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Abstract. Given a large number of taxi trajectories, we would like to
find interesting and unexpected patterns from the data. How can we
summarize the major trends, and how can we spot anomalies? The anal-
ysis of trajectories has been an issue of considerable interest with many
applications such as tracking trails of migrating animals and predicting
the path of hurricanes. Several recent works propose methods on clus-
tering and indexing trajectories data. However, these approaches are not
especially well suited to pattern discovery with respect to the dynamics
of social and economic behavior. To further analyze a huge collection of
taxi trajectories, we develop a novel method, called F-Trail, which al-
lows us to find meaningful patterns and anomalies. Our approach has the
following advantages: (a) it is fast, and scales linearly on the input size,
(b) it is effective, leading to novel discoveries, and surprising outliers.
We demonstrate the effectiveness of our approach, by performing exper-
iments on real taxi trajectories. In fact, F-Trail does produce concise,
informative and interesting patterns.

1 Introduction

What patterns can we derive, using trajectory data from a whole fleet of taxis?
What is the normal pattern of activity, and which (if any) outliers exist? We
seek to discover such patterns, so that we can spot anomalies, and help the
taxi operating company understand general trends, with the ultimate goals of
maximizing fuel efficiency, profits, and passenger satisfaction. Trajectory analysis
has attracted a lot of interest, including trajectories of (migrating) animals [21,
8, 7, 10], of hurricane paths [4, 2], as well as from an indexing point of view [6,
16]. The latter studied indexing, but not pattern discovery; among the former,
the emphasis was on clustering and distance functions on trajectories.

Motivation and challenges Uncovering rules governing collective taxi be-
havior is a challenging task because of the myriad factors that influence an
individual’s decision to take a particular action. In this work, we study 10,000
trajectories generated by anonymous taxi drivers, with the aim of measuring
social and economic activity. Intuitively, the task of this paper is as follows:

Given a set of GPS coordinates for every taxi, every few minutes, and its
status (i.e., ‘full’ or ‘empty’), find the general trends of the fleet of taxis, and
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(a) Full taxis (b) Empty taxis

Fig. 1. Different behavior of empty taxis, at night: PDF of fractal dimension (FD) of
all trips, for each segment of a day (0-3am, 3-6am etc). (a) Full taxis (b) empty ones.
Notice that trajectories of full taxis are linear-like (fractal dimension FD≈1), for any
time slot; empty taxis have a wandering behavior (FD < 1) during the day, but linear
behavior during the night.

spot outliers.

Here, we present a novel method, F-Trail, for finding meaningful patterns
and anomalies in a huge number of trajectories. Our approach can scalably and
automatically identify typical patterns of taxi behavior, and actually “see” such
patterns from the point of view of topology. More specifically, we propose using
the fractal dimension as a characteristic for trend analysis and extreme detection.

Figure 1 shows a snapshot of our discoveries: Namely, taxi drivers follow
linear-like paths when ‘full’; and convoluted, ‘wandering’ paths when empty dur-
ing the day, but clearly different behavior when ‘empty’ at night. More specif-
ically Figure 1(a) is the probability density function (PDF) of the ‘fractal di-
mension’ (FD) of all trajectories with a passenger (say, “full taxi trails”). Since
FD ≈ 1, for any time of the day, we conclude that, when ’full’, taxi drivers
follow linear, piece-wise linear, and in general, smooth paths. Conversely, Figure
1(b) shows that, when ’empty’, they follow short, wandering paths, creating a
bursty-like pattern (see blue dots in Figure 2(b)), with a much lower FD.

The only exception is during the night (solid blue and dotted blue curves in
Figure 1(b)): the drivers abandon their ‘wandering’ behavior, since they don’t
expect to find nearby customers, and instead go almost straight to taxi plazas
or the airport (green dot in Figures 2(a-b)). Notice the linear-like blue paths
(‘empty trails’) in Figure 2(a). We present several more observations, later.

Contributions In this paper we propose a new approach, namely F-Trail,
which includes fast and effective techniques that can learn the key trends of a
large collection of taxi trails. The contributions of this paper are as follows:

1. Effective: We apply F-Trail to a real trajectory dataset, which allows us to
identify major trends in taxi behavior, and spot outliers.

