
SPARTan: Scalable PARAFAC2 for Large & Sparse Data
Ioakeim Perros

Georgia Institute of Technology
perros@gatech.edu

Evangelos E. Papalexakis
University of California, Riverside

epapalex@cs.ucr.edu

Fei Wang
Weill Cornell Medicine
feiwang03@gmail.com

Richard Vuduc
Georgia Institute of Technology

richie@cc.gatech.edu

Elizabeth Searles
Children’s Healthcare Of Atlanta

elizabeth.searles@choa.org

Michael Thompson
Children’s Healthcare Of Atlanta
michael.thompson@choa.org

Jimeng Sun
Georgia Institute of Technology

jsun@cc.gatech.edu

ABSTRACT
In exploratory tensor mining, a common problem is how to analyze
a set of variables across a set of subjects whose observations do
not align naturally. For example, when modeling medical features
across a set of patients, the number and duration of treatments
may vary widely in time, meaning there is no meaningful way to
align their clinical records across time points for analysis purposes.
To handle such data, the state-of-the-art tensor model is the so-
called PARAFAC2, which yields interpretable and robust output
and can naturally handle sparse data. However, its main limitation
up to now has been the lack of efficient algorithms that can handle
large-scale datasets.

In this work, we fill this gap by developing a scalable method
to compute the PARAFAC2 decomposition of large and sparse
datasets, called SPARTan. Our method exploits special structure
within PARAFAC2, leading to a novel algorithmic reformulation
that is both faster (in absolute time) and more memory-efficient
than prior work. We evaluate SPARTan on both synthetic and real
datasets, showing 22× performance gains over the best previous
implementation and also handling larger problem instances for
which the baseline fails. Furthermore, we are able to apply SPARTan
to the mining of temporally-evolving phenotypes on data taken
from real and medically complex pediatric patients. The clinical
meaningfulness of the phenotypes identified in this process, as well
as their temporal evolution over time for several patients, have
been endorsed by clinical experts.

KEYWORDS
Sparse Tensor Factorization; PARAFAC2; Phenotyping; Unsuper-
vised learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00
https://doi.org/10.1145/3097983.3098014

ACM Reference format:
Ioakeim Perros, Evangelos E. Papalexakis, Fei Wang, Richard Vuduc, Eliza-
beth Searles, Michael Thompson, and Jimeng Sun. 2017. SPARTan: Scalable
PARAFAC2 for Large & Sparse Data. In Proceedings of KDD ’17, Halifax, NS,
Canada, August 13-17, 2017, 10 pages.
https://doi.org/10.1145/3097983.3098014

1 INTRODUCTION
This paper concerns tensor-based analysis and mining of multi-
modal data where observations are difficult or impossible to align
naturally along one of its modes. A concrete example of such data
is electronic health records (EHR), our primary motivating appli-
cation. An EHR dataset contains longitudinal patient information,
represented as an event sequence of multiple modalities such as
diagnoses, medications, procedures, and lab results. An important
characteristic of such event sequences is that there is no simple
way to align observations in time across patients. For instance, dif-
ferent patients may have varying length records between the first
admission and the most recent hospital discharge; or, two patients
whose records’ have the same length may still not have a sensi-
ble chronological alignment as disease stages and patient progress
vary.

For tensor methods, such data poses a significant challenge. Con-
sider the most popular tensor analysis method in data mining, the
canonical polyadic (CP) decomposition (also known as PARAFAC
or CANDECOMP) [10, 16, 20]. A dataset with three modes might be
stored as an I×J×K tensorX, which CP then decomposes into a sum
of multi-way outer (rank-one) products, X ≈ ∑R

r=1 ur ◦ vr ◦wr ,
where ur , vr ,wr are column vectors of size I , J ,K , respectively,
that effectively represents latent data concepts. Its popularity owes
to its intuitive output structure and uniqueness property that makes
the model reliable to interpret [25, 26, 29, 31, 32], as well as the
existence of scalable algorithms and software [4, 5, 13]. However, to
make, say, the irregular time points in EHR one of the input tensor
modes would require finding some way to align time. This fact is
an inherent limitation of applying the CP model: any preprocessing
to aggregate across time may lose temporal patterns [21, 22, 41],
while more sophisticated temporal feature extraction methods typ-
ically need continuous and sufficiently long temporal measures to
work [36]. Other proposed methods specific to healthcare applica-
tions may give some good results [39, 40, 42] but lack the uniqueness

https://doi.org/10.1145/3097983.3098014
https://doi.org/10.1145/3097983.3098014

Target Rank 10 40
#nnz(Millions) 63 125 250 500 63 125 250 500

SPARTan 7.4 8.9 11.5 15.4 14 18.4 61 114
Sparse PARAFAC2 24.4 60.1 72.3 194.5 275.2 408.1 OoM OoM

Table 1: Running time comparison: Time inminutes of one iteration for increasingly larger datasets (63m to 500m) and fixed target rank (two
cases considered: R = {10, 40}). Themode sizes for the datasets constructed are: 1Mil. subjects, 5K variables and amaximumof 100 observations
per subject. OoM (Out of Memory) denotes that the execution failed due to the excessive amount of memory requested. Experiments are
conducted on a server with 1TB of RAM.

guarantee; thus, it becomes harder to reliably extract the actual
latent concepts as an equivalent arbitrary rotation of them will
provide the same fit. All of these weaknesses apply in the EHR
scenario outlined above.

In fact, the type of data in the motivating example are quite
general: consider that we have K subjects, for which we record
J variables and we permit each k-th subject to have Ik observa-
tions, which are not necessarily comparable among the different
subjects. For this type of data, Harshman proposed the PARAFAC2
model [17]. It is a more flexible version of CP: while CP applies the
same factors across a collection of matrices, PARAFAC2 instead
applies the same factor along one mode and allows the other factor
matrix to vary [25]. At the same time, it preserves the desirable
properties of CP, such as uniqueness [18, 24, 35, 37]. As shown in
Figure 1, PARAFAC2 approximates each one of the inputmatrices as:
Xk ≈ Uk Sk VT , where Uk is of size Ik ×R, Sk is a diagonal R-by-R,
V is of size J × R and R is the target rank of the decomposition.

