way. We provide theoretical guarantees for the
correctness of our approach.

In Fig. 1 we demonstrate a preview of our results: On subfigure 1(a), we
show a successful discovery of what appears to be a port scanning attack, on the
LBNL network traffic dataset, and subfigure 1(b) demonstrates over 90% sparser
results than regular Parafac, while maintaining the same approximation error.

The rest of this paper is structured as follows. Section 2 provides some useful
background; section 3 describes the proposed method, and section 4 contains
experiments. Related work is reviewed in section 5, and conclusions are drawn
in section 6.

2 Tensor Decompositions

A Note on Notation A scalar is denoted by a lowercase, italic letter, e.g.
x. A column vector is denoted by a lowercase, boldface letter, e.g. x. A ma-
trix is denoted by an uppercase, boldface letter, e.g. X. A three-way tensor is
denoted by X. Let I be a set of indices, e.g. I = {1, 4, 7}; then, a(I) denotes
{a(1),a(4),a(7)}; a(:) spans all the elements of a. This notation naturally ex-
tends to matrices and tensors, i.e., A(I, :) comprises all columns of A restricted
to rows in I. By NNZ( ) we denote the number of non-zeros.
Tensors A tensor of n modes (or n-way/n-mode tensor) is a structure indexed
by n variables. For example, a matrix is a two-way tensor. In this work, we focus
on three-way tensors, because they are most common; however, all results can be
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(a) Port Scanning Attack-like behaviour on
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Fig. 1. A snapshot of our results. In (a) we have one source (addr. 29571) contacts
one destination (addr. 30483) using a wide range of near consecutive ports and same
amount of packets. In (b), we see that with same relative error, we achieve 90 % sparser
outputs, compared to the ALS-Parafac algorithm

readily extended to higher-way tensors. A three-way tensor X is a structure that
resembles a data cube. A detailed survey for tensors and tensor decompositions
may be found in [14].
The PARAFAC decomposition The Parafac decomposition [12] of X into

F components is X ≈
F∑

f=1

af ◦ bf ◦ cf , where a ◦ b ◦ c(i, j, k) = a(i)b(j)c(k).
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Fig. 2. The F -component Parafac decomposition of X.

The most popular algorithm for fitting the Parafac decomposition is the
Alternating Least Squares (ALS) [9,14]. The computational complexity of the
ALS Algorithm for a I × J ×K tensor, and for F components is O(IJKF ) per
iteration.

3 The ParCube Method

In this section we introduce ParCube, a new method for Parafac decomposi-
tion designed with three main goals in mind: G1: Relative simplicity, speed, and



parallelizable execution; G2: Ability to yield sparse latent factors and a sparse
tensor approximation; and G3: provable correctness in merging partial results,
under appropriate conditions.
Sampling for ParCube The first step of ParCube is to sample a very high
dimensional tensor and use the sampled tensor in lieu of the original one, bear-
ing three important requirements in mind: R1 The need to significantly re-
duce dimensionality; R2 The desire that sampling should be decomposition-
independent - we should be able to apply any decomposition we desire after
sampling, and be able to extrapolate from that; and R3: Sampling should main-
tain linear complexity on the number of non-zero entries.

The first thing that comes to mind in order to satisfy requirement R1 is to
take a uniform random sample of the indices of each mode, i.e., take a uniform
random sample of the index sets {1 · · · I}, {1 · · · J}, and {1 · · ·K}. However, this
naive approach may not adequately preserve the data distribution, since the
random index samples may correspond to entirely arbitrary rows/columns/fibers
of the tensor. We performed initial tests using this naive method, and the results
were consistently worse than the proposed method’s. We thus propose to do
biased sampling: If we, somehow, determine a measure of importance for each
index of each mode, then we may sample the indices using this measure as a
sampling weight/probability. For the purposes of this work, let us assume that
our tensor X has non-negative entries (which is the case in huge variety of data
mining applications); if we were to deal with tensors containing real values, we
should consider the element-wise absolute value of the tensor for the notions
that we introduce in the sequel.

A reasonable measure of importance is the marginal sum of the tensor for
each mode 3. Namely, the measure of importance for the indices of the first mode

is defined as: xa(i) =

J∑
j=1

K∑
k=1

X(i, j, k) for i = 1 · · · I.

