SUSTain: Scalable Unsupervised Scoring for Tensors and its
Application to Phenotyping

Ioakeim Perros
Georgia Institute of Technology

Evangelos E. Papalexakis
University of California, Riverside

Haesun Park
Georgia Institute of Technology

perros@gatech.edu epapalex@cs.ucr.edu hpark@cc.gatech.edu
Richard Vuduc Xiaowei Yan Christopher Defilippi
Georgia Institute of Technology Sutter Health Inova Heart and Vascular Institute
richie@cc.gatech.edu YanSX@sutterhealth.org Christopher.Defilippi@inova.org

Walter F. Stewart
Sutter Health
StewarWF@sutterhealth.org

ABSTRACT

This paper presents a new method, which we call SUSTain, that
extends real-valued matrix and tensor factorizations to data where
values are integers. Such data are common when the values cor-
respond to event counts or ordinal measures. The conventional
approach is to treat integer data as real, and then apply real-valued
factorizations. However, doing so fails to preserve important char-
acteristics of the original data, thereby making it hard to interpret
the results. Instead, our approach extracts factor values from in-
teger datasets as scores that are constrained to take values from a
small integer set. These scores are easy to interpret: a score of zero
indicates no feature contribution and higher scores indicate distinct
levels of feature importance.

At its core, SUSTain relies on: a) a problem partitioning into
integer-constrained subproblems, so that they can be optimally
solved in an efficient manner; and b) organizing the order of the
subproblems’ solution, to promote reuse of shared intermediate re-
sults. We propose two variants, SUSTainys and SUSTainT, to handle
both matrix and tensor inputs, respectively. We evaluate SUSTain
against several state-of-the-art baselines on both synthetic and
real Electronic Health Record (EHR) datasets. Comparing to those
baselines, SUSTain shows either significantly better fit or orders
of magnitude speedups that achieve a comparable fit (up to 425x
faster). We apply SUSTain to EHR datasets to extract patient phe-
notypes (i.e., clinically meaningful patient clusters). Furthermore,
87% of them were validated as clinically meaningful phenotypes
related to heart failure by a cardiologist.

CCS CONCEPTS

« Computing methodologies — Factorization methods; « Ap-
plied computing — Health informatics;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’18, August 19-23, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5552-0/18/08.

https://doi.org/10.1145/3219819.3219999

Jimeng Sun
Georgia Institute of Technology
jsun@cc.gatech.edu

KEYWORDS

Tensor Factorization; Matrix Factorization; Phenotyping; Unsuper-
vised learning

ACM Reference Format:

Ioakeim Perros, Evangelos E. Papalexakis, Haesun Park, Richard Vuduc,
Xiaowei Yan, Christopher Defilippi, Walter F. Stewart, and Jimeng Sun. 2018.
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to
Phenotyping. In KDD ’18: The 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, August 19-23, 2018, London, United
Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3219819.3219999

1 INTRODUCTION

Matrix and tensor factorization are among the most promising
approaches to extracting meaningful latent structure from multi-
aspect data. They have been applied successfully in diverse appli-
cations, including social network analysis [31], text mining [14],
image processing [35], recommendation systems [26], brain data
analysis [2] and healthcare analytics [22], to name a few. Factoriza-
tion models decompose input data into real-valued representatives
revealing clusters with distinct interpretable feature profiles.
However, a significant problem arises when the input data are
most naturally expressed as integer values. Examples include event
counts and ordinal data [15]. In such cases, real-valued factors dis-
tort the original integer characteristics. For example, real values
might no longer be interpretable as counts or frequencies. Also, the
possible ranges and relative differences of elements in real-valued
factors is arbitrary; this makes it hard to intuitively compare the im-
portance of different elements. Furthermore, in many applications,
practitioners are accustomed to interpreting integer-valued scores
in standardized scales. Real-valued factors might require arbitrary
thresholding or other unnatural transformations to convert into
such scales, thereby inhibiting interpretation by domain experts.
A specific motivating application for our methods is clinical
phenotyping from Electronic Health Records (EHR) data. Consider
that a disease, such as heart failure, is often heterogeneous in that
patients differ by underlying pathophysiology and needs. That is,
a disease is often comprised of distinct disease subtypes, or phe-
notypes, which vary by the ensemble of causes, associations with
other diseases, and treatment needs [52]. Phenotyping is intended

https://doi.org/10.1145/3219819.3219999
https://doi.org/10.1145/3219819.3219999
https://doi.org/10.1145/3219819.3219999

5 Sutter data, matrix case

10
—-SUSTain
104 | =—Round
g Scale-and-round
él(ﬁ —-AILS :
o |
£ 10 \
H 1
1
1 1
10 v
0 0.1 0.2 0.3 0.4

Fit

Figure 1: Fit (range [0, 1]) vs time trade-off for varying target number of
phenotypes R = {5, 10, 20, 40}, on a patients-by-diagnoses matrix formed of
~ 260K patients from Sutter Palo Alto Medical Foundation Clinics. SUSTainyg
is as accurate as the most accurate baseline (based on [6, 15, 49]), but up to
425X faster (R = 5: ~ 3 seconds by SUSTainys vs. = 22 minutes by AILS). Even
for a larger target rank (e.g., R = 20), SUSTainy is 110X faster (* 4 minutes by
SUSTainps vs. ~ 7 hours by AILS). As compared to a carefully-designed heuris-
tic that performs a scale-and-rounding of the real-valued solution, SUSTain s
achieves up to 16% higher fit. In summary, SUSTainy; dominates all other base-
lines in both time and fit.

to distinguish the latent structure among features that can, in turn,
be used to prevent disease subtypes and improve treatment devel-
opment and management [43]. EHR data offer a diverse and rich
set of features (e.g., diagnostic, drug and procedure codes) that
can serve to improve disease phenotyping. But, these data must
often be represented in integer form (e.g., clinical event counts)
to be utilized in unsupervised learning. For example, we can con-
struct a patient-disease matrix where the ij-th element represents
the number of times patient i had disease j documented in her
records. Similarly, we can build higher-order tensors such as a
patient-disease-medication one. The goal of unsupervised pheno-
typing is to identify patient clusters defined by unique feature sets,
each one of which aligns with a distinct and intuitive clinical profile;
in this work, we tackle this challenge via a scalable constrained
integer tensor factorization.

Factorization methods have been successfully used for EHR-
based unsupervised phenotyping [21, 22, 24, 41, 42, 50]. In many
of those settings, the problem can be formulated via Nonnegative
Matrix Factorization (NMF) [35] e.g., minimizing the squared Frobe-
nius norm of the error:

min{[|IX -UVT|%|U 20,V >0} (1)

X e ZQ’I XN s a non-negative integer input matrix whose X (i, j) cell
reflects the event counts for the i-th (out of M) patient with respect
to the j-th (out of N) features. Given an input number R of desired
phenotypes, the matrix U € RM*R corresponds to a membership
matrix of the patients with respect to the R phenotypes. And the
matrix V € RN*R provides the phenotypes’ definition: the non-zero
elements of the r-th column V(;, r) reveal the potentially relevant
features to the r-th phenotype.