Despite its applicability, the lack of efficient PARAFAC2 decom-
position algorithms has been cited as a reason for its limited popu-
larity [6, 12]. Overall, PARAFAC2 has been mostly used for dense
data (e.g., [24]) or sparse data with a small number of subjects [12].
To our knowledge, no work has assessed PARAFAC2 for large-scale
sparse data, as well as the challenges arising by doing so.

In this paper, we propose SPARTan (abbreviated from Scalable
PARafac Two) to fill this gap, with a focus on achieving scalability
on large and sparse datasets. Our methodological advance is a new
algorithm for scaling up the core computational kernel arising in
the PARAFAC2 fitting algorithm. SPARTan achieves the best of both
worlds in terms of speed and memory efficiency: a) it is faster than
a highly-optimized baseline in all cases considered for both real
(Figures 5, 6, 7) and synthetic (Table 1) datasets, achieving up to 22×
performance gain; b) at the same time, SPARTan is more scalable, in
that it can execute in reasonable time for large problem instances
when the baseline fails due to excessive memory consumption
(Table 1). We summarize our contributions as:
• Scalable PARAFAC2 method: We propose SPARTan, a scal-
able algorithm fitting the PARAFAC2model on large and sparse
data.

XkIk

J
⇡ Ik

R
Uk VTR

J

Sk

Figure 1: Illustration of the PARAFAC2 model.

• Evaluation on various datasets: We evaluate the scalability
of our approach using datasets originating from two different
application domains, namely a longitudinal EHR and a time-
evolving movie ratings’ dataset, which is also publicly available.
Additionally, we perform synthetic data experiments.
• Real-world case study: We performed a case study of apply-
ing SPARTan on temporal phenotyping over medically complex
pediatric patients in collaboration with Children’s Healthcare
of Atlanta (CHOA). The phenotypes and temporal trends dis-
covered were endorsed by a clinical expert from CHOA.

To promote reproducibility, our code is open-sourced and publicly
available at: https://github.com/kperros/SPARTan.

2 BACKGROUND
Next we describe the necessary terminology and operations regard-
ing tensors. Then, we provide an overview of the CP model and
relevant fitting algorithm. In Table 2, we summarize the notations
used throughout the paper.

2.1 Tensors and Tensor Operations
The order of a tensor denotes the number of its dimensions, also
known as ways or modes (e.g., matrices are 2-order tensors). A
fiber is a vector extracted from a tensor by fixing all modes but one.
For example, a matrix column is a mode-1 fiber. A slice is a matrix
extracted from a tensor by fixing all modes but two. In particular,
the X(:, :,k) slices of a third-order tensor X are called the frontal
ones and we succinctly denote them as Xk [25]. Matricization, also
called reshaping or unfolding, logically reorganizes tensors into
other forms without changing the values themselves. The mode-n
matricization of a N -order tensor X ∈ RI1×I2×···×IN is denoted by

Symbol Definition
X, X, x, x Tensor, matrix, vector, scalar

X† Moore-Penrose pseudoinverse
X(:, i) Spans the entire i-th column of X (same for tensors)
X(i, :) Spans the entire i-th row of X (same for tensors)
diaд(x) Diagonal matrix with vector x on the diagonal
diaд(X) Extract diagonal of matrix X

Xk shorthand for X(:, :, k) (k-th frontal slice of tensor X)
{Xk } the collection of Xk matrices, for all valid k
X(n) mode-n matricization of tensor X
◦ Outer product
⊗ Kronecker product
⊙ Khatri-Rao product
∗ Hadamard (element-wise) product
Table 2: Notations used throughout the paper.

https://github.com/kperros/SPARTan

X(n) ∈ RIn×I1I2 ...In−1In+1 ...IN and arranges the mode-n fibers of
the tensor as columns of the resulting matrix.

2.2 CP Decomposition
The CP decomposition [10, 16, 20] of a third-order tensor X ∈
RI×J×K is its approximation by a sum of three-way outer products:

X ≈
R∑
r=1

ur ◦ vr ◦wr (1)

where ur ∈ RI , vr ∈ RJ and wr ∈ RK are column vectors. If we
assemble the column vectors ur , vr ,wr as: U = [u1 u2 . . . uR] ∈
RI×R ,V = [v1 v2 . . . vR] ∈ RJ×R ,W = [w1 w2 . . . wR] ∈ RK×R ,
then U,V,W are called the factor matrices. Interpretation of CP is
very intuitive: we consider that the input tensor can be summa-
rized as R latent concepts. Then, for each r -th concept, the vectors
(ur , vr ,wr) are considered as soft-clustering membership indica-
tors, for the corresponding I, J and K elements of each mode. An
equivalent formulation of Relation (1) w.r.t. the frontal slices Xk of
the input tensor X is [7]:

Xk ≈ U Sk VT (2)

where k = 1, 2, . . . ,K and S ∈ RR×R×K is an auxiliary tensor. Each
frontal slice Sk of S contains the row vector W(k, :) along its diago-
nal: Sk = diaд(W(k, :)). Relation (2) provides another viewpoint of
interpreting the CP model, through its correspondence to the Sin-
gular Value Decomposition (SVD): each slice Xk is decomposed to a
set of factor matrices U,V (similar to the singular vectors) which are
common for all the slices, and a diagonal middle matrix (similar to
the singular values) which varies for each k-th slice. Note, however,
that no orthogonality constraints are imposed on U,V of the CP
model, as in the SVD [12].
Uniqueness. A fundamental property of CP is uniqueness [26, 31].
The issue with non-uniqueness can be exemplified via matrix fac-
torization as follows [25, 29]: If a matrix X is approximated by the
product of ABT , then it can also be approximated with the same
error by AQQ−1BT = ÃB̃T, for any invertible Q. Thus, we can
easily construct two completely different sets of rank-one factors
that sum to the original matrix. Inevitably, this hurts interpretabil-
ity, since we cannot know whether our solution is an arbitrarily
rotated version of the actual latent factors. In contrast to matrix
factorization or Tucker decomposition [25], Kruskal [26] proved
that CP is unique, under the condition: kU + kV + kW ≥ 2R + 2,
where kU is the k-rank of U, defined as the maximum value k such
that any k columns are linearly independent. The only exception is
related to elementary indeterminacies of scaling and permutation
of the component vectors [25, 32]. In sum, the CP decomposition is
pursuing the true underlying latent information of the input tensor
and provides reliable interpretation for unsupervised approaches.
Fitting the CPmodel. Perhaps the most popular algorithm for fit-
ting the CP model is the CP-Alternating Least Squares (CP-ALS) [10,
16], listed in Algorithm 1. The main idea is to solve for one factor
matrix at a time, by fixing the others. In that way, each subproblem
is reduced to a linear least-squares problem. In case the input tensor
contains non-negative values, a non-negative least-squares solver
(e.g., [9]) can be used instead of an unconstrained one, to further
improve the factors’ interpretability [6].

