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Abstract. Suppose you are a teacher, and have to convey a set of object-property
pairs (‘lions eat meat’). A good teacher will convey a lot of information, with little
effort on the student side. What is the best and most intuitive way to convey this
information to the student, without the student being overwhelmed? A related,
harder problem is: how can we assign a numerical score to each lesson plan (i.e.,
way of conveying information)? Here, we give a formal definition of this prob-
lem of forming learning units and we provide a metric for comparing different
approaches based on information theory. We also design an algorithm, GROUPN-
TEACH, for this problem. Our proposed GROUPNTEACH is scalable (near-linear
in the dataset size); it is effective, achieving excellent results on real data, both
with respect to our proposed metric, but also with respect to encoding length; and
it is intuitive, conforming to well-known educational principles. Experiments on
real and synthetic datasets demonstrate the effectiveness of GROUPNTEACH.

1 Introduction

If you were given Figure 1 (c) and (d) to memorize, which would you find easier to
memorize? If you were a zoology teacher, how would you come up with a lesson plan
to teach the facts in Table 1, containing animals and their properties?

In our formulation, our facts consist of simple (object, property) pairs (Table 1a).
Informally, our problem can be stated as follows:

Informal Problem 1 (Transmission / Teaching Rate Problem) Given a large, sparse
binary matrix whose rows represent objects, columns represent properties, in which
ones represent facts, how do we measure how good a particular encoding of the matrix
is for student learning, and how do we optimize this metric?

Table 1 illustrates our intuition behind the solution: most people would agree that
randomly stating facts (‘salmons have fins’) would be painful for the student. A good
teacher would group animals and properties, as in Table 1b, and use analogies and
comparison, such as ‘tigers are like lions, but have stripes.’

Our contributions are as follows:
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Fig. 1: GROUPNTEACH agrees with intuition. GROUPNTEACH (b) encodes facts with
much lower total encoding length and students’ lost utility than the (a) naive encoding,
which encodes the nonzero entries of the matrix one by one. As a side effect, given
randomly ordered data (c), GROUPNTEACH finds a (d) reordering and groupings of the
facts along with labels which are intuitive .

– Problem Formulation: we formulate the Transmission Rate Problem formally in
the context of matrix compression, and define how in the context of an educational
setting, our goals differ from those of the standard matrix compression problem.

– Optimization Goal: we formulate a new metric which prioritizes consistent learn-
ing, rather than purely maximum compression, which maximizes student utility.
This enables us to design parameter-free algorithm that picks optimal parameters
for the defined criterion.

– Algorithm: we propose GROUPNTEACH, an algorithm for encoding and ordering
a set of facts for student learning. GROUPNTEACH has the following properties:
1. Scalable: it scales near-linearly in the data size, allowing it to scale to datasets

with millions of facts.
2. Effective: it encodes real datasets more efficiently than standard approaches for

encoding sparse data, under both compression length and our metric.
3. Intuitive: it follows educational principles such as grouping related concepts.

Reproducibility: All datasets and code we use are publicly available http://www.
cs.cmu.edu/˜hyunahs/tol.



Matrices, Compression, and Learning Curves 3

A snapshot of our results is shown in Figure 1. The proposed GROUPNTEACH out-
performs the baseline (Dot-by-Dot) in terms of the student’s lost utility, and total encod-
ing length. Also, GROUPNTEACH automatically reorders and groups facts of the matrix
as a by-product. A brief flowchart of GROUPNTEACH is shown in Figure 2, which will
be discussed in more detail in later sections.

Fig. 2: Flowchart of GROUPNTEACH. GROUPNTEACH reorders the input data, en-
codes the information, and finally evaluates each plugin in GROUPNTEACH and returns
the winning result. GROUPNTEACH tries several plugins to reorder the data, but any
alternate reordering method can be plugged in ‘your algorithm here.’
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(a) Raw data matrix.
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(b) Re-ordered data matrix.
Table 1: Good grouping leads to good teaching: matrix consisting of facts, which are
(animal, property) pairs. Note that version (b) is much easier to describe and remember.