Interpreting those factors is crucial in order to determine whether
and to what extent a patient exhibits a phenotype, as well as which
set of candidate features should be considered to compose each
r-th phenotype so that it is clinically meaningful. However, this
can be challenging if the resulting factors contain arbitrary (non-
negative) real values. Real-valued factors distort the count nature

Hyperlipidemia Score

Rx_HMG CoA Reductase Inhibitors 3
Dx_Disorders of lipid metabolism 1

Table 1: Most prevalent phenotype (26% of patients) extracted via SUSTainy
for a heart failure cohort. The r-th phenotype prevalence is measured
through the patient membership vectors containing non-zero element in the
r-th coordinate. The score of each feature indicates its relative frequency. The
prefix for each feature indicates whether it corresponds to a medication (Rx)
or a diagnosis (Dx). The cardiologist labeled the result as “hyperlipidemia”
and confirmed that the two features are clinically connected to heart failure.

of input data; thus, identifying cases and controls based on counts
of relevant medical features [13, 34] is no longer possible. Also, the
possible ranges and relative differences of elements in real-valued
factors is arbitrary, thus impeding the practitioner’s assessment of
their relative importance. In practice, ad hoc heuristics have been
introduced with limited success: a) hard thresholding to the ranked
list of factor elements, which is usually arbitrary and leads to poor
model fit; b) the factor values are hidden altogether and only the
elements’ ranking is preserved, which omits valuable information
regarding the individual elements’ actual importance.
Contributions: To tackle these challenges, we propose Scalable
Unsupervised Scoring for Tensors (SUSTain), a framework extract-
ing the factor values as scores, constrained to a small integer set.
SUSTain offers a straightforward interpretation protocol: a score
of zero indicates no feature contribution and higher scores indicate
distinct levels of feature importance.

Our methodology relies on identifying a problem partitioning
into integer-constrained sub-problems so that each one of them can
be solved optimally in an efficient manner; at the same time, their
solution order is organized so as to promote re-use of shared inter-
mediate results. SUSTain can handle both matrix and tensor inputs,
through SUSTainys and SUSTaint methods, which we formulate
in Sections 3.1 and 3.2 respectively.

SUSTain yields faster and more scalable approaches than base-
lines achieving comparable fit, as evaluated on both synthetic
(publicly-available) and real healthcare datasets. For example, as
shown in Figure 1, SUSTains achieves the same level of accuracy as
the most accurate baseline up to 425x faster. SUSTainrt can han-
dle large-scale tensor inputs for which the most accurate baseline
fails and scales linearly with the number of patients.

SUSTain’s interpretation protocol is particularly meaningful for
unsupervised phenotyping: it is easily understood by medical ex-
perts who are used to simple and concise, scoring-based descrip-
tions of a patient’s clinical status (e.g., risk scores'). While recent
work derives risk scores for predictive modeling (supervised learn-
ing) [48], our application of SUSTain extracts scores for unsuper-
vised phenotyping based on unlabeled EHR data. In Table 1, we
provide a representative phenotype extracted through our method,
as part of a case study we performed on phenotyping heart failure
patients. The meaningfulness of the phenotype candidates extracted
through this case study was confirmed by a cardiologist, who an-
notated 87% of them as clinically meaningful phenotypes related to
heart failure. We summarize our contributions as:

In MDCalc, one can find a vast amount of such scores used in medicine.

www.mdcalc.com

o Scalable unsupervised scoring: We propose SUSTain, a fast
and scalable approach decomposing integer multi-aspect data
into integer scores, preserving the original integer characteristics.

e SUSTain can handle matrix and tensor input: We present
SUSTain for both matrix (Section 3.1) and tensor (Section 3.2)
inputs, through SUSTainy; and SUSTaint methods, respectively.

e Evaluation on various datasets: We evaluate both the matrix
and tensor versions on both synthetic (publicly-available) and
real healthcare datasets.

e Phenotyping heart failure patients: The interpretability of
the extracted scoring-based phenotypes was confirmed by a car-
diologist, who annotated 87% of them as clinically meaningful.

To promote reproducibility, our code is open-sourced and publicly
available at: https://github.com/kperros/SUSTain.

2 BACKGROUND

In Table 2 we summarize the notations used throughout the pa-
per. Let xo € R™. The euclidean projection of xo to a set C C R"
is defined as II¢(xp) = argmin {||x - x0||§ | x € C}; thus, it is the
problem of determining the vector x* among all x € C which
is the closest to x¢ w.r.t. the Euclidean distance [5]. A matrix X
is called rank-1 if it can be expressed as the outer product of 2
non-zero vectors: X = x o y. The Khatri-Rao Product (KRP) [46]
is the “matching column-wise” Kronecker product: for two ma-
trices U € RMXR v ¢ RNXR their KRP is as follows: U 0V =
[UGDOV(EDUG2®V(,2) ... UG R)®V(;, R)] e RMNXR

A tensor is a multi-dimensional array. The tensor’s order de-
notes the number of its dimensions, also known as ways or modes
(e.g., matrices are 2-order tensors). A d-order tensor X is called
rank-1 if it can be expressed as the outer product of d non-zero
vectors: X = aj oaz o---oay. A fiber is a vector extracted from a
tensor by fixing all modes but one. For example, a matrix column is
a mode-1 fiber. A slice is a matrix extracted from a tensor by fixing
all modes but two. Matricization, also called reshaping or unfolding,
logically reorganizes tensors into other forms without changing
the values themselves. The mode-n matricization of a d-order ten-
sor X € RhXIszXId is denoted by X(n) c RInXIIIZ~~~In—IIn+1~~-Id
and arranges the mode-n fibers of the tensor as columns of the
resulting matrix. The Matricized-Tensor Times Khatri-Rao Product

(MTTKRP) [3] w.r.t. mode-n is the matrix multiplication X, A(G;n) ,

Symbol Definition
X, X, x,x Tensor, matrix, vector, scalar
vece(X) Vectorization operator for matrix X
Te(x) Euclidean projection of x to a set C
X, i) Spans the entire i-th column of X
diag(x) Diagonal matrix with vector x on the diagonal
X(n) mode-n matricization of tensor X
A factor matrix corresponding to mode n
o Outer product
® Kronecker product
o Khatri-Rao product
Ag") Khatri-Rao product of all the factor matrices expect A
M the MTTKRP corresponding to mode-n
* Hadamard (element-wise) product

Table 2: Notations used throughout the paper.

where A(G;n) corresponds to the Khatri-Rao product of all the modes
except the n-th. MTTKRP is the bottleneck operation in many sparse
tensor algorithms.

3 THE SUSTAIN FRAMEWORK

First we present SUSTain for matrix input. Then, we describe how
SUSTain can be extended for general high-order tensor input. Fi-
nally, we provide our interpretation protocol of SUSTain for unsu-
pervised phenotyping.

3.1 SUSTain for matrix input
Model: For an integer input matrix X € ZY*N

rank R, the problem can be defined as:

and a certain target

min{|[X ~UAVT|%|U ezMR v e ZMR A e ZPR} (2)

where Z; = {0,1,...,7} is the set of nonnegative integers up to
7, Zy = {1,2,...,00} is the set of positive integers and A is a
diagonal R-by-R matrix. The above problem can be also formulated
as || X — Zle Ar) UGr) V()T |§, where A(r) = A(r,r). The
reason for having A(r) is to absorb any scaling of each r-th rank-1
component, since the entries of U and V factors are upper bounded
by 7. Note that the A(r) values cannot be simply obtained through
normalization as in the corresponding real-valued models (e.g.,
NMEF [25, 35]), due to the integer constraints. Finally, note that the
integer set Z; can easily vary for different factor matrices and even
allow negative integers; this can also happen for the input matrix
X. The formulation in Problem (2) favors simplicity of presentation
and matches the need of phenotyping applications.
Fitting Algorithm: We employ an alternating updating scheme to
tackle the non-convex optimization Problem (2). Our scheme leads
to optimal solutions to each one of the sub-problems in an efficient
manner, while organizing the order of updates so as to promote
re-use of already computed intermediate results.