Similarly, we define the following importance measures for modes 2 and 3:

xb(j) =

I∑
i=1

K∑
k=1

X(i, j, k),xc(k) =

I∑
i=1

J∑
j=1

X(i, j, k)

for j = 1 · · · J and k = 1 · · ·K.
Intuitively, if xa(i) is high for some i, then we would desire to select this

specific index i for our sample with higher probability than others (which may
have lower xa value). This is the very idea behind ParCube: We sample the
indices of each mode of X without replacement, using xa, xb and xc to bias the
sampling probabilities.

We define s to be the sampling factor, i.e. if X is of size I × J × K, then
Xs derived by ParCube will be of size I

s ×
J
s ×

K
s . We may also use different

sampling factors for each mode of the tensor, without loss of generality.

3 Another, reasonable alternative is the sum-of-squares of the elements of rows,
columns and fibers, which is a measure of energy. We leave this for future work.



In order to obtain the sample we 1) Compute set of indices I as random
sample without replacement of {1 · · · I} of size I/s with probability pI(i) =

xa(i)/

I∑
i=1

xa(i). 2) Compute set of indices J as random sample without re-

placement of {1 · · · J} of size J/s with probability pJ (j) = xb(j)/

J∑
j=1

xb(j). 3)

Compute set of indices K as random sample without replacement of {1 · · ·K} of

size K/s with probability pK(k) = xc(k)/

K∑
k=1

xc(k).

The ParCube method defines a means of sampling the tensor across all
three modes, without relying on a specific decomposition or a model. Therefore,
it satisfies requirement R3. Algorithm 1 provides an outline of the sampling
forParCube.

Lemma 1. The computational complexity of Algorithm 1 is linear in the number
of non zero elements of X.

Proof. Suppose we have a representation of X in quadruplets of the form (i, j, k, v)
where X(i, j, k) = v, for v 6= 0 and v ∈ NNZ(X). For each of these quadruplets,
we may compute the density vectors as:

xa(i) = xa(i) + v,xb(j) = xb(j) + v,xc(k) = xc(k) + v

This procedure requires 3 O(1) additions per element v, therefore the total run-
ning time is O(NNZ(X)).�

By making use of the above Lemma, and noticing that sampling of the elements,
after having computed the densities of each mode is a linear operation on the
number of non-zeros, we conclude that requirement R3 is met, i.e. our compu-
tation of the biases and biased sampling are linear on the number of non-zeros.
Furthermore, sampling pertains to Goal G1 which calls for a fast algorithm.

Non-negative PARAFAC decomposition using ParCube Now, let us
demonstrate how to apply ParCube in order to scale up the popular Parafac
decomposition, with non-negativity constraints. We choose to operate under the
non-negativity regime since the vast majority of applications of interest naturally
impose this type of constraint.

Algorithm 2 demonstrates the most basic approach in which one extracts
a sample from the original tensor, runs the Parafac decomposition on that
(significantly) smaller tensor and then redistributes the factor vectors to their
original positions, according to the sampled indices I,J ,K. Note that many of
the coefficients of the resulting Parafac factor matrices will be exactly zero,
since their corresponding indices will not be included in the sample and con-
sequently, they will not receive an updated value. This implies that a natural



Algorithm 1: BiasedSample

Input: Original tensor X of size I × J ×K, sampling factor s.
Output: Sampled tensor Xs, index sets I,J ,N .
1: Compute

xa(i) =

J∑
j=1

K∑
k=1

X(i, j, k), xb(j) =

I∑
i=1

K∑
k=1

X(i, j, k), xc(k) =

I∑
i=1

J∑
j=1

X(i, j, k).

2: Compute set of indices I as random sample without replacement of {1 · · · I} of

size I/s with probability pI(i) = xa(i)/

I∑
i=1

xa(i). Likewise for J ,K.

3: Return Xs = X(I,J ,K).

by-product of our approach is sparsity on the factors by construction, thereby
satisfying Goal G2.

However, Algorithm 2 relies on a sole sample of the tensor and it might be the
case that some significant portions of the data, depending on the sampling factor
and the data distribution, may be left out. To that end, we introduce Algorithm
3 which is our main contribution. Algorithm 3 generates many samples and
correctly combines them, in order to achieve better extraction of the true latent
factors of the data tensor.

