
A Peek Into the Hidden Layers of a Convolutional Neural
Network Through a Factorization Lens

Uday Singh Saini
University of California Riverside

usain001@ucr.edu

Evangelos E. Papalexakis
University of California Riverside

epapalex@cs.ucr.edu

ABSTRACT
Despite their increasing popularity and success in a variety of
supervised learning problems, deep neural networks are extremely
hard to interpret and debug: Given an already trained deep neural
network, and a set of test inputs, how can we gain insight into how
those inputs interact with different layers of the neural network?
Furthermore, can we characterize a given deep neural network
based on its observed behavior on different inputs? In this paper,
we propose a novel factorization-based approach on understanding
how different deep neural networks operate. In our preliminary
results, we identify fascinating patterns that link the factorization
rank (typically used as a measure of interestingness in unsupervised
data analysis) with how well or poorly the deep network has been
trained. Finally, our proposed approach can help provide visual
insights on how high-level, interpretable patterns of the network’s
input behave inside the hidden layers of the deep network.

(This is a Work-in-progress paper)

1 INTRODUCTION
Deep neural networks have gained enormous popularity inmachine
learning and data science alike, and rightfully so, since they have
demonstrated impeccable performance in a variety of supervised
learning tasks , especially a number of computer vision problems,
most prominent examples being [2],[3]. Albeit very successful in
providing accurate classifications, deep neural networks are noto-
rious for being hard to interpret, explain, and debug, a problem
amplified by their increasing complexity. This is an extremely chal-
lenging problem and the jury is still out on whether it can be solved
in its entirety.

Within the confines of interpreting and debugging deep neural
networks, we are interested in answering the following questions:
Given an already trained deep neural network, and a set of test
inputs, how can we gain insight into how those inputs interact
with different layers of the neural network? Furthermore, can we
characterize a given deep neural network based on its observed
behavior on different inputs? To the best of our knowledge, the
closest line of work that is attempting to answer such questions
is the work by Bau et al. referred to as “Network Dissection” [1]
and the work done by Olah, et al., "The Building Blocks of Inter-
pretability", Distill, 2018, [5]. Network Dissection is a framework

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’18 Deep Learning Day, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

which quantifies the interpretability of activations of hidden layers
of CNNs. It does so by evaluating the alignment between neural
activations in the hidden units and a set of semantic concepts. In
the work done on interpretability by Olah, et al., in "The Building
Blocks of Interpretability", their focus is to learn what each neuron
or a group of neurons detect based on feature visualization, and
then attempts Spatial Attribution and Channel Attribution in order
to explain how the network assembles these pieces to come at a
decision.

In this work, we propose an alternative novel research direction
that leverages factorization towards answering the above questions.
The key idea behind our work is the following: we jointly factorize
the raw inputs to the deep neural network and the outputs of
each layer, to the same low-dimensional space. Intuitively, such a
factorization will seek to identify commonalities in different parts of
the raw input and how those are reflected and processed within the
network. For instance, if we are dealing with a Deep Convolutional
Neural Network that is classifying handwritten digits, such a joint
latent factor will seek to identify different shapes that are common
in a variety of input classes (e.g., round shapes for “0”, “6”, and “9”)
and identify potential correlation on how different layers behave
collectively for such high-level latent shapes.

This paper reports very preliminary work in that direction. The
main contributions of this paper are:
• Novel problem formulation & modeling: We propose a
novel problem formulation on providing insights into a deep
neural network via a joint factorization model.
• Experimental observations: In three experimental case
studies, we train a Convolutional Neural Network in various
problematic ways, and our proposed formulation reveals a
persistent pattern that indicates a relation between the rank
of the joint factorization and the quality training. It is very
important to note that those patterns are revealed without
using labels for the test data.
• Visualization Tool: In addition to the link between the
factorization rank and the training quality, our proposed
method is able to provide visualizations that provide insights
on how different high-level shapes/parts in the input data
traverse the network.

2 PROPOSED METHOD
As mentioned in the introduction, given an already trained neural
network and a set of test data (without their labels), we seek to
factorize the input data and the output of each hidden layer for
the same data, into a joint low-dimensional space. A high-level
overview of our proposed modeling is shown in Figure 1.

In the following lines we provide details of our model and the
fitting algorithm.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


KDD’18 Deep Learning Day, August 2018, London, UK Uday Singh Saini and Evangelos E. Papalexakis

Figure 1: A high-level overview of our proposed modeling.