We follow the intuition behind the Hierarchical Alternating Least
Squares (HALS) framework, which enables isolating and solving for
each k-th rank-1 component separately. Thus, Problem (2) gives:

R
min{|| X - Z AMNUGHVENDT AR UGKVERTE (3)

r=1,r#k

Ry
MxR NxR RxR
|U € Z?"F, v ez, A e 277}
where Ry corresponds to the “residual matrix” and is considered

fixed when solving for the k-th rank-1 component. The objective
can be written as [30]:

T =R |17+A2() UG OBV G RIE-2A00) UG k)T R V(- k)
We set:

8J/0A(k) =2 Ak) [IU G, k)3 IV G k) -2U G k)T Re V(5 k) =0
and obtain:

. UG KT RV, k)

UG RIE NV R

IfUG, k)T R V(:, k) > 0then the minimum value of J for A(k) € Z
is obtained at max(1, round(/l’;c)) where round() rounds to the near-

est integer. If U(, k)T Ry V(:, k) < 0, then the minimum objective

https://github.com/kperros/SUSTain

value for A(k) € Z, is attained at A(k) = 1. Combining these two
cases, the optimal A(k) € Z, is given by:

UGKT RV k)))
UG RV R

A(k) « max (1, round (4)

In practice, R may be large (M X N) and dense, even if the input
is sparse (as happens in our main motivating application); thus its
explicit materialization should be avoided [16, 27]. Expanding the
above expression gives:

®)

VR (XTULe - VAUT ULy)
[UT ULk (VT V]

A(k) <« max (1, round (A(k) +

Next, solving Problem (3) for V(:, k) gives:
min {|[Rg —AK) UG K VEOTE|VE k) ez} (©6)

To solve the above, we apply the Optimal Scaling Lemma [8] for
the integer constraint. This Lemma states that for any set C of
constraints imposed on b, it holds that:

min {||Y —x bT|2| b € C} =TIc(B)

T
where f = ’J‘c T 1; is the unconstrained solution to the above prob-
lem. This means that the optimal solution of the constrained prob-
lem is simply the projection of the unconstrained solution onto the
constraint set C. Thus, the optimal solution of Problem (6) is:

RIUC(k)
[UT Uik AK)

VG k) — Ty ((7)

Since Z]T\] is the Cartesian product of subsets of the real line, i.e.,
Z]TV =2y XZy X -+ X Z; we can take

——
N times
N (VG k) = [z, (V1 K), -, iz, (VN k)] (8)

thus project each scalar coordinate individually. For a real-valued
scalar a, projecting onto Z; gives [47]:

Iz, (a) = min(max (round(a), 0), 7) 9)
Finally, expanding Ry in Expression (7), combining with (8), (9) and
setting:
XTULx-VAUT Ul

[UT Ulg,x Alk)

gives the optimal solution for Problem (6):

V(:, k) « min(max (round (b),0),1) (11)

be—V(Qk)+ (10)

where min(), max(), round() are taken element-wise.

Having derived the updates for A(k), V(:, k), in Relations (5) and
(11) respectively, we remark that the computationally expensive
intermediate results [XT U] and [UT U] are shared between them.
To exploit that, we choose to successively update A(k) and V(:, k)
during the same iteration and iterate Vk € {1,...,R}. As a result
of the proposed update order, the only non-negligible additional
operation in order to compute both A(k) and V(:, k) is to re-compute
t:=VA[UT U], . after having updated A(k).

Re-computing ¢ can be further optimized by observing that only

the contribution of the k-th component t. := V(:, k) = A(k) [ut Ulk.k

has to be adjusted. Thus, we can store ¢ and t;., compute A’(k), and
then adjust £ as: t « £ — t;, + (V(:, k) « A'(k) [UT UJ;. k).
Updating U(;, k) can be executed in symmetric fashion to V(:, k).

In Algorithm 1, we present our main procedure to update both the
factor matrices U and V and A values in an alternating fashion. In

Algorithm 2, we provide the definition of SUSTain_Update_Factor
which updates a single factor (denoted as F) and the vector A.

Algorithm 1 SUSTainys

Require: X € RM*N target rank R and upper bound =
Ensure: U € ZMXR v ¢ ZNXR 3 ¢ ZR
1: Initialize U, V, A
2: while convergence criterion is not met do
33 FeUM~XV,CeVTV
4 [U, A] = SUSTain_Update_Factor(F, M, C, A, R, 7)
55 FeV,M—XTUu,c—UTU
6: [V, A] = SUSTain_Update_Factor(F, M, C, A, R,)
7: end while

Algorithm 2 SUSTain_Update_Factor(F,M,C,A, R, 7)

Require: F € Z, R M e RI*R c e RRXR 3 ¢ Zf, target rank R and
upper bound 7

Ensure: F € Z, ¥R) e ZR

1: fork=1,...,Rdo

22 t« F (AxC(, k)

%t — F(, k) = A(K) C(k, k)

0T (M

Lo
5 Alk) « max (1, round (a))
6: te—t—tp+(F(, k)= A(k) C(k, k))
7. b e F(, k)+ MR-t
8
9.

C(k,k) A(k)
. F(, k) « min(max (round (b), 0), 7)
: end for

Computational Complexity: The asymptotic cost of executing
Algorithm 2 is 2R?I flops (i.e., floating-point operations), YR > 5.
This step costs 2R2N when updating V and 2R?M when updating
U. In Algorithm 1, assuming the input X is sparse, the cost of each
one of X V and XT U is 2 nnz(X) R flops. Also, computing VT V
and UT U cost 2R®N and 2R*M flops respectively. Thus, the total
cost is: 4R (nnz(X) + (M + N)R) flops.

3.2 SUSTain for tensor input

Model: For a tensor X € RI1*2X---I¢ of order d and a certain target
rank R, the problem can be defined as

R
min{[|X - >’ A(r) AV, r) 0.0 AN)|
r=1

|A® e zIR ez} (12)

where n = {1,...,d},Z; ={0,1,...,7} is the set of nonnegative
integersuptor andZ; = {1,2,. .., oo} is the set of positive integers.
Our model is an extension of SUSTainy presented in Section 3.1
for high-order tensors. It can be viewed as a constrained version of
the CP tensor model [9, 18, 20].