The key idea behind Algorithm 3 is the method by which all the differ-
ent samples are combined in order to output the decomposition matrices; more
specifically, intuitively we enforce all the different samples to have a common set
of indices Ip,Jp,Kp (which is a p fraction of the whole sample). Having this com-
mon basis, we are able to combine the samples using Algorithm 4. The basic idea
of Algorithm 4 is the following: We arbitrarily choose the factors of one sample
to serve as reference, and we distribute their coefficients to the corresponding
indices of the factor matrices of the original tensor, as in Algorithm 2. We then
process each of the remaining samples individually. For each one of them, we es-
tablish a correspondence of the sampled factors to the reference factors, and we
update the zero coefficients of the reference factors using values from the current
sample. A fairly subtle issue that arises is how to overcome scaling disparities
between factors coming from two different samples. Key here, as described in
line 5 of Algorithm 3, is to counter-scale the two merge candidates, using only
the norms of the common parts indexed by Ip,Jp,Kp; by doing so, the common
parts will be scaled to unit norm, and the rest of the vectors will also refer to
the correct, same scaling, thereby effectively resolving scaling correspondence.

Note that the generation of the r distinct samples of X, as well as the
Parafac decomposition of each of them may be carried out in parallel; thus
satisfying Goal G1. Regarding Goal G3, note that correctness of the merge op-
eration requires certain conditions; it cannot be guaranteed when the individual
random samples do not satisfy Parafac identifiability conditions, or when the
common piece that is used as a reference for merging is too small (p is too low).
Proposition 1 provides a first correctness result for our merging algorithm.
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Fig. 3. Example of rank-1 Parafac using ParCube (Algorithm 3). The procedure
described is the following: Create r independent samples of X, using Algorithm 1. Run
the Parafac- ALS algorithm for K = 1 and obtain r triplets of vectors, corresponding
to the first component of X. As a final step, combine those r triplets, by distributing
their values to the original sized triplets, as indicated in Algorithm 3.

Algorithm 2: Basic ParCube for Non-negative Parafac

Input: Tensor X of size I × J ×K, number of components F , sampling factor s.
Output: Factor matrices A,B,C of size I × F , J × F , K × F respectively.
1: Run BiasedSample (X, s) (Algorithm 1) and obtain Xs and I,J ,K.
2: Run Non-Negative Parafac (Xs, F ) and obtain As,Bs,Cs of size I/s× F ,

J/s× F and K/s× F .
3: A(I, :) = As, B(J , :) = Bs, C(K, :) = Cs

Algorithm 3: ParCube for Non-negative Parafac with repetition

Input: Tensor X of size I × J ×K, number of components F , sampling factor s,
number of repetitions r.

Output: Parafac factor matrices A,B,C of size I × F , J × F , K × F respectively
and vector λ of size F × 1 which contains the scale of each component.

1: Initialize A,B,C to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) indices
Ip,Jp,Kp to be common across all repetitions.

3: for i = 1 · · · r do
4: Run Algorithm 2 with sampling factor s, using Ip,Jp,Kp as a common

reference among all r different samples and obtain Ai,Bi,Ci. The sampling is
made on the set difference of the set of all indices and the set of common
indices.

5: Calculate the `2 norm of the columns of the common part:
na(f) = ‖Ai(Ip, f)‖2, nb(f) = ‖Bi(Jp, f)‖2, nc(f) = ‖Ci(Kp, f)‖2 for
f = 1 · · ·F . Normalize columns of Ai,Bi,Ci using na,nb,nc and set
λi(f) = na(f)nb(f)nc(f). Note that the common part will now be normalized
to unit norm.

6: end for
7: A =FactorMerge (Ai), B =FactorMerge (Bi),C =FactorMerge (Ci)
8: λ = average of λi.



Algorithm 4: FactorMerge

Input: Factor matrices Ai of size I × F each, where i = 1 · · · r, and r is the number
of repetitions, Ip: set of common indices.