2 Background and Related Work

Support from Learning Theory. Improving student learning has been a great interest
in various domains including psychology, education [10, 7], as well as data mining [11,
14]. In our study, we find that algorithms that do well under our metrics indeed agree
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with educational instructional principles [10], which are explained in Table 2. In the last
column, we show the keyword of GROUPNTEACH (Table 4) that reflects the principles.

details example GROUPNTEACH

P1 (Linking) link multiple objects to-
gether

‘Tigers, lions, and jaguars
all have teeth’

‘ranges’

P2 (Pre-conceptions) refer and relate to prior
knowledge

‘Tigers have teeth’ ‘So do
lions’

‘like’

P3 (Comparison) compare and contrast
multiple instances

‘Tigers are like lions ex-
cept that they have stripes’

‘except’

Table 2: Instructional principles found in [10], examples of how GROUPNTEACH con-
forms to these principles, and the corresponding language in GROUPNTEACH.

Matrix Compression. There are several methods for efficiently compressing a matrix
[16]. Our goal is different, particularly due to the educational setting: (a) we want met-
rics that prioritize consistent learning rather than pure encoding length; (b) we want to
encode new information based on a learner’s existing knowledge.
Bipartite Clustering and Binary Matrix Reordering. Various bipartite clustering and
matrix reordering algorithms [5, 17] can be plugged in to our reordering stage as shown
in Figure 2. In Table 3, we compare GROUPNTEACH to related algorithms in terms of
the functions they perform such as ordering, compression, and grouping, as well as their
relation to educational and human computer interaction (HCI) principles.
Minimum Spanning Trees. In one of our proposed plugins, GROUPNTEACH-Tree, we
adopt EUCLIDEAN-MST [13].

3 Proposed Metric

How can we assign a numerical score for comparing different ways of teaching a col-
lection of facts to students?

Definition 1 Performance-for-Price curve p(n) Given an encoding algorithm, de-
fine p(n) as the number of nonzero entries of the matrix that are decodable based on the
first n bits output by the encoding algorithm (e.g. see Figure 1; top).

Definition 2 Area Left of Curve (ALOC) The ALOC metric is the area left of the
curve p(n). Lower ALOC is better.

Utility interpretation. Assuming the students gain utility at each time step accord-
ing to how much they know, the total utility gained by students is the area under the
curve p(n). Then ALOC corresponds to the utility lost by a student over time compared
to having known all the information in advance.

ALOC uses the number of bits transmitted as the units along the x-axis when plot-
ting p(n) since this represents the amount of attention that students need to understand
the lesson content. Hence transmitting the message efficiently lowers the amount of
effort students need to understand the material.
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GROUPNTEACH

Ordering X
Compression X X X

Grouping X X X X

Teachability
P1: 11th Linking X X X X
P2: 13th Pre-conceptions X
P3: 17th Comparison X

HCI
“Shneiderman mantra” X X X

Table 3: GROUPNTEACH qualitatively outperforms competitors. Block-based meth-
ods in general link multiple objects (P1), but only GROUPNTEACH teaches new con-
cepts based on students’ existing concepts (P2) and communicates based on similarity
and difference. (P3) The Shneiderman mantra refers to communicating a high-level
summary first, followed by finer details.

4 Proposed Method: GROUPNTEACH

In this section, we describe GROUPNTEACH; it finds efficient and interpretable encod-
ings for a collection of facts, and as a by-product, it sequences the facts so as to find
groupings of related facts, and a good teaching order for the groups.
All-engulfing approach. Since real-world datasets differ greatly in their underlying
patterns, we expect different algorithms to perform well on different datasets. Hence, we
propose four plugins, each designed to perform well on a particular type of dataset. Our
all-engulfing approach tries each plugin to encode a dataset, and chooses the encoding
with lowest ALOC. The complete algorithm is given in Algorithm 1.