Fitting Algorithm: Similarly to the matrix case, we set:

R
Re=X= > ANAVGr) 0.0 AV 1)
r=1,r+k

Thus, Problem (12) becomes:
min{||Re - A(k) AV k) ... 0 ALK

|A™ ez R Ak eZ,} (13)

We matricize the above expression w.r.t. mode-n and utilize the fact
that the mode-n matricization of a rank-1 tensor by o - - - o b; can

be expressed as b, (by ® - @ bpy1 ®bp_1® -+ ® bl)T [17]:
min {||Rp () — A(k) A", k)
AV e oA e APV © - 0 AV KT 1R
| A ez R A(k) € Zy} (14)

We set A(o_n) =ADo...0 A o A=) o... 0 AV as the
Khatri-Rao Product of all the factor matrices except the n-th and

cCm o A@T p@y. AT p() A= p(n-1), L aDT 4O

(15)
as the Hadamard product of the Gram matrices of all the factor
matrices except the n-th. Then, Objective (14) becomes

min{ || Ry ()~ A(k) A, K ASP G T A ez R Ak) € 2,)

(16)
Solving the above for A(k) can be handled equivalently to the
corresponding matrix case (Relation (4)). Thus, the optimal solution
for A(k) € Z; is:

AT Ry A k
A(k) « max (1, round(G R Ry A ())) 17)

AP, K2 11AS ™6 k)2
By exploiting that [29]:

- - - -nT (- -
145")1 = 4G BT AT k) = [AG™ AT Ik = CTP(k k)

and expanding:

Ricmy AS ™G k) = MU, K)-A™ ACTD(, k)+AK) €T (k, k) A k)

(18)
where M (")(:, k) is the Matricized-Tensor Times Khatri-Rao Product
(MTTKRP) [3] operation w.r.t. mode n, we get the optimal solution
for A(k) € Z; as:

AW,)T (M(”)(:, k) — A A CEm(, k))
A(k) « max |1, round| A(k) +

CEm(k, k) [AMT A, o
(19)

Next, we transpose the Objective (16) and solving for A(”)(:, k) can
be handled as in the matrix case (Relation (7)) through the Optimal

Scaling Lemma [8]. Thus, the optimal A k) e Zi" is given by:

(-n)
R A L k
AP k) T, k(")io() (20)
Z7 | cCn(k, k) A(k)
Finally, combining Equation (18) into the above gives:
(. k) - A (=n)(.
A(n)(:’ k) —T1L,, (A(n)(:’ k) : M ('7 k) A AC (-, k)) (21)
z{ CEm(k, k) Ak)

Note the direct correspondence of the above formulations for A(k),
AM(:, k) with the core update Algorithm 2 we used for the matrix
case. If we set F «— AM™ M «— MM, C « c-" then we can sim-
ply use Algorithm 2 to update a single factor A™ and the A values.
Also, we can exploit the development of existing scalable software
libraries computing the bottleneck MTTKRP kernel for sparse data
efficiently [3]. In Algorithm 3, we summarize the operations of our
methodology for tensor input.

Computational Complexity: Updating the n-th mode in Algo-
rithm 3 requires: 3 R nnz(X) flops to compute the MTTKRP us-
ing state-of-the-art libraries for sparse tensors [3], 2 R? I, flops

to compute A(")T A" and (d — 1) R? flops to update C™ as in

Algorithm 3 SUSTainr

Require: X € RI*2%--la target rank R and upper bound 7
Ensure: A" € Zi"XR, withn e {1,...,d},A € Zf

1: Initialize AUV, A

2: while convergence criterion is not met do

3: forn=1,...,ddo

4 M™ — X,y AS™ /| MTTKRP

5: Compute C=") a5 in Relation (15)

6: [A("), Al = SUSTain_Update_Factor(A("), MM, ctm A R 7)
7 end for

8: end while

Equation (15). As discussed in the matrix case, the dominant cost
of Algorithm 2 is 2 R? I, flops. Overall, Algorithm 3 requires:
3d R nnz(X) + 4 R? Zzzl In +d (d — 1) R? flops. In our exper-
iments, the first term, thus the computation of MTTKRP, dominates
the total cost.

3.3 Interpretation for phenotyping

Given the EHRs of a certain cohort, we form a patient-by-diagnoses
matrix X, whose X(i, j) cell is the number of encounters of patient
i where encounter diagnosis j was recorded. In that case, the pa-
tient membership vector U(i, :) of SUSTainy provides the distinct
levels of frequency of each one of the R phenotypes throughout the
medical history of the i-th patient. Likewise, each column V(:,r)
indicates the frequency levels of each medical feature w.r.t. the r-th
phenotype. Table 1 summarizes a phenotype example that accounts
for the largest share of heart failure patients. Finally, due to the
integer box (i.e., {0, ..., 7}) constraints employed on the factor ma-
trices, we can interpret the integer A(r) values as scaling up the
input encounter counts for the r-th phenotype. Thus, phenotypes
with higher A(r) values are expected to describe more persistent
medical conditions, with higher number of associated encounters.

The above interpretation can be extended to the tensor case. Con-
sider a tensor X whose X(i, j, k) cell defines the count of encounters
of patient i where medication k was ordered for the patient with
diagnosis j as the order indication. Factorizing this tensor using
SUSTainy yields a patient factor A!) which can be interpreted sim-
ilarly to the U factor in the matrix case. Also, the factor matrices
A®, A®) corresponding to diagnosis and medication or procedure
phenotypes can be interpreted similarly to the V factor in the matrix
case. The same applies to the A(r) model values.

4 EXPERIMENTS
4.1 Setup

4.1.1 Description of datasets. Table 3 summarizes statistics for
the datasets used.
Sutter: This dataset corresponds to EHRs from Sutter Palo Alto
Medical Foundation (PAMF) Clinics. The patients are 50 to 80 years
old adults chosen for a heart failure study [11]. To form a patient-
by-diagnosis matrix input, we extracted the number of encounter
records with a specific diagnosis for each patient. To form a patient-
diagnosis-medication tensor input, we used the medication orders,
reflecting the ordered medications and the indicated diagnosis. We

dataset modes size of modes #nnz (~Millions)
Sutter-matrix Pat-Dx 259,999 X 576 5.7
Sutter-tensor Pat-Dx-Rx 248,347 X 552 X 555 5.4
CMS-matrix Pat-Dx 197,212 X 583 10.9
CMS-tensor Pat-Dx-Proc 197,143 X 583 X 239 23.4

Table 3: For each dataset used, we list its name, nature of input modes, their
sizes and the approximate number of non-zeros. Pat refers to patients, Dx to
diagnoses, Rx to medications and Proc to procedures.

adopt standard medical concept groupers to group the available ICD-
9 diagnosis codes [45] into Clinical Classification Software (CCS) [1]
diagnostic categories (level 4). We also group the normalized drug
names (i.e., combining all branded names and the generic name
for a medication) based on unique therapeutic subclasses using the
Anatomical Therapeutic Chemical Classification System [39].
CMS: We used a publicly-available CMS Linkable 2008-2010 Medi-
care Data Entrepreneurs’ Synthetic Public Use File (DE-SynPUF)
that contains three years of claim records synthesized (i.e., to pro-
tect privacy) from 5% of the 2008 Medicare population. CMS creates
twenty 5% subsamples of the claims data. We used the carrier claims
data available from DE-SynPUF for the patients belonging to Sam-
ples 1 & 2. We increase the number of samples (i.e., number of
patients) considered for the experiments related to assessing scala-
bility. We used the diagnostic code information to build the input
matrix and the diagnoses and procedures recorded to build the
input tensor. In particular, we group the available ICD-9 diagnosis
codes [45] into CCS [1] diagnostic categories (level 4) and use the
CCS flat code grouper [1] to transform the CPT procedure codes
available into procedure categories.

4.1.2 Baselines. Below, we describe our efforts to design com-

petitive baseline methods producing the target models in Problems 2
and 12, for the matrix and the tensor cases respectively.
Round: This baseline rounds the factor matrices from nonnegative
matrix/tensor factorization. In the matrix case, we used the imple-
mentation of Nonnegative Matrix Factorization (NMF) [27, 28] and
projected all the entries of the resulting factor matrices to Z,. We
also set A to an all-ones vector as NMF typically does not have
the diagonal matrix A. A typical issue of naively rounding NMF
solutions is that values that are lower than 0.5 are rounded to 0, so
a potentially large part of model information can be lost.