Output: Factor matrix A of size I × F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))T (Ai(Ip, f1)))
6: end for
7: c = arg maxc′ v(c′)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for

10: end for

Proposition 1. Let (A,B,C) be the Parafac decomposition of X, and assume
that A(Ip, :) (A restricted to the common I-mode reference rows) is such that any
two of its columns are linearly independent; and likewise for B(Jp, :) and C(Kp, :
). Note that if A(Ip, :) has as few as 2 rows (|Ip| ≥ 2) and is drawn from a jointly
continuous distribution, this requirement on A(Ip, :) is satisfied with probability
1. Further assume that each of the sub-sampled models is identifiable, and the
true underlying rank-one (punctured) factors are recovered, up to permutation
and scaling, from each sub-sampled dataset. Then Algorithm 4 is able to merge
the factors coming from the different samples of the tensor correctly, i.e., is able
to find the correct correspondence between the columns of the factor matrices
Ai,Bi,Ci.

Proof sketch 1 Consider the common part of the A-mode loadings recovered
from the different sub-sampled versions of X: under the foregoing assumptions,
the Ai(Ip, :) will be permuted and column-scaled versions of A(Ip, :). After scal-
ing the common part of each column to unit norm, Algorithm 4 seeks to match
the permutations by maximizing correlation between pairs of columns drawn from
Ai(Ip, :) and Aj(Ip, :). From the Cauchy-Schwartz inequality, correlation be-
tween any two unit-norm columns is ≤ 1, and equality is achieved only when
the correct columns are matched, because any two distinct columns of the under-
lying A(Ip, :) are linearly independent. Furthermore, by normalizing the scales
of the matched columns to equalize the norm of the common reference part, the
insertions that follow include the correct scaling too. This shows that Algorithm
4 works correctly in this case.�

The above proposition serves as a sanity check for correctness. In reality, there
will be noise and other imperfections that come into play, implying that the
punctured factor estimates will at best be approximate. This implies that a
larger common sample size (|Ip| ≥ 2, |Jp| ≥ 2, |Kp| ≥ 2) will generally help
Algorithm 4 to correctly merge the pieces coming from the different samples.



We have carried out extensive experiments verifying that Algorithm 4 works
well in practice, under common imperfections. Those experiments also suggest
that increasing the number of samples, r, reduces the Parafac approximation
error.

4 Experiments & Discoveries

In this section we provide experimental evaluation of our proposed method.
First, we evaluate the performance of ParCube, compared to the current state
of the art for handling sparse tensors in Matlab, i.e. the Tensor Toolbox for
Matlab [8]. Since our algorithm, by construction, tends to output sparse factors,
we also evaluate the validity of that claim by comparing the degree of sparsity
of the output to the one given by the Tensor Toolbox and the one given by
Parafac SLF [19], which is the state of the art for Parafac decompositions
with sparsity on the latent factors. The speedups we are reporting were measured
on a 2.7 GHz Intel Core i5 with 4GB of RAM. Finally, we apply our approach
in order to analyze real datasets presented in Table 1.

Name Description Dimensions NNZ
Enron [1] (sender, recipient, month) 186× 186× 44 9838
Lbnl [18] (src, dst, port #) 65170× 65170× 65327 27269
Facebook [25] (wall owner, poster, day) 63891× 63890× 1847 737778
Nell [2] (noun-phrase, noun-phrase, context) 14545× 14545× 28818 76879419

Table 1. Datasets analyzed

We implemented ParCube in Matlab, and we make it available through the
first author’s web site 4. We furthermore use the Tensor Toolbox for Matlab [8]
as our core Parafac decomposition implementation.

4.1 Performance & Scalability Evaluation

In the following lines, we evaluate the performance of Parafac using ParCube
(Algorithm 2). As a performance metric, we use the the relative cost of the
Parafac model, i.e. the cost of the model using our sampling approach, divided
by the cost of fitting a Parafac model using the original tensor. In Fig. 4,
we measure the relative cost as a function of the speedup incurred by using our
ParCube, for different values of the sampling factor; this experiment was carried
out on 100×100×100 randomly generated, synthetic tensors, as we required full
control over the true number of components and the degree of sparsity for each
component. In Fig. 5, we show the relative cost using the Enron dataset, for
various numbers of repetitions (i.e. distinct samples). We see, in this case, that

4 Download ParCube at www.cs.cmu.edu/~epapalex/src/parCube.zip

www.cs.cmu.edu/~epapalex/src/parCube.zip


as the number of repetitions increases, the approximation improves, as expected,
from our theoretical result.