2. Adaptive: F-Trail describes the common behavior and anomalies of taxi
trajectories from the point of view of an individual taxi.
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(a) Taxi #1 - night (0am-6am) (b) Taxi #1 - day (12am-6pm)

Fig. 2. Night vs day trajectories of the same taxi: (a) during the night, the blue
(=’empty’) trail is linear-like, probably going to the airport (green dot), or to taxi
plazas; (b) during the daytime, the blue (empty) trail is point-like, due to wandering
behavior, to find nearby passengers. In all cases, the red (=’full’) trails are linear-like.
Note that we anonymize latitude and longitude information due to privacy concerns.

3. Scalable: The careful design of F-Trail makes it linear on the number of
input size in terms of wall clock time.

Outline The rest of the paper is organized as follows: Section 2 discusses related
work. Section 3 introduces our approach and describes how to analyze individual
taxi behavior. We conclude in Section 4.

2 Related work

The previous work on mining trajectory data can be grouped into the following
categories: (1) design of distance and similarity scores and (2) indexing meth-
ods for spatial-temporal databases. For trajectory similarity functions, Vlachos
et al. [21] use the longest common sub-sequence, while [8, 7] use minimal de-
scription language. Given a similarity score, [21] study the trajectories of marine
mammals, while [8, 7] use it to find clusters and outlier trajectories. Gaffney et
al. [4, 2] use generative models to group the trajectories of moving objects such
as hurricanes. Giannotti et al. [5] study the trajectory pattern mining problem.
Very recently, Yuan et al. [24, 23, 11] study a large number of taxi trajectories in
Beijing, and present new and sophisticated models to find the different functional
regions, and optimal driving route.

Remotely related is the work on indexing and searching moving objects: The
work in [16] builds index on moving both spatial and temporal dimensions with
pre-aggregation to support OLAP operations. In related work [6, 3] also propose
various solutions for answering region retrieval queries, predicting the past and
future positions. Similarity search and pattern discovery in time sequences have
also attracted huge interest [13, 18, 15].

One of the contributions of F-Trail is that it uses fractal concepts to spot
patterns in trajectories. Fractals and self-similarity have been used in numerous
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settings, like financial time series analysis [12], modeling ethernet traffic [22],
social network analysis [14, 9], and numerous other settings (see, e.g., [19, 17]).

3 F-Trail

Given several thousands of trajectories, we need to find commonalities and ex-
tremes. What do the trips have in common? Can we extract features from such
trajectories, to help us understand the dataset? We propose extracting the fractal
dimension of every such trip. The fractal dimension has several desirable prop-
erties: (a) it is invariant to affine transformations, (b) it is fast to compute, and
(c) it captures the complexity of the trajectory. Next we give brief background
and the intuition behind our proposed solution.

3.1 Preliminaries
(Hausdorff) fractal dimension There exist many fractal dimensions (Haus-
dorff, Minkowski, correlation, information, etc). Among them, we use only the
first one, which is formally defined as follows:

The (Hausdorff) fractal dimension, or simply the fractal dimension for a
range of scales (r1, r2) and for a given, self-similar, point-set in an n-dimensional
address space, is defined as the exponent of the law [19]:

N(r) = C r−FD (r1 < r < r2) (1)

where (r1, r2) is a suitable range of scales, and N(r) is the number of non-empty
cells, when we impose a grid of side r, on our dataset. Intuitively, if we plot N(r)
vs r in log-log scales, the plot will be linear for the range of scales (r1, r2). We
refer to such plots as Hausdorff plots, and we report the slope and constant (=
intercept), for each taxi trajectory.

Computational Complexity. Linear. More specifically, we have:

Lemma 1. The computation time for the fractal dimension is O(N), that is,
linear on the number of points N .

Proof: Using the so-called box-counting method [19], we only need to go over the
data points a few times. QED

Basic properties for trajectory data Our dataset consists of 10,000 trajec-
tories taken from anonymized taxi drivers in the large city, where each trajectory
corresponds to the trail of each taxi for an entire day. The dataset has the fol-
lowing attributes: GPS coordinates (i.e., longitude, latitude), a timestamp, and
the passenger status (i.e., ‘full’ or ‘empty’).

Figure 3 shows an example of a taxi trajectory of an entire day. The hor-
izontal and vertical axes show the longitude and latitude of the GPS points
respectively, where red and blue lines show the trails of the taxi for each status
(full and empty). Note that we anonymize latitude and longitude information
due to privacy concerns. The red and blue dots indicate the locations of ‘pick-up’
and ‘drop-off’ points. The green dot at (0.3391, 0.1168) is the location of the
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international airport, and (0.15 - 0.25, 0.06) is a downtown area. In this figure,
we can see that most trajectory lines are between the airport and downtown via
highways.