Algorithm 1: GROUPNTEACH : encoding method that also returns grouped and
ordered data

Data: Data matrix M (a binary matrix of objects by properties)
Result: Encoding for M and re-ordering and groupings of rows and columns of M
Plugins = {Block, Tree, Chain, Fishbone} (any other heuristics can be added);
i∗ = argmini ALOC(Plugins[i](M)) (find best performing component);
Output binary representation of i∗ (index of the winning method);
Output encoding of M using method Plugins[i∗];
Reorder rows and columns of M using the orderings induced by GROUPNTEACH-Chain
(see Section 6);
Group rows and columns according to Algorithm 5;
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Table 4 summarizes the encoding structure and keywords each plugin uses to encode
information.

Method Encoding structure Keywords Encoding

Block (r-id, c-id) + (row-length) + (column-length) except
+ (r-id, c-id) + except + (r-id, c-id) + . . . + end-
statement except

end-statement
1
0

Tree / Chain (r-id) + (comparison r-id) + except + (c-id) + except
+ (c-id) + . . . + end-statement

Fishbone (length of block) + except + (c-id) + except + (c-id) +
. . . + end-statement

Table 4: Encoding structure used for each method. r-id and c-id refer to row index and
column index, respectively. The except keyword communicates exceptions, e.g. for the
Block plugin, exceptions are the zeroes within the current block. For Tree and Chain,
exceptions are differences between the current and compared rows. end-statement ter-
minates the list of exceptions.

5 GROUPNTEACH-plugins

In this section, we give detailed explanations on each of the plugins.

5.1 GROUPNTEACH-Block

GROUPNTEACH-Block, explained in Algorithm 2, is designed to encode block-structured
data highly efficiently. It does this by clustering the rows and columns to produce dense
blocks, then re-orders the block regions, and encodes the block information (starting
point, row and column length of the block), along with the missing elements in the
block, and the additional elements outside the defined blocks.

5.2 GROUPNTEACH-Tree

GROUPNTEACH-Tree encodes a row by describing its differences from a similar row.
For example, to describe tigers, we say that tigers are like lions except that they have
stripes. Since real-world datasets typically have many similar items, most rows end up
having very short encodings.

The first row encoded is the row with the most ones, encoded directly as a binary
string. All subsequent rows are encoded using statements like ‘row i is like row j except
in positions k, l, . . . ’. This means row i can be obtained by starting with row j and
flipping the bits in positions k, l, . . . . To construct this encoding, GROUPNTEACH-Tree
first constructs a distance function d(i, j), equal to the number of differences between
row i and row j. Then finding an encoding is equivalent to constructing a spanning tree:



Matrices, Compression, and Learning Curves 7

Algorithm 2: GROUPNTEACH-BLOCK.
Data: Data matrix M
Result: Encoding of M
Step 1: Partition rows and columns into groups;

Input: M , k;
Cluster rows and columns of matrix M into k groups using NMF;
Output: row and column indices for each cluster regions;

Step 2: Get the best permuted Mpm∗ ;
Input: cluster information;
Compute density of each block;
Output: Mpm∗ , The best permuted matrix with highest density in the diagonal blocks;

Step 3: Encode Mpm∗ ;
Using ENCODE-BLOCK(Mpm∗ ), encode the top-left corner of the block, row and

column lengths of the block.;
Output: Encoding of M ;

for example, if we encoded row i based on similarity to row j, then (i, j) is an edge of
weight d(i, j) in the corresponding tree. It is a tree because each row has exactly one
ancestor (the row used to encode it), except the root. Then, we can minimize the number
of differences we need to encode by minimizing the weight of the spanning tree. We
could do this by constructing a distance matrix d(i, j) between the rows, then finding the
MST using e.g. Kruskal’s algorithm. Since Kruskal’s algorithm would require quadratic
time, however, we instead use the Euclidean MST algorithm which takes O(n log n)
time, as given in Algorithm 3.