In the tensor case, we used the CP-ALS algorithm as in the Ten-
sor Toolbox [4], adjusted to impose non-negativity constraints [28]
on the factor matrices. Also, in contrast to the NMF case, CP-ALS
produces a A vector of nonnegative real values. In order to alle-
viate the effect of zeroing out values less than 0.5 we compute
the cube root of the A vector element-wise and form a vector A.
Then, we absorb this scaling in the factor matrices by multiplying
A diag(j,), Vn = {1,...,d} where d is the input tensor’s order.
Finally, we set A to an all-ones vector and project all the entries of
the resulting factor matrices to Z;.

“These data can be downloaded from https://www.cms.gov/
Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/
DE_Syn_PUF.html

Scale-and-round: We design a more sophisticated scale-and-rounding

heuristic which scales the factor matrices of the real-valued solu-
tions before performing the rounding. This step further alleviates
the problem of zeroing out values less than 0.5.

In the matrix case, we define the scaling factor y2(j) = v/max(V (., j)).

Then, V(. j) = round (y2(j)V (., j)). Similarly, we define y1(j) = 7
/max(U(, j)). Then, U(:, j) = round (y1()HUC(, j)). Those steps scale-
up the maximum value of each factor matrix column to reach the
upper bound 7. Then, this excess scaling is absorbed into A as:
A = round(1/y1y2).

In the tensor case, we absorb the scaling of the A output of the

real-valued solution into the factor matrices as in “Round”, and
extend the Scale-and-round matrix approach accordingly.
AILS: Alternating Integer Least Squares approach: We used
the Integer Least Squares (ILS) with box constraints approach which
is proposed in [6, 49]. This approach was recently unified within
an Integer Matrix Factorization framework [15]. We exploit the
redundancy among ILS problems targeting the same factor matrix,
so that the QR factorization in the reduction phase is only computed
once. Note that solving general ILS problems is NP-hard [15], which
is reflected in the runtime of this method in the experiments. We
enabled the extraction of the integer A values through an ILS by
noticing that vectorizing the original problem as

min {|[vec(U A VT —vec(X)| % |Ae ZfXR}

can be transformed to [7]: min {||(V O U)A — vec(X)| I% \ Ae Zf}
which gives the ILS to solve for. Note that we attempted to extend
this approach for tensor input; however, the materialization of the
Khatri-Rao product of all the factor matrices failed due to out of
memory problems even for the smallest target rank for both of the
datasets used. To illustrate the magnitude of this issue, the size
needed for the Khatri-Rao product of all factor matrices for Sutter
data and R = 5 is: 248347 * 552 * 555 * 5 * 8 bytes ~ 3 Terabytes.

4.1.3 Evaluation metrics. We evaluate the methods under com-
parison in terms of the trade-off between execution time and ac-
curacy for various target ranks considered (R = {5, 10, 20,40}).
Accuracy is measured in terms of fit: 1 — [|X — X||¢/||X||F, where
X is the re-constructed input through the model factors (this ex-
tends trivially to the tensor case); fit can be considered as the the
proportion of data explained by the model.

4.1.4 Initialization details. In all experiments, when we compare
SUSTain and AILS, we provide them with the same initialization.

Regarding the accuracy-time trade-off evaluation, we initialize
with several schemes and for each method we choose the one pro-
viding the highest fit. The schemes are the following: a) round
heuristic, b) scale-and-round heuristic, ¢) random: random initial-
ization with integers within the required range and A set to all-ones
vector, d) random & sampling: random initialization of the patients
factor and sampling from the input data to populate the rest of the
factors. In the matrix case, we initialize each j-th column of V by
random sampling of input patient vectors and scaling them to lie
on Z; if needed. In the tensor case, for each sampled slice X(i,, :),
we populate each j-th component of A®) AG) by sampling the row
and column of X(i, :, :) with the maximum sum. Note that when we
measure execution time for each approach, we do take into account
the time spent for its initialization.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html

CMS data, matrix case

10

| ==SUSTain

10° t —— Round
Scale-and-round

—-—AILS

Time (sec)

10?

0 0.1 0.2 0.3 0.4 0.5
Fit

Figure 2: Fit (range [0, 1]) vs time trade-off for varying target number of
phenotypes R = {5, 10, 20, 40} for the CMS matrix input. SUSTainy is at
least an order of magnitude faster than the most accurate baseline (up to 38x
faster for R = 20), while achieving the same level of accuracy. Also, SUSTains
achieves up to 14% higher fit over scale-and-rounding heuristics.

In the scalability evaluation, we initialize each method with
the random & sampling scheme (d) described above; this provided
better starting points than using pure random initialization. For
this experiment, we ignore the initialization time, since we want to
focus on the methods’ scalability behavior.

4.1.5 Implementation details. We used MatlabR2017b for our
implementations, along with functionalities for sparse tensors from
the “Tensor Toolbox” [4] and for nonnegative matrix factorization
from the “nonnegfac-matlab” [27] toolbox. The ILS solver we use
for the AILS baseline is included in the state-of-the-art MILES
software [10].

The zero-lock problem refers to the case when a single column
is zeroed out, thus zeroing out an entire rank-1 component of
the solution. To avoid that in our scheme, we add the smallest
perturbation possible (+1) to a randomly-chosen coordinate of the
vector zeroed out.

In both SUSTain and AILS, we break the iterations when the
successive difference of the objective drops below 1e — 4. Finally,
the parameter 7 is set to 5 driven by discussions with medical
experts and similarity to many medical scoring systems.

4.1.6 Hardware. We conducted our experiments on a server
running Ubuntu 14.04 with 1TB of RAM and four Intel E5-4620 v4
CPU’s with a maximum clock frequency of 2.10GHz. Each of the
processors contains 10 cores with 2 threads each.

4.2 Matrix case experiments

Accuracy-Time trade-off: In Figure 1, we showcase the accuracy-
time trade-off regarding the Sutter PAMF dataset. SUSTainy is at
least 60 faster (R = 40) than the most accurate baseline (AILS). For
R =5, SUSTainy; achieves 425X speedup over AILS: as compared
to the = 22 minutes spent by AILS, our approach executes in
~ 3 seconds for the same level of accuracy. Even for R = {10, 20}
SUSTainys achieves 98X and 110X faster computations than AILS.
At the same time, SUSTainys achieves up to 16% higher fit than the
scale-and-round heuristic, operating on comparable running times.
Note that for R = 5, our approach is even faster (and more accurate)
than the scale-and-round baseline as well, since initializing with
random factors provided a better final fit than initializing with

#patients (xThousands) 246 493 739 985

#nnz (~Millions) 14 27 41 55
SUSTainpg 0.71 0.95 1.66 2.82
Round / Scale-and-round 4.4 8.9 12.9 19.5
AILS 339 514 940 1254

Table 4: Running time (seconds) of one iteration for increasingly larger
number of patients considered from the CMS data. Matrix case, R = 10.