Due to the ever increasing need for CP decompositions in data
mining, the parallel CP-ALS for sparse tensors has been extensively
studied in the recent literature for both single-node and distributed
settings (e.g., [4, 11, 14, 23, 28, 34]). A pioneering work in addressing
scalability issues for sparse tensors was provided by Bader and
Kolda [4] 1. The authors identified and scaled up the algorithm’s
bottleneck, which is the materialization of the Matricized-Tensor-
Times-Khatri-Rao-Product (MTTKRP). For example, in Algorithm 1,
the MTTKRP corresponds to the computation of X(1)(W⊙V)when
solving for U. For large and sparse tensors, a naive construction of
the MTTKRP requires huge storage and computational cost and
has to be avoided.

Algorithm 1 CP-ALS

Require: X ∈ RI×J×K and target rank R
Ensure: λ ∈ RR, U ∈ RI×R, V ∈ RJ×R, W ∈ RK×R
1: Initialize V, W
2: while convergence criterion is not met do
3: U← X(1)(W ⊙ V)(WT W ∗ VT V)†
4: Normalize columns of U
5: V← X(2)(W ⊙ U)(WT W ∗ UT U)†
6: Normalize columns of V
7: W← X(3)(V ⊙ U)(VT V ∗ UT U)†
8: Normalize columns of W and store norm in λ
9: end while

3 PARAFAC2 OVERVIEW & CHALLENGES
3.1 Model
As we introduced in Section 1, the PARAFAC2 model [17] can
successfully deal with an incomparable mode of each slice Xk [24].
It does so, by introducing a set ofUk matrices replacing theUmatrix
of the CP model in Relation (2). Thus, each slice Xk is decomposed
as shown in Figure 1:

Xk ≈ Uk Sk VT (3)
where k = 1, . . . ,K ,Uk ∈ RIk×R , Sk ∈ RR×R is diagonal and
V ∈ RJ×R . To preserve uniqueness, Harshman [17] imposed the con-
straint that the cross product UT

k Uk is invariant regardless which
subject k is involved [12, 25]. In that way, the CP model’s invariance
of the factor Uk itself (or U given its invariance to k), is relaxed [2].
For the above constraint to hold, each Uk factor is decomposed as:

Uk = QkH (4)
where Qk is of size Ik × R and has orthonormal columns, and H is
an R×R matrix, which does not vary by k [25]. Then, the constraint
that UT

k Uk is constant over k is implicitly enforced, as follows:
UT
k Uk = HT QT

k QkH = HT H = Φ.
There have been several results regarding the uniqueness prop-

erty of PARAFAC2 [18, 24, 37]. The most relevant [18] towards
our large-scale data scenario (i.e., the number of K subjects can
easily reach the order of hundreds of thousands) is that a rank-R
PARAFAC2 model is unique if Φ and V have rank R, Φ has no zero
entries and the number ofK subjects is at least: R (R+1) (R+2) (R+
3) / 24 [19]. Note that this bound on the number of K subjects is
1The contributions of [4], among others, are summarized as the Tensor Toolbox [5],
which is widely acclaimed as the state-of-the-art package for single-node sparse tensor
operations and algorithms.

sufficient but not necessary to achieve uniqueness; it is conjectured
(as evaluated through simulation studies) that PARAFAC2 provides
unique solutions as long as K ≥ 4 [19, 24, 35].

3.2 Classical Algorithm for PARAFAC2
Below, we overview the classical algorithm for fitting PARAFAC2,
proposed by Kiers et al. [24]. Their original algorithm expects dense
data as input. Its objective function is as follows:

min
{Uk }, {Sk },V

K∑
k=1
| |Xk − UkSkVT | |2F

subject to: Uk = QkH, QT
k Qk = I and Sk to be diagonal. Al-

gorithm 2 follows an Alternating Least Squares (ALS) approach,
divided in two distinct steps: first (lines 3-6), the set of column-
orthonormal matrices {Qk } is computed by fixing H,V, {Sk }. This
step can be derived by examining the pursuit of each Qk as an
individual Orthogonal Procrustes Problem [15] of the form:

min
Qk
| |Xk − QkHSkVT | |2F (5)

subject to QT
k Qk = I. Given the SVD of HSkVT XT

k as PkΣkZk , the
minimum of objective (5) over column-orthonormal Qk is given by
Qk = ZkPTk [15, 24].

Second, after solving for and fixing {Qk }, we find a solution for
the rest of the factors as:

min
H, {Sk },V

K∑
k=1
| |QT

k Xk − HSkVT | |2F (6)

where Sk is diagonal. Note the equivalence of the above objective
with the CP “slice-wise” formulation of Relation (2). This equiv-
alence implies that minimizing the objective (6) is achieved by
executing the CP decomposition on a tensor Y ∈ RR×J×K with
frontal slices Yk = QT

k Xk (lines 7-10). In order to avoid executing
all the costly CP iterations, Kiers et al. [24] propose to run a single
CP-ALS iteration, since this suffices to decrease the objective.