2.1 Model Details
Objective Function for Coupled Non-negative Factorization is as
follows:

J (P, F ,O) =
C−1∑
i=0
∥Di − PiFT ∥2F +

L−1∑
j=0
∥Aj −O jF

T ∥2F

∋ Pi ,O j , F , are element wise ≥ 0∀ i, j

(1)

, where C is the number of channels in an input image and L is
the number of layers of the neural network being analysed, P
and O are sets of matrices {Pi : ∀0 ≤ i ≤ C − 1 ∈ Z} and
{O j : ∀0 ≤ j ≤ L − 1 ∈ Z} respectively. Each Di is the set of
ith channel of the input images to the neural network, where each
column ofDi is a channel of the image in vectorized form, thus each
row of Di is a pixel or location in the original image. For Grayscale
images, the number of channels is 1, hence in such a scenario each
column of D0 represents an input image fed to the neural network.
Similarly, each Aj is the matrix of activations of the jth layer of
the neural network, where each column of Aj , for instance, the kth

column Aj [:,k], is the activation of layer j of the network for kth

input image, ith channel of which is represented by Di [:,k].
Each Pi is a matrix that stores the latent representation of each pixel
(for the ith channel) in it’s rows, eachO j is a matrix that stores the
latent representation of each neuron (or activation) of layer j in it’s
rows. Finally, F is a matrix that stores the latent representation of
each image fed to the neural network in it’s rows.
The first summation of the objective function is geared at finding
structures at pixel-level in the input images (for all channels in the
input image) to the network. The second summation term tries to
find patterns between neural activations for various inputs. The cou-
pling matrix F propagates information between the 2 summations
and our goal in doing so is to infer correlations or patterns between
clustering of input images and clustering of neurons (across all
layers),i.e., we aim to investigate whether the same cluster neurons
fire for similar (yet not identical) inputs. This approach is inspired
by broader goal of understanding the relation between the discrim-
inative power of neural networks vs their interpret-ability.
We solve equation (1) using the algorithm provided in [4] and the
update steps are as follows:-

F ← F ∗

∑
i
DT
i Pi +

∑
j
ATj O j∑

i
FPTi Pi +

∑
j
FOT

j O j

Pi ← Pi ∗
DiF

PiFT F
∀i

O j ← O j ∗
AjF

O jFT F
∀j

where ∗ stands for Hadamard (element wise) product1 and / stands
for element wise division 2. For numerical stability, a small constant
ϵ is added element-wise to the resultant matrix in the denominator.
We initialise F , Pi ’s,O j ’s randomly with component values between
0 and 1.

3 EXPERIMENTAL ANALYSIS
In this section we present our analysis of the neural network via
our coupled Non-negative Factorization framework. We proceed as
follows:
• Wefirst provide details about the experimental setup: Dataset
and the Neural Network.
• We describe how we setup our model for analysis of the
network.
• Next we try to study the behavior of the network on a fixed
test set with respect to variations in the amount of training
data via our model (1).
• We study similar behaviour as above, though this time with
we train the network only on a subset of categories.

3.1 Dataset and The Network
We used a raw MNIST Dataset3 which about 60,000 training images
and 6,000 test images. Each image is a single channel gray-scale
with a resolution of 28 by 28 pixels.
The network we analyze consists of 2 consecutive Convolutional
Layers with Maxpool and ReLU, followed by a fully connected
layer which feeds to a softmax output. For our study we focus
on analyzing the 2 convolutional layers. The first convolutional
layer has 1 input channel and yields 10 output channels with a
kernel size of 5 ∗ 5, which leads to a maxpool and subsequently to
a ReLU output. This output is fed to the second convolutional layer
which takes 10 input channels and outputs 20 channels, again with
a kernel size of 5∗5with a subsequent maxpool and ReLU. We refer
to the output of ReLU as the activations for that Layer, given the
input.

3.2 Setting up the model
In this section we describe how we construct the matrices Di ’s
and Aj ’s. For simplicity we consider only grayscale or single-color
channel input images. We take an input image that is fed to the
network, we vectorize it, and stack in a column of D0, Note that
the suffix is 0 since the input is a single channel image. Thus, when
we take the kth input image fed to the network, we vectorize it
1(A ∗ B)i, j = Ai, j × Bi, j
2(A/B)i, j = Ai, j ÷ Bi, j
3https://github.com/myleott/mnist_png

https://github.com/myleott/mnist_png


A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization LensKDD’18 Deep Learning Day, August 2018, London, UK

and set the kth column of D0, i.e. , D0[:,k] equal to the vectorized
form of that image. For this image, we vectorize the activations of
the jth layer, then we store the vectorized activations of the jth

layer for the kth image in Aj [:,k] ∀ j . We repeat this process for all
images in the test set. If the input image is of size m x n x C (single
channel), and the number of images in the test set is T , then Di
ϵRmn∗T ∀ 0 ≤ i ≤ C − 1. Let Nj be the number of neurons in layer
j of the network. Then Aj ϵR

Nj ∗T ∀ j.