Sutter data, Tensor case CMS data, Tensor case

10* 104
—-SUSTain
——Round
—~10% Scale-and-round .
B 3
xS Z
g / 2!
£ 10 / &
—o—SUSTain
—=—Round
) Scale-and-round
10! 10°
0 0.1 0.2 0.3 0 0.05 0.1 0.15 0.2 0.25
Fit Fit

Figure 3: Fit (range [0, 1]) vs time trade-off for varying target number
of phenotypes R = {5, 10, 20, 40} for the Sutter and the CMS tensor input.
SUSTainT achieves up to 9% and 12% higher fit respectively over scale-and-
rounding heuristics.

the scale-and-round result. We also remark that the naive round
heuristic achieves a fit of zero, which is a by-product of zeroing out
the majority of the model factor elements.

In Figure 2, we provide the results of the same experiment re-
garding the CMS dataset. For the same level of accuracy, SUSTainys
is at least an order of magnitude faster than AILS, and up to 38x
faster for R = 20. It also achieves up to 14% higher fit over the
scale-and-rounding heuristic for comparable execution time.
Scaling for larger number of patients: In Table 4, for fixed R =
10, we measure a single iteration’s time for increasing subsets of
CMS patients. The NMF execution time is considered for Round
and Scale-and-round heuristics, since their post-processing cost is
negligible. SUSTainys can execute very fast (a single iteration in
~ 3 seconds) even for ~ 985 thousand patients.

4.3 Tensor case experiments

Accuracy-Time trade-off: In Figure 3, we provide the fit-time
trade-off for varying target rank of our input tensor datasets. As
discussed in Section 4.1.2, the extension of AILS approach to ten-
sors cannot scale for any dataset or target rank considered. Overall,
SUSTainT achieves up to 9% and 12% increase in fit over the scale-
and-round heuristic w.r.t. the Sutter PAMF and CMS datasets respec-
tively. Note that the fit of the scale-and-round approach decreases
for successively increasing target rank values (e.g., transitioning
from R = 20 to R = 40 for CMS data). This indicates that heuristic
approaches which simply post-process real-valued solutions may
not fully exploit the available target rank.

Scaling for larger number of patients: In Table 5, we report the
time spent for one iteration of increasingly larger subset of patients
considered from the CMS data, with fixed target rank (R = 10).
The time measured for the heuristic approaches corresponds to
the execution time of CP-ALS, since the post-processing cost is
negligible. We observe that SUSTainT achieves linear scale-up w.r.t.

#patients (xThousands) 246 493 739 985
#nnz (~*Millions) 29 58 88 117

SUSTaint 38.5 76.9 115 151
Round / Scale-and-round 39.6 78 117 157

Table 5: Running time (seconds) of one iteration for increasingly larger
number of patients considered from the CMS data. Tensor case, R = 10.

increasing number of patients. We also remark that the dominant
costin both SUSTaint and the CP-ALS is the MTTKRP computation,
which explains the comparable running time.

4.4 Case study on Phenotyping HF patients

Cardiovascular disease (CVD) is the leading cause of death world-
wide and heart failure (HF) is a dominant cause of morbidity and
mortality. HF is traditionally characterized by reduced ejection frac-
tion (HFrEF) and preserved ejection fraction (HFpEF). But, recent
evidence suggests that HF is more heterogeneous than is reflected
by ejection fraction. We used SUSTain to explore this heterogeneity
in an incident HF cohort.
Cohort and data selection: We select only the HF case patients
from the Sutter PAMF dataset. For each incident HF case, we ex-
tracted data in the 12-months before and the 12-months after the
initial HF diagnosis date, which resulted in 70, 531 clinical encoun-
ters. We used all the data modalities available, i.e., medication orders
and indications and encounter diagnoses. The size of the resulting
(patient-by-diagnosis-by-medication) tensor is 3,497 X 396 X 367;
the tensor contains a total of 92, 662 non-zero elements.
Choosing the number of phenotypes: We use the stability-driven
criterion introduced in [51]. The intuition behind this criterion is
in promoting a target rank for which several runs with different
initial points return reproducible factors. We choose the diagnosis
factor matrix as the factor under assessment. Let D1 and D, be the
diagnosis factor matrix for 2 different runs with the same target
rank. Then, the cross-correlation matrix C € RF*R js computed
between the columns of D1, Dy and the dissimilarity between them
is computed as [51]:

1 R R
diss(Dq, D) = R 2R — jZl maxi<k<rC(k, j) — kzl maxi<j<rC(k, j)

Note that when Dy can be transformed to D by column permu-
tation, then diss(D1, D2) = 0. If B is the number of repetitions for
each target rank, then the following relation computes the average
dissimilarity over B(B — 1)/2 pairs of resulting factors:

2
B(B-1) 2

1<b<b’<B

Y(R) = diss(Dy, Dy)

We used the “staNMF” toolbox * to compute the above score for each
target rank on the range {5, ..., 20}. The input to SUSTaint were
B = 20 initial points of the round heuristic. R = 15 phenotypes were
selected based on the above criterion. For the target rank chosen,
we pick the solution yielding the highest fit.

SUSTain provides concise and accurate solutions: We observed
that besides preserving the input data properties and providing a
natural interpretation for medical experts, SUSTain implicitly im-
poses sparse factors. To assess the factors’ conciseness, we compare

3https://github.com/bdgp/staNMF

method #nnz(A®) #nnz(A®) #nnz(A®) fit
SUSTaint 3, 438 54 88 0.261
NN CP-ALS 3, 497 60 90 0.175

Table 6: susTainy achieves ~ 8.6% increase in fit than a Nonnegative CP-
ALS model truncated to achieve the same level of sparsity. The result refers
to the HF case study for R = 15.

HF with reduced LVEF (HFrEF) Score
Rx_Loop Diuretics 3
Dx_Congestive heart failure 1
Rx_ACE Inhibitors 1
Rx_Alpha-Beta Blockers 1
Rx_Potassium 1

Hypertension Score
Rx_ACE Inhibitors 3

Dx_Essential hypertension 1
Rx_Alpha-Beta Blockers 1
Rx_Beta Blockers Cardio-Selective 1
Rx_Calcium Channel Blockers 1
Rx_HMG CoA Reductase Inhibitors 1
Rx_Loop Diuretics 1
Rx_Thiazides and Thiazide-Like Diuretics 1

Hypertension (more difficult to control) Score

Rx_Angiotensin II Receptor Antagonists 2
Rx_Beta Blockers Cardio-Selective
Rx_Calcium Channel Blockers
Dx_Essential hypertension
Rx_Antiadrenergic Antihypertensives
Rx_Loop Diuretics
Rx_Potassium

(SN O N

Table 7: Representative phenotypes extracted by SUSTaint for our HF case
study. The score of each feature indicates its relative frequency within the
phenotype. The prefix for each feature indicates whether it corresponds to a
medication (Rx) or a diagnosis (Dx). A cardiologist provided phenotype anno-
tations and validated that: the top-most phenotype is aligned to guideline-
based management of HF with reduced LVEF (HFrEF), the next one corre-
sponds to typical hypertensive patients (common risk factor of HF) and the
last one corresponds to hypertensive patients being more difficult to control.

their fit with the achieved fit of the real-valued model (NN CP-ALS),
which is post-processed to achieve factor sparsity (as would be done
by a practitioner). For each of the feature factors (diagnosis and
medication) of the real-valued model, we only consider the top-k
elements for each column (i.e., most important elements of each
phenotype). For the patient factor, we consider the top-k elements
for each row (i.e., most important phenotypes for each patient).
In each case, the value of k is chosen so that the sparsity level
is close to the one achieved by SUSTaint. We provide the results
in Table 6, where we notice that for the same level of sparsity,
SUSTainT achieves = 8.6% increase in fit. Thus, the integer factors
of SUSTainT decompose the input more accurately for the same
level of sparsity than the real-valued counterpart.