Here we define some terminology. We will refer to each set of trail points with
passengers (shown as red lines in Figure 3), as a ‘full’ trail, and refer to a set of
points without passengers (i.e., empty) as an “empty” trail. That is, the entire
trajectory consists of a combination of ‘full’ and ‘empty’ trails.

3.2 Intuition - Fractal dimension as a feature

Our goal is to analyze the trajectories, and specifically to characterize the under-
lying behavior of taxi drivers, and gain insight into how and why the observed
characteristics arise.

The taxi drivers have social and economic priorities and follow their own
strategies for success. We want to extract detailed information on their behavior,
especially regarding their mobility patterns. There exist numerous time-series
analysis methods, including FFT and wavelets, but they depend strongly on the
locations of trajectories, which makes it hard to find the economic strategies
and social behavior. How can we characterize the shape of trajectories, while
ignoring their location?

Approach 1 We propose to use the fractal dimension of each taxi trajectory,
as a feature for finding patterns and groups.

Several real datasets are self-similar, and thus have an intrinsic, or fractal
dimension: the peripheries of clouds and rain patches (D = 1.3), coast-lines
(D = 1.1 to 1.58 for Norway), and many more [1]. Are our taxi trajectories
self-similar? The answer is ’yes’, for the vast majority of them. The ones that
don’t, are either too short, or deserve further examination, being the exceptions.
Next we give the intuition and necessary definitions.

Figure 4 shows some trajectories as well as the tools to measure their fractal
dimension: the odd columns (i.e., Figure (a,c,e)) are synthetic, and the even ones
(i.e., Figure (b,d)) are real trajectories. Intuitively, a set of points (like our taxis’
(x,y) coordinates per unit time) is a fractal if it exhibits self-similarity over all
scales. The way to interpret the value of the fractal dimension is as follows:

– FD = 1: This happens when the trajectory has iso-spaced points, along a
line or a smooth curve, (see synthetic dataset Figure 4(c)).

– FD > 1: This happens when the taxi does twists and turns, like the real
trajectory of Figure 4(d).

– FD < 1, This happens when the taxi does many stops, like the real trajectory
of Figure 4(b).

– FD = 0, if the taxi is completely static, in which case the trajectory reduces
to a (multi)point.

The two extremes in Figure 4(a,e) correspond to the so-called ’Cantor dust’,
and the ’Hilbert curve’. The former is derived from a line segment, by recursively
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Fig. 3. Plotting conventions for a taxi trajectory: the red/blue lines indicate trails
of the taxi with/without passengers, respectively. The red and blue dots indicate the
locations of pick-up and drop-off points, respectively.
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Fig. 4. Intuition behind trajectories and their fractal dimension(s). Top row: trajecto-
ries (sets of (x,y) points). Bottom row: the ’Hausdorff’ plots, in log-log scales - the slope
is the fractal dimension. Columns have trajectories of increasing fractal dimension (≈
complexity), from FD = 0.6 up to 2.
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deleting the middle third, and has fractal dimension log(2)/ log(3) ≈ 0.63. The
latter is a space filling curve, with fractal dimension = 2, covering the whole 2-d
space, in the limit.

Thus far we have introduced the fractal dimension for individual trajectory
analysis in order to understand the taxi behavior. However, the behavior of
each taxi could vary in a month, a week, or even in a single day since the
dynamic strategy typically beats the static strategy. Actually, each empty taxi
exhibits distinct behavior in different time ranges according to the distribution
of passengers (see Figure 1).

Approach 2 We propose to apply a short-window approach to the fractal di-
mension, which is more flexible for trajectory analysis.

Instead of handling the entire trajectory, we locally analyze the fractal dimen-
sion of each snapshots to obtain a better understanding of time-varying social
behavior.

3.3 F-Trail analysis

We now introduce our approach and describe how to analyze individual taxi
behavior.

Fractal trajectories - are there clusters? For a few trajectories, a human
could eye-ball them, and derive the above patterns. But, how can we accomplish
this automatically for thousands of trajectories? Our first idea is to compute the
fractal dimensions for individual trajectory analysis. We begin by investigating
the sociability of taxi movement by measuring the fractal dimensions of trajec-
tories of two statuses (i.e., ‘full’ and ‘empty’ trails). We compute the fractal
dimension of each trail, which help us to understand how the taxi drivers find
the passengers and how they pick them up.