The PARAFAC2 model can be extended so that non-negative
constraints are imposed on {Sk },V factors [7]. This is a property
inherited by the CP-ALS iteration, where we can constrain the
factors V and W to be non-negative, as discussed in Section 2.2.
Note that constraining the {Uk } factors to be non-negative as well
is not as simple, and a naive approach would violate the model
properties [8].

3.3 Challenges of PARAFAC2 on sparse data
Next, we summarize a set of crucial observations regarding the
computational challenges, when executing Algorithm 2 on large,
sparse data:
Bottleneck of Algorithm 2. Regarding the 1st step (lines 3-6), in
practice for sparse Xk , each one of the K sub-problems scales as
O(min(RI2,R2I)), due to the SVD involved [38], where I is an upper
bound for Ik . Note that this computation can be trivially parallelized
for all K subjects. On the other hand, the 2nd step (lines 7-10) is
dominated by the MTTKRP computation (which as we discussed
in Section 2 is the bottleneck of sparse CP-ALS). Thus, it scales
as 3R nnz(Y) [34], using state-of-the-art sparse tensor libraries
for single-node [4]. Given that none of the input matrices Xk is

Algorithm 2 PARAFAC2-ALS [24]

Require: {Xk ∈ RIk ×J } for k = 1, . . . , K and target rank R
Ensure: {Uk ∈ RIk ×R }, {Sk ∈ RR×R } for k = 1, . . . , K, V ∈ RJ×R
1: Initialize H ∈ RR×R, V, {Sk } for k = 1, . . . , K
2: while convergence criterion is not met do
3: for k = 1, . . . , K do
4: [Pk , Σk , Zk] ← truncated SVD of HSkVT XT

k at rank R
5: Qk ← ZkPTk
6: end for
7: for k=1, . . . , K do
8: Yk ← QT

k Xk // construct slice Yk of tensor Y
9: end for
10: Run a single iteration of CP-ALS on Y to compute H, V, W
11: for k = 1, . . . , K do
12: Sk ← diaд(W(k, :))
13: end for
14: end while
15: for k = 1, . . . , K do
16: Uk ← QkH // Assemble Uk
17: end for

completely zero, then: 3R nnz(Y) ≥ 3KR2. As a result, this step
becomes the bottleneck of Algorithm 2 for large and sparse “irreg-
ular” tensors, since it cannot be parallelized w.r.t. the K subjects, as
trivially happens with the 1st one.
Imbalance of mode sizes of Y. The size of the intermediate ten-
sor Y formed is R × J × K . For large-scale data, we expect that
R << K , J since R corresponds to the target rank of the overall
PARAFAC2 decomposition. Note that this property of “size imbal-
ance” may not hold for a general large tensor, thus generic CP-ALS
solvers (e.g., [4]) cannot exploit it.
Structured sparsity of {Xk }. First, we observe that even if the
input slices {Xk ∈ RIk×J } are very sparse, all their Ik rows will
contain at least one non-zero element. If this is not the case, we can
simply filter the zero ones, without affecting the result. However,
this does not hold for the J columns of each Xk , which have to be
aligned across all K subjects. A direct consequence of that in real
datasets is that very few variables (relative to their total number)
are typically recorded for each subject. For example, in the EHR
data use case introduced in Section 1, very few medical features
are recorded for each patient.

Driven by this observation, we are motivated to computationally
exploit any column sparsity (i.e., cases where many columns will
be completely zero) of each one of the input matrices Xk .

4 THE SPARTAN APPROACH
4.1 Overview
Motivated by the challenges presented in Section 3, we propose
a specialized version of the Matricized-Tensor-Times-Khatri-Rao-
Product (MTTKRP) kernel, specifically targeting the intermediate
tensor Y ∈ RR×J×K formed within the PARAFAC2-ALS algorithm.
We first provide an overview of the properties that our approach
exhibits:
• It is fully parallelizable w.r.t. theK subjects. This property is crucial
towards scaling up for large-scale “irregular” tensors.
• It exploits the structured sparsity of the input frontal slices {Xk }.
This is possible due to the observation that the k-th frontal slice
Yk = QT

k Xk ofY follows precisely the column sparsity pattern of
Xk . In particular, if ck is the number of columns of Xk containing

Yk

R

R

J

V

·

!

W(k, :)

⇤
R

R

R R

R

YkT
(k)

Figure 2: SPARTan computations for the MTTKRP w.r.t. the 1st mode. For
eachk-th partial result of Equation (8), we only use the rows ofV factormatrix
corresponding to the non-zero columns of Yk . For each of the R rows of the
resulting matrix, we compute the Hadamard product with W(k, :), which is
the k-th row of the factor matrix W. The described computations fulfill all of
the desirable properties presented in Section 4.1.

at least one non-zero element, then Yk will contain R ck non-
zero elements located in the positions of the non-zero columns
of Xk . Exploiting structured sparsity is indispensable towards
minimizing intermediate data and computations to the absolutely
necessary ones.
• As a by-product of the above, SPARTan avoids unnecessary data
re-organization (tensor reshaping/permutations), since all opera-
tions are formulated w.r.t. the frontal slicesYk of tensorY. In fact,
our approach never forms the tensor Y explicitly and directly
utilizes the available collection of matrices {Yk } instead.

4.2 Methodology
In the following, we describe the design of our MTTKRP kernel for
each one of the tensor modes. We use the notation M(i) to denote
the MTTKRP corresponding to the i-th tensor mode. Note that our
factor matrices are: H ∈ RR×R ,V ∈ RJ×R and W ∈ RK×R as in
Line 10 of Algorithm 2.
Mode-1 MTTKRP. First, we re-visit the MTTKRP equation:

M(1) = Y(1) (W ⊙ V) , (7)

where M(1) ∈ RR×R ,Y(1) ∈ RR×K J . In order to attempt to paral-
lelize the above computation w.r.t. the K subjects, we define the
matrix T(k) ∈ RJ×R to denote the k-th vertical block of the Khatri-
Rao Product W ⊙ V ∈ RK J×R :

W ⊙ V =


T(1)

T(2)

.