Phenotype discovery: In Table 1 and Table 7, we provide repre-
sentative phenotypes extracted through our method. A subset of
annotations provided by the cardiologist are as follows: hyperlipi-
demia (the one in Table 1), HF with reduced LVEF (HFrEF), hyper-
tension (HTN), HTN which is more difficult to control, persistent
and chronic atrial fibrillation, depression, diabetes, comorbidities of
aging, prior pulmonary embolism. Overall, 13 out of 15 phenotype

https://github.com/bdgp/staNMF

candidates were annotated as clinically meaningful phenotypes
related to heart failure.

5 RELATED WORK

Discrete factorization-based approaches: Dong et al. [15] pro-
posed an Integer Matrix Factorization framework via solving Inte-
ger Least Squares subproblems. As we experimentally evaluated,
this approach is orders of magnitude slower than SUSTain while
achieving the same level of accuracy. Kolda and O’Leary [30, 40]
proposed a Semidiscrete Matrix Decomposition into factors con-
taining ternary values ({—1, 0, 1}). Despite its demonstrated success
for compression purposes, a direct application of this approach
would introduce negative values into the factors, thus hurting in-
terpretability for nonnegative input. Finally, several prior works
target binary factorization (e.g., [32, 33, 36-38, 44, 53]). In contrast
to strictly binary factors, SUSTain captures the quantity embedded
in the input data, which reveals important information (e.g., relative
phenotype prevalence and associated feature frequencies).
Unsupervised Phenotyping: Extensive prior work applies fac-
torization techniques for unsupervised phenotyping (e.g., [19, 21,
22, 24,41, 42,50]). However, no work considered extracting scoring-
based phenotypes to facilitate their interpretation by domain ex-
perts.

HALS fitting algorithms: Our fitting algorithms follow the in-
tuition of Hierarchical Alternating Least Squares (HALS) frame-
work [12] (aka rank-one residue iteration [23]), which enables for-
mulating the solution for each k-th rank-1 component separately.
However, plain HALS does not tackle the challenges involved with
either imposing integer constraints or solving for the vector A.

6 CONCLUSIONS

The accuracy and scalability of SUSTain on “native” integer data
derives from two key insights. One is expected: just rounding or
applying related transformations to real-valued solutions is inher-
ently limited. The second may be more surprising: while discrete
constraints might appear to make the problem more challenging,
in fact, a careful organization of the problem into subparts can
mitigate that complexity. In our case, we identify a problem parti-
tioning of integer-constrained subproblems that leads to an optimal
and efficient solution; and, we also define the order of alternating
updates so as to enable reuse of shared intermediate results. Conse-
quently, SUSTain outperforms several baselines on both synthetic
(publicly-available) and real EHR data, showing either a better fit
or orders-of-magnitude speedups at a comparable fit.

Moving forward, there are many other sources of integer values
in real-world data. These include, for instance, ordinal values. Thus,
whereas this paper targets event counts, extensions for other cases
is a ripe target for future work.

Lastly, to enable reproducibility of our work, we open-source
our implementations and make them publicly available at: https:
//github.com/kperros/SUSTain.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation,
award IIS-#1418511 and CCF-#1533768, and National Institute of
Health award 1R01IMD011682-01, R56HL138415 and RO1HL116832.

This work has been funded in part by the Laboratory-Directed
Research & Development (LDRD) program at Sandia National Lab-
oratories.

REFERENCES

[1] 2017. Clinical Classifications Software (CCS) for ICD-9-CM. https://www.hcup-us.
ahrq.gov/toolssoftware/ccs/ccs.jsp. (2017). Accessed: 2017-02-11.

[2] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Biilent Yener.
2007. Multiway analysis of epilepsy tensors. Bioinformatics 23, 13 (2007), 110-i18.

[3] Brett W Bader and Tamara G Kolda. 2007. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (2007),
205-231.

[4] Brett W. Bader, Tamara G. Kolda, and others. 2015. MATLAB Tensor Toolbox
Version 2.6. Available online. (February 2015). http://www.sandia.gov/~tgkolda/
TensorToolbox/

[5] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[6] Stephen Breen and Xiao-Wen Chang. 2012. Column Reordering for Box-
Constrained Integer Least Squares Problems. (April 2012).

[7] John Brewer. 1978. Kronecker products and matrix calculus in system theory.
IEEE Transactions on circuits and systems 25, 9 (1978), 772-781.

[8] Rasmus Bro and Nicholaos D Sidiropoulos. 1998. Least squares algorithms under
unimodality and non-negativity constraints. Journal of Chemometrics 12, 4 (1998),
223-247.

[9] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in

multidimensional scaling via an N-way generalization of "Eckart-Young" decom-

position. Psychometrika 35, 3 (1970), 283-319.

Xiao-Wen Chang and Tianyang Zhou. 2007. MILES: MATLAB package for solving

mixed integer least squares problems. GPS Solutions 11, 4 (2007), 289-294. Last

updated: June 2016.

Edward Choi, Andy Schuetz, Walter F Stewart, and Jimeng Sun. 2016. Using

recurrent neural network models for early detection of heart failure onset. Journal

of the American Medical Informatics Association 24, 2 (2016), 361-370.

Andrzej Cichocki and Anh-Huy Phan. 2009. Fast local algorithms for large scale

nonnegative matrix and tensor factorizations. IEICE transactions on fundamentals

of electronics, communications and computer sciences 92, 3 (2009), 708-721.

[13] Joshua C Denny, Marylyn D Ritchie, Melissa A Basford, Jill M Pulley, Lisa Bas-

tarache, Kristin Brown-Gentry, Deede Wang, Dan R Masys, Dan M Roden, and

Dana C Crawford. 2010. PheWAS: demonstrating the feasibility of a phenome-

wide scan to discover gene-disease associations. Bioinformatics 26, 9 (2010),

1205-1210.

Chris Ding, Tao Li, Wei Peng, and Haesun Park. 2006. Orthogonal nonnegative

matrix t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 126-135.

Bo Dong, Matthew M Lin, and Haesun Park. 2017. Integer Matrix Approximation

and Data Mining. Journal of scientific computing (Sept. 2017), 1-27.

Nicolas Gillis and others. 2011. Nonnegative matrix factorization: Complexity, al-

gorithms and applications. Unpublished doctoral dissertation, Université catholique

de Louvain. Louvain-La-Neuve: CORE (2011).

Gene H Golub and Charles F Van Loan. 2013. Matrix Computations. Vol. 3. JHU

Press.

Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Models

and conditions for an "explanatory” multi-modal factor analysis. (1970).

[19] J Henderson, J C Ho, A N Kho, J C Denny, B A Malin, J Sun, and J Ghosh.

2017. Granite: Diversified, Sparse Tensor Factorization for Electronic Health

Record-Based Phenotyping. In 2017 IEEE International Conference on Healthcare

Informatics (ICHI). 214-223.

Frank L Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of

products. Studies in Applied Mathematics 6, 1-4 (1927), 164-189.

Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,

Bradley A Malin, and Jimeng Sun. 2014. Limestone: high-throughput candidate

phenotype generation via tensor factorization. Journal of biomedical informatics

52 (Dec. 2014), 199-211.

Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput

Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor

Factorization. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’14). ACM, New York, NY, USA,

115-124.