Do taxi drivers take their passengers over direct paths? Are their trajectories
different, when they are empty, looking for passengers? It turns out that F-

Trail can answer both questions, and the answers are ‘yes’, with a few twists.
Let’s see the details.

Figure 5 shows the fractal dimension (FD) versus the intercept of full and
empty trails. For most ’full’ trails, the fractal dimension is between 1.1 − 1.3,
while for ’empty’ trails, it is between 0.8−1.1. Here, FD = 0 is the burstiest (i.e.,
static taxi), FD = 1 corresponds to a taxi moving uniformly on a line or smooth
curve, and FD = 2 (maximum) would be for a taxi that is uniformly distributed
over the whole address space. This figure shows remarkable differences in the
behaviors of each status. Thus, we have:

Observation 1 (Typical behavior) Typical taxi behavior over an entire day
is to have fractal dimensions between FD = 1.1 − 1.3 for full trails and FD =
0.8− 1.1 for empty trails.
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Fig. 5. Pattern and extremes: FD vs intercept plots of the trajectories: Each dot cor-
responds to a trail of (a) full taxi and (b) empty taxi. Full taxis tend to have higher
fractal dimension. Also note the extremes, like ’full’ taxi #7575 and ’free’ taxi #9710,
in circles.
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Fig. 6. Extremes of full and empty trails: (a) full trail of taxi # 7575 (red line) has
high FD, but the intercept (≈ total length) is the lowest: a lot of short, straight-like
rides. (b) Empty trail of taxi # 9710, having the highest FD: it’s blue rides are long,
and mainly straight like, which means no local ’wandering’ for its next passenger.

Notice that the above observation is invariant to affine transformations. More-
over, it helps us spot a clear distinction between ’full’ and ’empty’ trail sets (see
Figure 5, FD vs. intercept plot). This is because, unlike many full taxis that
head straight for their destinations, empty taxis frequently do many stops and
turns, to find a new passenger, which leads to low fractal dimension.

A further observation that we can derive from the fractal dimensions of tra-
jectories shown in the same figure is that there are several extremes for each
of the full and empty trail sets. For instance, the trajectory #7575 is the one
extreme, due to its low intercept, which implies that the particular trajectory
covers a very small area. In fact, the taxi driver adopted a different strategy and
focused only on a highly-populated area (see Figure 6(a)). The trajectory #9710
is an extreme example of the empty status and shows a high fractal dimension.
Actually the trajectory includes many line-like trips (long blue segments), for
his/her long ‘passenger search’ (see Figure 6(b)), in contrast to the majority of
taxi drivers, who wander locally, looking for their next passenger.
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Fig. 7. Straight distance vs. trip length of each ride (log-log scales): scatter plots (top)
and density plots (bottom). Full taxis pick the shortest path (intercept ≈0); empty
taxis drive about 40% more length than necessary (intercept=0.16, 100.16 ≈ 1.4).

Thus we have almost answered the first question: taxis seem take their pas-
sengers to smooth, line-like curves. The next natural question is: are these the
shortest paths? We address this question next.
Trip length vs. crow’s flight - any waste? So far we have examined the
dynamics of the taxi behaviors at an individual level, and proposed a simple
model capturing the fractal dimensions. To check whether ’full’ taxis actually
use the shortest path, we do another scatter-plot: For every trip, we plot the
”crow’s flight” length (= Euclidean distance between pick-up point and drop-off
point) and the reported length (= sum of lengths between successive location
snapshots). Figure 7 shows these scatter plots, where every dot is a trip. Of
course, nothing is below the diagonal, and there is heavy over-plotting. The
bottom row contains the density plots.

Notice that the ’full’ trips are almost on the diagonal (slope=1, intercept≈0),
which means that the taxi drivers are efficient, in the shortest path sense.

Observation 2 (Taxi driver efficiency) Most taxi drivers take their passen-
gers via the shortest path (or very close to it).

By contrast, when ’empty’, the slope is still 1, but the intercept is higher
(0.16, in log-log scales), which means that the drivers ’wander’, with many turns
and returns, until they find a new passenger. Mathematically: l = 100.16 ∗ s1 or

l ≈ 1.4 ∗ s (2)

where l is the reported length of the trip, and s is the straight (”crow’s flight”)
length.