Algorithm 3: GROUPNTEACH-TREE: fast approximate minimum spanning tree-
based encoding method

Data: Data matrix M
Result: Row-wise encoding for M
Let (Mi)

n
i=1 be the rows of M ;

Generate random vectors f1, . . . , fp ∈ Rn;
for i=1,. . . ,m do

xi = (Mi · f1, . . . ,Mi · fp) (Construct feature vectors)

T = EUCLIDEAN-MST(x1, . . . , xm);
Choose row index r with largest row sum;
Output Mr;
Let O be a BFS traversal of T with root r;
for each edge (i, j) in O do

Let D(i, j) be the set of column indices at which Mi differs from Mj ;
Output 〈i, j,D(i, j)〉 (output that row j is like row i except in columns D(i, j))
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5.3 GROUPNTEACH-Chain

GROUPNTEACH-Chain is similar to GROUPNTEACH-Tree: we also encode each row
based on a similar row. However, unlike the tree pattern of GROUPNTEACH-Tree, here
each row is encoded based on comparison to the last encoded row. For example, we
may encode lions based on tigers, then jaguars based on lions, and so on, forming a
chain. This allows the encoding of lions to not encode its parent tigers, since its parent
tigers can be deduced from being the last animal encoded. This encodes each row more
cheaply and is more efficient for sparse data.

To find a good ordering of the rows, we first use the same random projections
method as GROUPNTEACH-Tree to obtain feature representations x1, . . . , xm of the
rows. We then use the Euclidean distance between xi and xj as a proxy for the num-
ber of differences between rows i and j. Starting from the row with the most ones, we
repeatedly find the next row to encode as follows: randomly sample a fixed k of the
remaining unused rows; choose the closest of these k rows as the next row to encode;
then continue this until all rows are encoded.

5.4 GROUPNTEACH-Fishbone

GROUPNTEACH-Fishbone aims to efficiently encode data with uneven number of ones
in each row, such as power-law degree distributions which are common in online com-
munities [2]. GROUPNTEACH-Fishbone rearranges as many ones as possible to the top-
left of the matrix, then takes advantage of the density of that region to encode the data
efficiently. To do this, GROUPNTEACH-Fishbone first reorders the rows and columns in
descending order of their row or column sum. Then, it encodes the top row by encoding
a number k followed by a list of exceptions p, q, r, . . . . This indicates that except at
positions p, q, r, . . . , the row contains k ones, then n − k zeroes. k is chosen by trying
all possible k and using the shortest encoding. For efficiency, we terminate the search
for k early if the current encoding is some fixed constant C bits worse than the best
found encoding. Having encoded the top row, we then encode the first column of the
remaining matrix in the same way, and so on, as shown in Algorithm 4.

Algorithm 4: GROUPNTEACH-FISHBONE.
Data: Data matrix M
Requires: ENCODE-ROW, a function that encodes a vector of length n by comparing it to
k ones followed by n− k zeroes, and listing all exceptions to this pattern;
Result: Encoding of M
Reorder rows and columns of M in descending order of row and column sums;
while M is non-empty do

Let (Mi)
n
i=1 be the rows of M ;

k∗ = argmink LENGTH(ENCODE-ROW(M1, k)));
Output ENCODE-ROW(M1, k

∗);
Remove M1 from M and transpose M ;
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5.5 Extensibility

GROUPNTEACH can be broken down into two parts: reorganization (reordering of rows
and columns), and encoding of the reorganized matrix. GROUPNTEACH can be easily
extended by plugging in any matrix reorganization method, such as Cross Association
[4] or METIS [8].

6 GROUPNTEACH-post processing: ordering, grouping and
curriculum development

As a by-product, GROUPNTEACH produces an intuitive ordering and grouping of the
objects in the dataset, as was shown in Figure 1.

The process of grouping is described in Algorithm 5.