Ngoc-Diep Ho. 2008. Nonnegative matrix factorization algorithms and applications.

Ph.D. Dissertation. PhD thesis, Université catholique de Louvain.

Shalmali Joshi, Suriya Gunasekar, David Sontag, and Ghosh Joydeep. 2016. Iden-

tifiable Phenotyping using Constrained Non-Negative Matrix Factorization. In

Machine Learning for Healthcare Conference. 17-41.

[25] R.Kannan, G. Ballard, and H. Park. 2018. MPI-FAUN: An MPI-Based Framework

for Alternating-Updating Nonnegative Matrix Factorization. IEEE Transactions
on Knowledge and Data Engineering 30, 3 (March 2018), 544-558. DOI:http:

[10

[11

[12

[14

[15

[16

(17

[18

[20

[21

[22

[23

[24

https://github.com/kperros/SUSTain
https://github.com/kperros/SUSTain
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://dx.doi.org/10.1109/TKDE.2017.2767592
http://dx.doi.org/10.1109/TKDE.2017.2767592

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33

[34]

[35]

[36]

[37]

[38]

[39

[40]

[41

[42]

[43]

[44]

[45

[46]

[47

[48]

[49]

[50

//dx.doi.org/10.1109/TKDE.2017.2767592

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems. ACM, 79-86.

Jingu Kim, Yunlong He, and Haesun Park. 2014. Algorithms for Nonnegative
Matrix and Tensor Factorizations: A Unified View Based on Block Coordinate
Descent Framework. Journal of Global Optimization 58, 2 (Feb. 2014), 285-319.
Jingu Kim and Haesun Park. 2011. Fast nonnegative matrix factorization: An
active-set-like method and comparisons. SIAM Journal on Scientific Computing
33,6 (2011), 3261-3281.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455-500.

Tamara G Kolda and Dianne P O’Leary. 1998. A Semidiscrete Matrix Decomposi-
tion for Latent Semantic Indexing Information Retrieval. ACM Transactions on
Information and System Security 16, 4 (Oct. 1998), 322-346.

Tamara G Kolda and Jimeng Sun. 2008. Scalable tensor decompositions for multi-
aspect data mining. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. IEEE, 363-372.

Mehmet Koyuturk, Ananth Grama, and Naren Ramakrishnan. 2005. Compression,
clustering, and pattern discovery in very high-dimensional discrete-attribute
data sets. IEEE Transactions on Knowledge and Data Engineering 17, 4 (2005),
447-461.

Mehmet Koyutiirk, Ananth Grama, and Naren Ramakrishnan. 2006. Nonorthog-
onal decomposition of binary matrices for bounded-error data compression and
analysis. ACM Transactions on Mathematical Software (TOMS) 32, 1 (2006), 33-69.
Joseph B Leader, Sarah A Pendergrass, Anurag Verma, David J Carey, Dustin N
Hartzel, Marylyn D Ritchie, and H Lester Kirchner. 2015. Contrasting associa-
tion results between existing PheWAS phenotype definition methods and five
validated electronic phenotypes. In AMIA Annual Symposium Proceedings, Vol.
2015. American Medical Informatics Association, 824.

D D Lee and H S Seung. 1999. Learning the parts of objects by non-negative
matrix factorization. Nature 401, 6755 (Oct. 1999), 788-791.

Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.
Discrete Content-aware Matrix Factorization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
325-334.

Pauli Miettinen. 2011. Boolean tensor factorizations. In Data Mining (ICDM),
2011 IEEE 11th International Conference on. IEEE, 447-456.

P Miettinen, T Mielikidinen, A Gionis, G Das, and H Mannila. 2008. The Discrete
Basis Problem. IEEE transactions on knowledge and data engineering 20, 10 (Oct.
2008), 1348-1362.

Gerhard Nahler. 2009. anatomical therapeutic chemical classification system (ATC).
Springer Vienna, Vienna, 8-8. DOI : http://dx.doi.org/10.1007/978-3-211-89836-9_
64

D O’Leary and S Peleg. 1983. Digital Image Compression by Outer Product
Expansion. IEEE Transactions on Communications 31, 3 (March 1983), 441-444.
Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. 2015. Sparse
hierarchical tucker factorization and its application to healthcare. In Data Mining
(ICDM), 2015 IEEE International Conference on. IEEE, 943-948.

Toakeim Perros, Evangelos E Papalexakis, Fei Wang, Richard Vuduc, Elizabeth
Searles, Michael Thompson, and Jimeng Sun. 2017. SPARTan: Scalable PARAFAC2
for Large & Sparse Data. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, 375-384.
Rachel L Richesson, Jimeng Sun, Jyotishman Pathak, Abel N Kho, and Joshua C
Denny. 2016. Clinical phenotyping in selected national networks: demonstrating
the need for high-throughput, portable, and computational methods. Artificial
intelligence in medicine 71 (July 2016), 57-61.

Bao-Hong Shen, Shuiwang Ji, and Jieping Ye. 2009. Mining Discrete Patterns via
Binary Matrix Factorization. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD '09). ACM, New York,
NY, USA, 757-766.

Vergil N Slee. 1978. The International classification of diseases: ninth revision
(ICD-9). Annals of internal medicine 88, 3 (1978), 424-426.

Age Smilde, Rasmus Bro, and Paul Geladi. 2005. Multi-way analysis: applications
in the chemical sciences. John Wiley & Sons.

Reza Takapoui, Nicholas Moehle, Stephen Boyd, and Alberto Bemporad. 2017. A
simple effective heuristic for embedded mixed-integer quadratic programming.
Internat. J. Control (2017), 1-11.

Berk Ustun and Cynthia Rudin. 2017. Optimized Risk Scores. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1125-1134.

X w. Chang and Q Han. 2008. Solving Box-Constrained Integer Least Squares
Problems. IEEE Transactions on Wireless Communications 7, 1 (Jan. 2008), 277-287.
Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge Guided Tensor
Factorization and Completion for Health Data Analytics. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data

[51

(52

[53

]

Mining (KDD ’15). ACM, New York, NY, USA, 1265-1274.

Siqi Wu, Antony Joseph, Ann S Hammonds, Susan E Celniker, Bin Yu, and Erwin
Frise. 2016. Stability-driven nonnegative matrix factorization to interpret spatial
gene expression and build local gene networks. Proceedings of the National
Academy of Sciences 113, 16 (2016), 4290-4295.

Pranjul Yadav, Michael Steinbach, Vipin Kumar, and Gyorgy Simon. 2018. Mining
Electronic Health Records (EHRs): A Survey. ACM Computing Surveys (CSUR) 50,
6 (2018), 85.

Z Zhang, T Li, C Ding, and X Zhang. 2007. Binary Matrix Factorization with
Applications. In Seventh IEEE International Conference on Data Mining (ICDM
2007). 391-400.

http://dx.doi.org/10.1109/TKDE.2017.2767592
http://dx.doi.org/10.1007/978-3-211-89836-9_64
http://dx.doi.org/10.1007/978-3-211-89836-9_64

	Abstract
	1 Introduction
	2 Background
	3 The SUSTain framework
	3.1 SUSTain for matrix input
	3.2 SUSTain for tensor input
	3.3 Interpretation for phenotyping

	4 Experiments
	4.1 Setup
	4.2 Matrix case experiments
	4.3 Tensor case experiments
	4.4 Case study on Phenotyping HF patients

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