10 Authors Suppressed Due to Excessive Length

Observation 3 (40 percent wandering) Drivers on ’empty’ status have more
convoluted trajectories than on ’full’ status, driving about 40% longer than nec-
essary.

This observation agrees with the intuition: Drop-offs are typically in residen-
tial areas, with many, narrow roads, and the taxi drivers have to turn and loop,
until they find another passenger. Thus, the trajectory is more convoluted. In
contrast, ’full’ taxis typically go on highways, which are straight or with a few
smooth turns and thus the trajectories are simpler and more efficient.

Fractal dimension - any changes with the hour of the day? So far we
have seen that most empty taxis are likely to pick up new passengers geographi-
cally close to the last drop-off point, and thus we would expect that this strategy
to minimize their effort (e.g., maximize fuel efficiency, profits). However, as de-
scribed in the introduction, this is not always the case. We thus introduce a
short-window approach to the fractal dimension (FD), which enable us to char-
acterize the taxi behavior for each time interval (i.e., snapshot). Specifically,
instead of analyzing all the (x,y) snapshots of, say, taxi i, we study separately
the snapshots at 0-3am, 3-6am, etc.

As we have seen in Figure 1, the behavior of ’full’ taxis is the same for all
hours of the day, but the ’empty’ ones vary in a very interesting way:

Observation 4 (’empty’ at night: differ) There is a clearly distinct pattern
of empty taxis at night time: instead of convoluted, ’wandering’ paths, drivers
choose line-like paths.

In retrospect, the observation above makes sense: During the night (0-6am), the
drop-off place is probably at a residential area, and there is slim chance to find
another passenger nearby. Thus, taxi drivers choose to drive straight to places
with higher chances of demand (airport, down-town, etc).

Power law in the trip-length distribution? Whenever there is self-similarity
and fractals, we often have power laws and scale-free distributions. Does this hold
for the trip-lengths, in our case? Surprisingly, it turns out that the double Pareto
lognormal (DPLN) distribution yields good fits to our data.

The DPLN distribution generalizes the power-law and lognormal distribu-
tions, and is expressed by the following equation,

f(x|α,β, ν, τ) =
αβ

α+ β
[expαν+α2τ2/2 x−α−1Φ(

log x− ν − ατ2

τ
) +

xβ−1 exp−βν+β2τ2/2 Φc(
log x− ν + βτ2

τ
)] (3)

where Φ and Φc are the cdf and complementary cdf of N(0, 1), and for further
details (e.g., parameters α, β, ν, τ), see [20].

Figure 8 shows the DPLN fitting results of trip-length vs count distribution.
The figure shows the PDF for the (a) full (red circles) and (b) empty (blue
circles) rides, in log-log scales. There is a power-law behavior up to the ’knee’
(at about 20 km), and then a sharp (power-law) drop after that. Notice that the
knee is at roughly the radius of the city of study. Consequently, we have:
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Fig. 8. PDF of trip length (length vs count, in log-log scales): knees at characteristic
scales of ≈20 km, which is roughly the radius of the city.

Observation 5 (Trip length: DPLN behavior) The trip length distribution
is skewed, for both ’full’ and ’empty’ rides, with a power-law that has a ’knee’ at
≈ 20 km. This is exactly the so-called “doubly Pareto lognormal” (DPLN).

From Figure 8 (a), we observe two types of customers: the ’below-city-radius’
ones, that take short trips, or airport-to-downtown; and the (much more rare)
’above-city-radius’ ones, that maybe hire a taxi for sightseeing, or for several
days. Such results (i.e., trip-length DPLN fitting) could be used to analyze the
tradeoff between the cost of finding passengers (Figure 8 (b)) and the fares
received from them (Figure 8 (a)) to design pricing structure, which would max-
imize the total revenue.

4 Conclusions

We investigated patterns of human mobility on a large collection of taxi tra-
jectories, and proposed a new method, F-Trail, to find meaningful patterns
and anomalies. Our approach is (a) linear on the input size, and (b) able to
spot meaningful general trends, as well as outliers. In more detail, our main
discoveries are as follows:

– Typical for taxi trajectories is to have fractal dimension between 1.1 to 1.3
for full trails and 0.8 to 1.1 for empty trails, which means that most taxis
take their passengers to smooth, line-like curves, while empty taxis have
many stops or bursty-like patterns.

– Most surprisingly, we found that most taxi drivers change their strategies in
different time ranges according to passenger demand, i.e., there was a very
interesting deviation of FD for empty taxi during the night.
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