3.3 Case Study I
In this section we describe the behavior of the network when we
provide it with increasing amounts of training data, thereby im-
proving it’s performance on our test set. In this evaluation exercise,
we train the network on dataset size varying from 25% to 100% in
increments of 25%. The accuracy on the test set for each sample is
is as follows - for 25% data: 83%. for 50% data: 89%, for 75% data:
93%, for 100% data: 95%. For each sample size, we only train over 1
epoch of the data to maintain uniformity. We store the test set and
the activations of the network over the test set in Di ’s and Aj ’s,
respectively, as explained earlier. We run the coupled non-negative
factorization model once we obtain Di ’s and Aj ’s for a particular
instance of the experimental exercise. The number of latent factors
in (1) is varied from 10 to 50 with increments of 10. The results are
tabulated in Figure 3. We observe that the outputs of the network
when trained on smaller datasets tends to be more compressible,
i.e., it requires a lower number of latent dimensions to explain itself,
as evinced by the lower RMSE for smaller datasets over all latent
dimension values. This understanding is further emboldened when
we look at top singular values of all Activation matrices,Aj ’s, of the
network under different training scenarios in Figure 4 and Figure 5.
Especially when we look at singular value plots given by Figure 5
of the deepest layer of the network, we observe a clear difference
between the singular value spectra in various training scenarios.
Usually the final layers of a network are usually Fully connected
layers followed by softmax or sigmoid non-linearities, and the goal
of the previous layers is to non linearly project the input vector into
a space where vectors belonging to various classes are easily sepa-
rable by applying a fully connected layer with softmax. It becomes
amply clear that a network with poorer performance transforms the
dataset into a much lower dimensional subspace when compared
with a well trained or a high-performance network. We would like
to emphasize that if this assertion is accurate and omnipresent, our
model doesn’t need test data annotations to investigate relative
performance of neural networks.

3.4 Case Study II
In this sectionwe describe the behavior of the networkwhenwe pro-
vide it with a subset of original classes of the training data. We train
the network on the following subsets of digits {0},{0,1,2,3,4},{5,6,7,8,9}
and {0,1,2,3,4,5,6,7,8,9}. The test set accuracies for the respective
cases are 9%,50%,47% and 93%. The number of training examples
for digits 0 through 4 were slightly more compared to the case
of digits 5 through 9, hence the slight variation in accuracy. For
each subset, we only train over 1 epoch of the relevant data to
maintain uniformity. As explained earlier, we store the test set and

the activations of the network over the test set in Di ’s and Aj ’s,
respectively and rest of the setup is same as in subsection 3.3. The
results of our model’s analysis on this training setup are shown in
Figure 6. We can clearly see that when the training data is small
and/or only a class based subset of the original training data, the
outputs of the network are much more compressible, as indicated
by the lower RMSE for respective cases. This observation is even
further consolidated by evidence from the singular value spectra
(Figure 7) of the final activation layer of the network when trained
with different subsets of classes.

3.5 Case Study III
In this study, we train the network in such a way that the input
training examples are not sent in an arbitrary order, but instead,
they are fed on a class by class basis. To give a hypothetical example,
initially all the images for Digit 1 are given as input to the network
for training, then all images for Digit 2, and so on. For the purpose
of this study, the first training class was the Digit 9. The accuracy of
the network on the test set was 9%, the network correctly recognizes
most of the 9′s . As before, this is done only for 1 epoch over the
dataset.
What makes this study interesting from our point of view is the fact
that though the network has been trained on the entire dataset, but
having been trained in such an orderly fashion, it is only good at
recognizing the first class it was trained on, it would be interesting
to see which neurons fire for other digits, and whether there are
any pattern (similarities or contrasts) between the firing of neurons
of a layer for various input digits.
During our experimentation with the MNIST dataset under this
setting visualizations for the final convolutional layer in one of the
test setup yielded the following results:-

(1) First, Considering the case on which the network performs
well, i.e., when the input is digit 9, the Neurons in the final
layer which were active when the input was digit 9 (See 2(a)),
were also active when the input images were digits 1 and 6
(See 2(b) and 2(c) respectively) . Indicating a commonality of
structure among these digits.

(2) Among the examples onwhich the network performed poorly.
We found that the neurons which fire for Digit 1 (See 2(b)),
also fire for digits 7 (See 2(f)) and digits 9 (See 2(a)). Further,
similar behavior was observed for digits 7 (See 2(f)) and 2 (
2(g))

(3) Turning our eye to the caseswhere the disjointness in the sets
of firing of neurons for various groups of digits. We observe
that the neurons which fire for 0 (See 2(d)) are different from
the neurons which fire for digits: 3 and 8 (See 2(e)).

Finally, in Figure 8 we show the latent factor heatmap for each
neuron, for both layers of our CNN, for a rank 10 factorization. Even
by a quick glance at the heatmaps, it becomes apparent that most
of the network is not properly utilized in the case where we do not
shuffle during training (which further corroborates our low-rank
observation). We reserve further investigation of the visualization
capabilities of our formulation for future work.