.

.

T(K)


We then remark that Y(1) (i.e., mode-1 matricization of Y) consists
of an horizontal concatenation of the tensor’s frontal slicesYk . Thus,
we exploit the fact that the matrix multiplication in Equation (7)
can be expressed as the sum of outer products or more generally,
as a sum of block-by-block matrix multiplications:

M(1) =
K∑
k=1

Yk T(k) (8)

Through Equation (8), the computation can be easily parallelized
over K independent sub-problems and then sum the partial results.
This directly utilizes the frontal slices Yk without further tensor
organization. However, it constructs the whole Khatri-Rao Product
(in the form of blocks T(k)). In order to avoid that, we first state an

J

R

R

·

YT
k

!

H W(k, :)

R ⇤

YT
k T(k)

R

R

Figure 3: SPARTan computations for the MTTKRP w.r.t. the 2nd mode. For
each k-th partial result of Equation (12), we perform the vector-matrix mul-
tiplications for each non-zero row of YTk . Then, for each intermediate vector,
the Hadamard product with W(k, :) is computed. Finally, we distribute the
vectors to their corresponding positions in YTk T(k). As in the case w.r.t. the
1st mode, we limit computations to the necessary ones corresponding to the
non-zero columns of Yk and all the properties presented in Section 4.1 are
preserved.

expression for each i-th row of T(k), which is a direct consequence
of the Khatri-Rao Product definition:

T(k)(i, :) = V(i, :) ∗W(k, :), (9)

where ∗ stands for the Hadamard (element-wise) product. Then, we
express the j-th row of each partial result of Equation (8) as follows:

[Yk T(k)]j, : = Yk (j, :) T(k)

Eq .(9)
=

∑
i

Yk (j, i) ∗ (V(i, :) ∗W(k, :))

(a)
=

(∑
i

Yk (j, i) ∗ V(i, :)
)
∗W(k, :)

(b)
= (Yk (j, :) V) ∗W(k, :), (10)

where (a) stems from the associative property of the Hadamard
product and the fact that W(k, :) is independent of the summation
and (b) from the calculation of matrix multiplication as a sum of
outer-products (in particular, we encounter the sub-case of vector-
matrix product).

Equation (10) suggests an efficient way to compute the partial
results of Equation (8), which we illustrate in Figure 2. First, we
compute the matrix product YkV and for each row of the interme-
diate result of size R × R, we compute the Hadamard product with
W(k, :). Note that, as we discussed in Section 3, Yk is expected to be
column-sparse in practice, thus multiplying by V uses only those
rows of V corresponding to the non-zero columns of Yk . Thus, we
avoid the redundant and expensive computation of the full Khatri-
Rao Product. Overall, the methodology described above enjoys all
of the properties described in Section 4.1.
Mode-2 MTTKRP. The methodology followed for the Mode-2
case is similar to the one described for the 1st case. We state the
corresponding MTTKRP equation:

M(2) = Y(2) (W ⊙ H) (11)

where M(2) ∈ RJ×R ,Y(2) ∈ RJ×RK . The main remark is that Y(2)
consists of an horizontal concatenation of the transposed frontal
slices {Yk } of the intermediate tensorY. Thus, if we denote as T(k)

the k-th vertical block of the Khatri-Rao Product W ⊙ H, we can

Yk

R

R

J

V

·

!
R

R

H

R

Column-wise
Inner Products R

M(3)(k, :)

Figure 4: SPARTan computations for the MTTKRP w.r.t. the 3rd mode. We
compute each row of the result M(3)(k, :) independently of others, enabling
parallelization w.r.t. the K subjects. As in mode-1, mode-2 cases, we exploit
the column sparsity of Yk . In this case, we also leverage that H is a small
R-by-R matrix in practice (due to the “size imbalance” of the intermediate
tensor Y). Thus, it is efficient to delay any computations on H until the R-
by-R product of YkV is formed, and then take column-wise inner products
between those two matrices. The described operations fulfill all the proper-
ties outlined in Section 4.1.

formulate the problem as:

M(2) =
K∑
k=1

YTk T(k) (12)

Given the above, it is easy to extend Equation (10) for this case, so
as to compute a single row of each partial result of Equation (12):

[YTk T(k)]j, : =
(
Yk (:, j)T H

)
∗W(k, :) (13)

The corresponding operations are illustrated in Figure 3. A crucial
remark is that we can focus on computing the relevant intermediate
results only for the non-zero rows of Yk

T , since the rest of the rows
of the result Yk

T T(k) will be zero. In sum, we again avoid redundant
computations of the full Khatri-Rao Product and preserve all of the
properties described in Section 4.1.
Mode-3MTTKRP. First, we state the equation regarding theMode-
3 case:

M(3) = Y(3) (V ⊙ H) (14)

where M(3) ∈ RK×R and Y(3) ∈ RK×JR . Note that in this case,
we are pursuing the MTTKRP of the mode corresponding to the
K subjects. Thus, an entirely different approach than the Mode-1,
Mode-2 cases is needed so that we construct efficient independent
sub-problems for each one of them. In particular, we need to design
each k-th subproblem so that it computes the k-th row of M(3). In
addition, we want to operate only on {Yk } without forming and re-
shaping the tensorY, as well as to exploit the frontal slices’ sparsity.
To tackle the challenges above, we leverage the fact that [14]:

M(3)(:, r) =


H(:, r)T Y1 V(:, r)

.

.

.

H(:, r)T YK V(:, r)

 (15)

Then, we remark that in order to retrieve a certain element of the
matrix M(3), we have:

M(3)(k, r) = H(:, r)T Yk V(:, r)

= H(:, r)T [YkV](:, r)
The last line above reflects the inner product between the corre-
sponding r -th columns of H and [Yk V], respectively. Thus, in order
to retrieve a row M(k, :), we can simply operate as:

M(3)(k, :) = dot (H,YkV) (16)

Dataset K J max (Ik) #nnz
CHOA 464,900 1,328 166 12.3 Mil.