4.2 Factor Sparsity Assessment

In Fig.6, we measure the relative output size (i.e. the relative degree of sparsity)
between ParCube and Tensor Toolbox non-negative Parafac. The output size
is simply defined as NNZ(A) +NNZ(B) +NNZ(C), which clearly reflects the
degree of sparsity in the decomposition factors. In Fig. 7 we measure the relative
output size between ParCube and Parafac SLF, as a function of the sampling
factor s, for different values of the sparsifying parameter λ used by Parafac
SLF (more details in [19]).
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Fig. 4. ParCube is faster than ALS-Parafac: Speedup vs Relative cost (ParCube/
ALS-Parafac) for 1 repetition, for varying sampling factor and different degrees of
sparsity. We observe that even for a relatively high sampling factor, we get relatively
good relative cost, which may be further improved using repetition. Key here is that
by using repetition, because this procedure may be carried out in parallel, we may
improve the accuracy and maintain similar speedup.

4.3 Parallelizability

As we have mentioned above, lines 3 to 6 of Algorithm 3 may be carried out
entirely in parallel; we have also established, in the previous subsection, that
by doing more repetitions, we largely improve the approximation error, and in
particular, we converge to the approximation error of the ALS-Parafac algo-
rithm. In its current version, ParCube is not implemented to run in multiple
machines, however, here we discuss the potential merits of such an implemen-
tation. For evaluation purposes, we divided the run time of Algorithm 3 to a
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Fig. 5. ParCube reduces the Parafac approximation cost: (a) Approximation cost vs
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of repetitions for varying F and fixed s = 5. In both cases, the approximation improves
as r increases, as expected
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Fig. 6. ParCube outputs sparse factors: Relative Output size (ParCube/ ALS-
Parafac) vs Relative cost. We see that the results of ParCube are more than 90%
sparser than the ones from Tensor Toolbox, while maintaining the same approximation
error.
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parallelizable (lines 3 to 6) and a serial part (everything else). For r repetitions,
we added the serial run-time with the maximum of the r different, parallel run-
ning times. This way, we are loosely emulating the run-time that we would get if
we used r cores or machines to run the Algorithm. In particular, by conducting
experiments on 256 × 256 × 256 tensors with 0.0578 fraction of non-zeros on
average, we got 1.2 average speedup with relative error 1.67 (for s = 2, r = 4)
and 14.2 speedup with relative error 5.9 (for s = 10, r = 20).

4.4 ParCube at work

In this section we present interesting patterns and anomalies, that we were able
to discover in the datasets of Table 1, demonstrating that our proposed algorithm
ParCube is both practical and effective for data mining practitioners. So far,
we don’t have an automated method for the selection of parameters s, r, and p,
but we leave this for future work; the choice is now made empirically.
ENRON This very well known dataset contains records for 44 months (between
1998 and 2002) of the number of emails exchanged between the 184 employees of
the company, forming a 184×184×44 of 9838 non-zero entries. We executed Al-
gorithm 3 using s = 2 and r = 4 and we applied similar analysis to the resulting
factors as the one applied in [7,19]. In Figure 8 we illustrate the temporal evolu-
tion of the 4 most prevailing groups in our analysis, having annotated the figure
with important events, corresponding to peaks in the communication activity.
Labelling of the groups was done manually; because the factors were not very
sparse we filtered out very low values on each factor. This issue most certainly
stems from the fact that this dataset is not particularly large and therefore by
applying the regular ALS-Parafac algorithm to the samples (which is known
to yield dense factors), we end up with dense sample factors, which eventually,
due to repetition, tend to cover most of the data points. This, however, was not
the case for larger datasets analyzed in the following lines, for which the factors
turned out to be extremely sparse.
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Fig. 8. Temporal evolution of 4 groups in the Enron dataset. We have labelled the
groups, according to the position of the participants in the company. The labels of the
extracted groups are consistent with other works in the literature [7,19], albeit they
have been extracted with somewhat different order. We have also discovered 2 ’Legal’
groups that behave slightly differently over time, a fact probably stemming from the
different people involved in each group.