KDD’18 Deep Learning Day, August 2018, London, UK Uday Singh Saini and Evangelos E. Papalexakis

(a) 9 (b) 1 (c) 6 (d) 0 (e) 3 and 8 (f) 7 (g) 1 and 2

Figure 2: Latent images and their corresponding class(es) on the MNIST dataset

10 15 20 25 30 35 40 45 50
Number of Factors

0.20

0.25

0.30

0.35

0.40

Ro
ot
 M
ea
n 
Sq

ua
re
d 
Er
ro
r

25.0% of Dataset
50.0% of Dataset
75.0% of Dataset
100.0% of Dataset

RMSE vs Latent Factors for Fractions of Training Data

Figure 3: RMSE of Objective function as the Training Data
of the network is varied.

0 100 200 300 400 500 600 700
Factors

101

102

103

Si
ng

ul
ar
 V
al
ue

s

25.0% of Dataset
50.0% of Dataset
75.0% of Dataset
100.0% of Dataset

Singular Value plots for A[0]- semi log axis

Figure 4: Semi-log axis plot of top singular values of A0.

4 CONCLUSIONS
In this paper, we introduce a novel factorization-based method for
providing insights into a Deep Convolutional Neural Network. In
three experimental case studies, we identify a prominent pattern
that links the rank of the factorization, roughly a measure of the
degree of “interestingness” in a high-dimensional dataset, and the

0 20 40 60 80 100 120 140 160
Factors

101

102

103

Si
ng

ul
ar
 V
al
ue

s

25.0% of Dataset
50.0% of Dataset
75.0% of Dataset
100.0% of Dataset

Singular Value plots for A[1]- semi log axis

Figure 5: Semi-log axis plot of top singular values of A1.

10 15 20 25 30 35 40 45 50
Number of Factors

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ro
ot
 M
ea
n 
Sq

ua
re
d 
Er
ro
r

Digits : [0,1,2,3,4,5,6,7,8,9]
Digits : [0,1,2,3,4]
Digits : [0]
Digits : [5,6,7,8,9]

RMSE vs Latent Factors for Classes of Training Data

Figure 6: RMSE of Objective function as the Subset of Train-
ing Classes is varied.

quality with which the network was trained: the poorer the train-
ing, the lower the rank. We intent to further investigate whether
this observation holds in a wide variety of cases, and what other
implications that would entail. Finally, we provide a visualization
tool that helps shed light into how different cohesive high-level
patterns in the input data traverse the hidden layers of the network.



A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization LensKDD’18 Deep Learning Day, August 2018, London, UK

0 10 20 30 40 50 60 70 80
Factors

101

102

103

Si
ng

ul
ar
 V
al
ue

s

Digits : [0,1,2,3,4,5,6,7,8,9]
Digits : [0,1,2,3,4]
Digits : [0]
Digits : [5,6,7,8,9]

Top 25% Singular Value plots for A[1]- semi log axis

Figure 7: Semi-log axis plot of top singular values ofA1 when
the neural network is trained on various subsets of classes

(a) Layer 1 (b) Layer 2

Figure 8: Heatmap of the neurons of each layer with re-
spect to their participation in each latent factor for a 10-
component factorization, when the CNN was trained with-
out shuffling. We observe that the network is heavily un-
derutilized, since the latent patterns of neurons are limited,
further corroborating our low-rank observation.

5 ACKNOWLEDGEMENTS
The authors would like to thank NVIDIA for a GPU grant which
facilitated computations in this work. We would also like to thank
Tushar Nagarajan for helpful discussions and inputs during the
course of this work.

REFERENCES
[1] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.

Network Dissection: Quantifying Interpretability of Deep Visual Representations.
In Computer Vision and Pattern Recognition.

[2] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the International Conference on Computer Vision (ICCV).

[3] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian QWeinberger. 2017.
Densely connected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

[4] Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for Non-negative Matrix
Factorization. In Advances in Neural Information Processing Systems 13, T. K. Leen,
T. G. Dietterich, and V. Tresp (Eds.). MIT Press, 556–562. http://papers.nips.cc/
paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

[5] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schu-
bert, Katherine Ye, and Alexander Mordvintsev. 2018. The Building Blocks
of Interpretability. Distill (2018). DOI:http://dx.doi.org/10.23915/distill.00010
https://distill.pub/2018/building-blocks.

http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://dx.doi.org/10.23915/distill.00010

	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Model Details

	3 Experimental Analysis
	3.1 Dataset and The Network
	3.2 Setting up the model 
	3.3 Case Study I
	3.4 Case Study II
	3.5 Case Study III

	4 Conclusions
	5 Acknowledgements
	References