MovieLens 25,249 26,096 19 8.9 Mil.
Table 3: Summary statistics for the real datasets of our experiments. K is
the number of subjects, J is the number of variables, Ik is the number of
observations for the k-th subject and #nnz corresponds to the total number
of non-zeros.

where the dot() function extracts the inner product of the corre-
sponding columns of its two matrix arguments. We illustrate this
operation in Figure 4. Since H is a small R-by-R matrix (due to
the tensor’s “size imbalance”), it is very efficient to delay any com-
putations on H until the R-by-R intermediate matrix is formed as
a product of Yk V. Then, we simply take the column-wise inner
products between those two R-by-R matrices. In that way, all the
desirable properties we mentioned in Section 4.1 are also fulfilled.

In Algorithm 3, we list the pseudocode corresponding to the
methodology proposed. Note that in lines 8,16, we can accumulate
over the partial results in parallel, since the summation is indepen-
dent of the iteration order.

Algorithm 3 MTTKRP for SPARTan

Require: {Yk ∈ RR×J } for k = 1, . . . , K , H ∈ RR×R, V ∈ RJ×R, W ∈
RK×R , the target rank R and the mode n for which we are computing
the MTTKRP

Ensure: M(n)

1: Initialize M(n) with zeros
2: if n == 1 then
3: for k = 1, . . . , K do
4: temp ← YkV
5: for r = 1, . . . , R do
6: temp(r, :) ← temp(r, :) ∗W(k, :)
7: end for
8: M(1) ← M(1) + temp // sum in parallel ∀k = 1, . . . , K
9: end for
10: else if n == 2 then
11: for k = 1, . . . , K do
12: Initialize temp ∈ RJ×R with zeros
13: for each j-th non-zero column of Yk do
14: temp(j, :) ←

(
Yk (:, j)T H

)
∗W(k, :)

15: end for
16: M(2) ← M(2) + temp // sum in parallel ∀k = 1, . . . , K
17: end for
18: else if n == 3 then
19: for k = 1, . . . , K do
20: M(3)(k, :) ← dot (H, YkV) // in parallel ∀k = 1, . . . , K
21: end for
22: end if

5 EXPERIMENTS
5.1 Setup
Real Data Description. Table 3 provides summary statistics re-
garding the real datasets used.

TheCHOA (ChildrenHealthcare of Atlanta) dataset corresponds
to EHRs of pediatric patients with at least 2 hospital visits. For each
patient, we utilize the diagnostic codes and medication categories
from their records, as well as the provided age of the patient (in

days) at the visit time. The available International Classification of
Diseases (ICD9) [33] codes are summarized to Clinical Classification
Software (CCS) [1] categories, which is a standard step in healthcare
analysis improving interpretability and clinical meaningfulness. We
aggregate the time mode by week and all the medical events over
each week are considered as a single observation. The resulting
data are of 464,900 subjects by 1,328 features by maximum 166
observations with 12.3m non-zeros.

MovieLens 20M is another real dataset we used, which is pub-
licly available 2. We are motivated to use this dataset, because of
the importance of the evolution of user preferences over time, as
highlighted in recent literature [27]. For this dataset, we consider
that each year of ratings corresponds to a certain observation; thus,
for each user, we have a year-by-movie matrix to describe her rat-
ing activity. We consider only the users having at least 2 years of
ratings.
Implementation details. We used MatlabR2015b for our imple-
mentations, along with functionalities for sparse tensors from the
Tensor Toolbox [5] and the Non-Negative Least Squares (NNLS)
approach [9] from the N-way Toolbox [3] 3. In both the SPARTan
and the baseline implementations, we adjust the CP-ALS iteration
arising in the PARAFAC2-ALS, so that non-negative constraints are
imposed on the {Sk },V factors, as discussed in Section 3.2.
The baseline method corresponds to the standard fitting algo-
rithm for the PARAFAC2 model [24] adjusted for sparse tensors
as in [12]. We utilized the implementation from the most recent
version of the Tensor Toolbox [5] regarding both the manipulation
of sparse tensors, as well as the CP-ALS iteration arising in the
PARAFAC2-ALS.
Parallelism.We exploit the capabilities of the Parallel Computing
Toolbox of Matlab, by utilizing its parallel pool in both SPARTan
and the baseline approach, whenever this is appropriate. Regarding
the size of the parallel pool, the number of workers of all the ex-
periments regarding a certain dataset is fixed. For the movie-rating
dataset we used the default of 12 workers. For the synthetic and the
CHOA datasets, we increased the number of workers to 20 because
of the data size increase.
Hardware. We conducted our experiments on a server running
Ubuntu 14.04 with 1TB of RAM and four Intel E5-4620 v4 CPU’s
with a maximum clock frequency of 2.10GHz. Each one of the
processors contains 10 cores, and each one of the cores can exploit
2 threads with hyper-threading enabled.

5.2 SPARTan is fast and memory-efficient
Synthetic Data. We assess the scalability of the approaches un-
der comparison for sparse synthetic data. We considered a setup
with 1, 000, 000 subjects, 5, 000 variables and a maximum of 100
observations for each subject. The number of observations Ik for
each subject is dependent on the number of rows of Xk contain-
ing non-zero elements; thus, Ik increases with the dataset density.
Indicatively, the mean number of observations Ik for the sparsest
dataset created (≈ 63 mil.) is 46.9 and for the densest (≈ 500 mil.)
dataset, the mean Ik is 99.3. We randomly construct the factors of

2https://grouplens.org/datasets/movielens/
3We also accredit the dense PARAFAC2 implementation by Rasmus Bro, from where
we have adapted many functionalities.

5 10 20 40

Target rank

2

5

10

15

20

25

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(a) CHOA dataset

5 10 20 40

Target rank

2
5

10

15

20

25

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(b) MovieLens dataset

Figure 5: Time inminutes for one iteration (as an average over 10) for vary-
ing target rank for both the real datasets used. SPARTan achieves up to 12×
and 11× speedup over the baseline approach for the CHOA and the Movie-
Lens datasets respectively.