Algorithm 5: GROUPINGCODE: groupings of the related facts on the reordered
matrix

Data: Reordered data matrix M̃ recovered as output of GROUPNTEACH, threshold C
Result: A set of groups G for the reordered data matrix M̃
Group data in M̃ into rectangles by combining nearby entries if they form rectangular
blocks;
while not converged do

for i = 1, . . . , |G| do
for j = 1, . . . , |G| do

Let R be the smallest bounding box covering Ri and Rj ;
if number of 1s inR

area ofR ≥ C then
remove Ri and Rj from G, and add R to G;

Output G;

7 Experiments

In this section we demonstrate the efficiency and effectiveness of GROUPNTEACH us-
ing real and synthetic datasets. We implemented GROUPNTEACH in MATLAB; all ex-
periments were carried out on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB RAM,
running OS X 10.9.5. Our code and all our datasets are publicly available at http://
www.cs.cmu.edu/˜hyunahs/tol. We used 100 features (p = 100) for GROUP-
NTEACH-Chain and GROUPNTEACH-Tree, and threshold C = 50 for GROUPNTEACH-
Fishbone. The real datasets used are shown in Table 5. The synthetic datasets used are:
1.KRONECKER: a 256× 256 Kronecker graph [12], 2.BLOCKS: two 50× 70 blocks of
ones in a matrix, 3.HYPERBOLIC: a 20 × 20 matrix containing 3 overlapping commu-
nities of sizes 20, 8 and 4, each resembling a scale-free network.
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size number of nonzeros content
ANIMAL [3] 34 by 13 136 animal-property

NELL [1] 212 985 by 217 1.1 million object-category
DRUG-BANK [9] 1581 by 16 883 109 339 drug-property
QUESTIONS [15] 60 by 218 5252 question-answer

Table 5: Real datasets used.

We conducted several experiments to answer the following questions: Q1. Scala-
bility, Q2. Effectiveness, Q3. Discoveries.

Q1. Scalability: Figure 3 (a) shows the linear or near-linear performance of our
algorithms. The algorithms are run on random matrices of varying number of rows,
fixed to 1000 columns and an average of 10 ones per row.

(a) (b)

Fig. 3: (a) GROUPNTEACH scales linearly. GROUPNTEACH scales linearly with the
input size (The line y = cx for c = 1

10000 is added for comparison). (b) GROUPN-
TEACH needs all plugins: different plugins win on different datasets (lower is better).
The black lower bound is the final result by GROUPNTEACH.

Q2. Effectiveness: We demonstrate that the multiple plugins of GROUPNTEACH
allow it to do well on diverse types of data. Figure 3 (b) shows that the various plu-
gins of GROUPNTEACH do well on different types on data: GROUPNTEACH-Block
for block-wise, GROUPNTEACH-Fishbone HYPERBOLIC, GROUPNTEACH-Chain and
GROUPNTEACH-Tree datasets with similar rows or columns (which is the case for the
real datasets). No one method dominates the others.

Q3. Discoveries: As a by-product, GROUPNTEACH automatically reorders and groups
the data. We analyze this property using the DRUG-BANK dataset; GROUPNTEACH
finds a teaching order with several desirable characteristics, as shown in Figure 4.
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Fig. 4: GROUPNTEACH leads to curriculum discovery. Left: re-ordered and grouped
DRUG-BANK drug-property data. GROUPNTEACH constructs a teaching order. Right:
curriculum constructed by GROUPNTEACH. The units (’blobs’) obtained are intuitive:
e.g. drugs in the TCA family are known to have several groups of effects, which our
algorithm groups as follows. Unit 1: their antidepressant properties; Unit 2: their cardiac
side-effects; and, some of them, Unit 3: treating chronic pain.

8 Conclusion

In this paper, we considered the problem of teaching a collection of facts while mini-
mizing student effort. Our contributions are as follows:

– Problem Formulation: we define the problem of transmitting a matrix of objects
and properties adhering to principles from the theory of (human) learning.

– Optimization Goal: We define an appropriate optimization goal; minimizing ALOC
(maximizing student utility).

– Algorithm: We propose GROUPNTEACH, an all-engulfing method that encodes the
data while reordering and grouping the data. We evaluate GROUPNTEACH on syn-
thetic and real datasets, showing that it encodes data more efficiently than a naive
encoding approach, measured using both ALOC and total encoding length.

– Ordering of Groups: When applying GROUPNTEACH on real datasets, we find
that the orderings and groupings it produces are meaningful.
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