LBNL Network Traffic This dataset consists of (source, destination, port #)
triplets, where each value of the corresponding tensor is the number of packets
sent. The snapshot of the dataset we used, formed a 65170 × 65170 × 65327
tensor of 27269 non-zeros. We ran Algorithm 3 using s = 5 and r = 10 and we
were able to identify what appears to be a port-scanning attack: The component
shown in Fig. 9 contains only one source address (addr. 29571), contacting one
destination address (addr. 30483) using a wide range of near-consecutive ports
(while sending the same amount of packets to each port), a behaviour which
should certainly raise a flag to the network administrator, indicating a possible
port-scanning attack.
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Fig. 9. Anomaly on the Lbnl data: We have one source address (addr. 29571), con-
tacting one destination address (addr. 30483) using a wide range of near-consecutive
ports, possibly indicating a port scanning attack.

Facebook Wall posts This dataset 5 first appeared in [25]; the specific part
of the dataset we used consists of triplets of the form (Wall owner, Poster,
day), where the Poster created a post on the Wall owner’s Wall on the specified
timestamp. By choosing daily granularity, we formed a 63891 × 63890 × 1847
tensor, comprised of 737778 non-zero entries; subsequently, we ran Algorithm 3
using s = 100 and r = 10. In Figure 10 we present our most surprising findings:
On the left subfigure, we demonstrate what appears to be the Wall owner’s
birthday, since many posters posted on a single day on this person’s Wall; this
event may well be characterized as an ”anomaly”. On the right subfigure, we
demonstrate what ”normal” Facebook activity looks like.

NELL This dataset consists of triplets of the form (noun-phrase, noun-phrase,
context). which form a tensor with assorted modes of size 14545×14545×28818
and 76879419 non-zeros, and as values the number of occurrences of each triplet.
The context phrase may be just a verb or a whole sentence. After computing the
Parafac decomposition of the tensor using ParCube with s = 500, and r = 10
repetitions, we computed the noun-phrase similarity matrix AAT + BBT and

5 Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.

html

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Fig. 10. Results for Facebook using s = 100, r = 10, F = 15. Subfigure (a): Facebook
”anomaly”: One Wall, many posters and only one day. This possibly indicates the
birthday of the Wall owner. Subfigure(b): Facebook ”normal” activity: Many users
post on many users’ Walls, having a continuous daily activity

out of that, we were able to discover potential synonyms to noun-phrases, that
we report on Table 2.

Noun-phrase Potential Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students

Table 2. Nell: Potential synonym discovery

5 Related Work

Tensor applications Tensors and tensor decompositions have gained increasing
popularity in the last few years, in the data mining community [14]. The list of
tensor applications in data mining is long, however we single out a few that we
deemed representative: In [13], the authors extend the well known link analysis
algorithm HITS, incorporating textual/topical information. In [7] and [6] the
authors use tensors for social network analysis on the Enron dataset. In [22],
the authors propose a sampling-based Tucker3 decomposition in order to perform
content based network analysis and visualization. The list continues, including
applications such as [10] [16] [3]. Apart from Data Mining, tensors have been
and are still being applied in a multitude of fields such as Chemometrics [9] and
Signal Processing [21].



State of the art toolboxes The standard framework for working with tensors
is Matlab; there exist two toolboxes, both of very high quality: The Tensor
Toolbox for Matlab[5,8] (specializing in sparse tensors) and the N-Way Toolbox
for Matlab [4] (specializing in dense tensors).
Relevant approaches In [20], the authors propose a partition-and-merge scheme
for the Parafac decomposition which, however, does not offer factor sparsity. In
[19], the authors introduce a Parafac decomposition with latent factor sparsity.
In [17] and [23] we find two interesting approaches, where a tensor is viewed as
a stream and the challenge is to track the decomposition. In terms of parallel
algorithms, [26] introduces a parallel Non-negative Tensor Factorization. Finally,
[24,22] propose randomized, sampling based Tucker3 decompositions.

6 Conclusion

In this work we have introduced ParCube, a new, fast, parallelizable tensor
decomposition which produces sparse factors by construction. Furthermore, it
enables processing of large tensors that may not fit in memory. We provide
theoretical results that indicate correctness of our algorithm; one of our core
contributions pertains to the correct merging of the individual samples. We
have demonstrated its merits with respect to sparsity and speedup, compared to
the current state of the art, through extensive experimentation. Moreover, the
speedup benefits of ParCube may be further improved if we exploit its massive
parallelizability. Finally, the practicality of ParCube is heavily pronounced by
analyzing four different real datasets, discovering patterns and anomalies.
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