50 100 200 400

Thousands of subjects (K)

0

0.5

1

1.5

2

2.5

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(a) Target Rank R = 10

50 100 200 400

Thousands of subjects (K)

0

5

10

15

20

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(b) Target Rank R = 40

Figure 6: CHOA dataset: Time in minutes for one iteration (as an average
over 10) for varying number of subjects (K) included and fixed target rank
(two cases considered: R = {10, 40}).

a rank-40 (which is the maximum target rank used in our experi-
ments) PARAFAC2 model. Based on this model, we construct the
input slices {Xk }, which we then sparsify uniformly at random, for
each sparsity level. The density of the sparsification governs the
number of non-zeros of the collection of input matrices.

We provide the results in Table 1. First, we remark that SPARTan
is both more scalable and faster than the baseline. In particular,
the baseline approach fails to execute in the two largest problem
instances for target rank R = 40, due to out of memory problems,
during the creation of the intermediate sparse tensorY. Note that as
we discussed in Section 4, SPARTan avoids the additional overhead
of explicitly constructing a sparse tensor structure, since it only
operates directly on the tensor’s frontal slices {Yk }. Regarding
the baseline’s memory issue, since the density of Y may grow
(e.g., ≈ 10% in the densest case), we also attempted to store the
intermediate tensor Y as a dense one. However, this also failed,
since the memory requested for a dense tensor of size 40-by-5K-by-
1Mil. exceeded the available RAM of our system (1TB). Overall, it
is clear that the baseline approach cannot fully exploit the input
sparsity. On the contrary, SPARTan properly executes for all the
problem instances considered in a reasonable amount of time. In
particular, for R = 40, SPARTan is up to 22× faster than the baseline.
Even for a lower target rank of R = 10, SPARTan achieves up to 13×
faster computation.
Real Data. We evaluate the scalability of the proposed SPARTan
approach against the baseline method for the real datasets as well.

https://grouplens.org/datasets/movielens/
http://www.models.life.ku.dk/algorithms

3 6 12 24

Thousands of variables (J)

0

0.5

1

1.5

2

2.5

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(a) Target Rank R = 10

3 6 12 24

Thousands of variables (J)

0

5

10

15

20

25

T
im

e
p
er

it
er
at
io
n
(m

in
s)

SPARTan
Sparse PARAFAC2

(b) Target Rank R = 40

Figure 7: MovieLens dataset: Time in minutes for one iteration (as an av-
erage over 10) for varying number of variables (J) included and fixed target
rank (two cases considered: R = {10, 40}).

In Figures 5, 6, 7, we present the results of the corresponding ex-
periments. First, we target the full datasets and vary the pursued
target rank (Figure 5). Note that for both datasets considered, the
time per iteration of the baseline approach increases dramatically
as we increase the target rank. On the contrary, the time required
by SPARTan increases only slightly. Overall, our approach achieves
up to over an order of magnitude gain regarding the time required
per epoch for both datasets.

We also evaluate the scalability of themethods under comparison
as we vary the subjects and the variables considered. Since the
CHOA dataset (Figure 6) contains more subjects than variables, we
vary the number of subjects for this dataset for two fixed target
ranks (10, 40). In both cases, SPARTan scales better than the baseline.
As concerns theMovieLens dataset (Figure 7), since it contains more
variables than subjects, we examine the scalability w.r.t. increasing
subsets of variables considered. In this case as well, we remark the
favorable scalability properties of SPARTan, rendering it practical
to use for large and sparse “irregular” tensors.

5.3 Phenotype discovery on CHOA EHR Data
Motivation. Next we demonstrate the usefulness of PARAFAC2
towards temporal phenotyping of EHRs. Phenotyping refers to the
process of extracting meaningful patient clusters (i.e., phenotypes)
out of raw, noisy Electronic Health Records [30]. An open challenge
in phenotyping is to capture temporal trends or patterns regarding
the evolution of those phenotypes for each patient over time. Below,
we illustrate how SPARTan can be used to successfully tackle this
challenge.
Model Interpretation: We propose the following model interpre-
tation towards the target challenge:
• The common factor matrix V reflects the phenotypes’ defini-
tion and the non-zero values of each r -th column indicate the
membership of the corresponding medical feature to the r -th
phenotype.
• The diagonal Sk provides the importance membership indicators
of the k-th subject to each one of the R phenotypes/clusters.
Thus, we can sort the R phenotypes based on the values of
vector diaд(Sk) and identify the most relevant phenotypes for
the k-th subject.
• Each Uk factor matrix provides the temporal signature of each
patient: each r -th column of Uk reflects the evolution of the

expression of the r -th phenotype for all the Ik weeks of her
medical history. Note that since all Xk , Sk ,V matrices are non-
negative, we only consider the non-negative elements of the
temporal signatures in our interpretation.

Table 4: Phenotypes discovered by PARAFAC2. The title annota-
tion for each phenotype is provided by the medical expert. The red
color corresponds to diagnoses and the blue color corresponds to
medications.

Cancer Weight
Chemotherapy 0.35
Leukemias [39.] 0.27
Immunity disorders [57.] 0.23
HEPARIN AND RELATED PREPARATIONS 0.6
ANTIEMETIC/ANTIVERTIGO AGENTS 0.34
SODIUM/SALINE PREPARATIONS 0.32
TOPICAL LOCAL ANESTHETICS 0.19
ANTIHISTAMINES - 1ST GENERATION 0.16
Sickle Cell Anemia (SCA) Weight
Sickle cell anemia [61.] 0.73
NSAIDS, CYCLOOXYGENASE INHIBITOR - TYPE 0.31
ANALGESICS NARCOTICS 0.26
FOLIC ACID PREPARATIONS 0.2
BETA-ADRENERGIC AGENTS 0.18
SODIUM/SALINE PREPARATIONS 0.16
Neurological System Disorders Weight
Other nervous system symptoms and disorders 0.56
Rehabilitation care; fitting of prostheses; and adjustment of devices [254.] 0.5
Residual codes; unclassified; all E codes [259. and 260.] 0.46
Other connective tissue disease [211.] 0.33
Other and unspecified metabolic; nutritional; and endocrine disorders 0.18
Gastrointestinal Disorders Weight
Residual codes; unclassified; all E codes [259. and 260.] 0.2
Other and unspecified metabolic; nutritional; and endocrine disorders 0.15
Other and unspecified gastrointestinal disorders 0.15
ANALGESIC/ANTIPYRETICS NON-SALICYLATE 0.32
POTASSIUM REPLACEMENT 0.26
BETA-ADRENERGIC AGENTS 0.23
ANALGESICS NARCOTICS 0.23
SODIUM/SALINE PREPARATIONS 0.22
SEDATIVE-HYPNOTICS NON-BARBITURATE 0.21
ANTIEMETIC/ANTIVERTIGO AGENTS 0.19
ANALGESICS NARCOTIC ANESTHETIC ADJUNCT AGENTS 0.18
NSAIDS, CYCLOOXYGENASE INHIBITOR - TYPE 0.16
IRRIGANTS 0.16
LAXATIVES AND CATHARTICS 0.15
GENERAL INHALATION AGENTS 0.15
Liver/Kidney System Disorders Weight
Other aftercare [257.] 0.8
hronic kidney disease [158.] 0.39
Other and unspecified liver disorders 0.3
Immunity disorders [57.] 0.16

Temporal Phenotyping ofMedicallyComplexPatients (MCPs)
In order to illustrate the use of PARAFAC2 towards temporal phe-
notyping, we focus our analysis on a subset of pediatric patients
from CHOA, which are classified by them as Medically Complex.
These are the patients with high utilization, multiple specialty visits
and high severity. Conceptually, those patients suffer from chronic
and/or very severe conditions that are hard to treat. As a result, it
becomes a very important challenge to accurately phenotype those
patients, as well as provide a temporal signature for each one of
them, which summarizes their phenotypes’ evolution.

The number of MCPs in the CHOA cohort is 8, 044, their diag-
noses and medications sum up to 1, 126, and the mean number of
weekly observations for those patients is 28. We ran SPARTan for
target rank R = 5 and the phenotypes discovered are provided in

0 10 20 30 40 50 60 70 80 90 100

Patient History (Weeks)

0

0.1

0.2

0.3

0.4

P
h
en
ot
y
p
e
M
ag
n
it
u
d
e Cancer

Neurological disorders

Figure 8: Left part: Part of real EHR data of a Medically Complex Patient (MCP). For each week, it contains the occurrences of a diagnosis/medication in the
patient’s records. Right part: Temporal signature of the patient created by SPARTan. PARAFAC2 captures the stage where cancer treatment is initiated (week 65).
At that point, indications of cancer treatment and diagnosis, such as cancer of brain, chemotherapy, heparin and antineoplastic drugs start to get recorded in the
patient history. PARAFAC2 also captures the presence of neurological disorders during the first weeks of the patient history. The definition for each phenotype
as produced by PARAFAC2 can be found in Table 4.

Table 4 (phenotypes’ definitionmatrix). The labels for each group are
the definitions of the phenotypes provided by the medical expert,
who endorsed their clinical meaningfulness.

In Figure 8, we provide part of the real EHR, as well as the tempo-
ral signature produced by SPARTan, for a certain medically complex
patient. Regarding the EHR, we visualize the subset of diagnoses
and medications for which the sum of occurrences for the whole
patient history is above a certain threshold (e.g., 5 occurrences).
This step ensures that the visualized EHR will only contain the con-
ditions exhibiting some form of temporal evolution. For the patient
example considered, we identify the top-2 relevant phenotypes
through the importance membership indicator matrix Sk as dis-
cussed above. For those top-2 phenotypes, we present the resulting
temporal signature, from which we easily detect intricate temporal
trends of the phenotypes involved. Those trends were confirmed
by the clinical expert as valuable towards fully understanding the
phenotypic behavior of the MCPs.

6 DISCUSSION & CONCLUSIONS
PARAFAC2 has been the state-of-the-art model for mining “irreg-
ular” tensors, where the observations along one of its modes do
not align naturally. However, it has been highly disregarded by
practitioners, as compared to other tensor approaches. Bro [6] has
summarized the reason for that as:

The PARAFAC2 model has not yet been used very exten-
sively maybe because the implementations so far have
been complicated and slow.

The methodology proposed in this paper renders this statement no
longer true for large and sparse data. In particular, as tested over real
and synthetic datasets, SPARTan is both fast and memory-efficient,
achieving up to 22× performance gains over the best previous
implementation and also handling larger problem instances for
which the baseline fails due to insufficient memory.

The key insight driving SPARTan’s scalability is the pursuit and
exploitation of special structure in the data involved in interme-
diate computations; prior art did not do so, instead treating those
computations as a black-box.

The capability to run PARAFAC2 at larger scales is, in our view,
an important enabling technology. As shown in our evaluations
on EHR data, the clinically meaningful phenotypes and temporal
trends identified by PARAFAC2 reflect the ease of the model’s
interpretation and its potential utility in other application domains.

Future directions include, but are not limited to: a) development
of PARAFAC2 algorithms for alternative models of computation,
such as distributed clusters [23], or supercomputing environments;
b) extension of the methodology proposed for higher-order “irreg-
ular” tensors with more than one mismatched mode.

Finally, to enable reproducibility and promote further popular-
ization of the PARAFAC2 modeling within the area of data mining,
we open-source our implementations and make them publicly avail-
able.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation,
award IIS-#1418511 and CCF-#1533768, Children’s Healthcare of
Atlanta, Google Faculty Award and UCB. E. Papalexakis was sup-
ported by the Bourns College of Engineering at UC Riverside. The
work of Fei Wang is partially supported by NSF IIS-#1650723. This
work has been funded in part by the Laboratory-Directed Research
& Development (LDRD) program at Sandia National Laboratories.
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, LLC. , a wholly owned subsidiary of Honeywell Interna-
tional, Inc. , for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525.

The authors would like to thank Professor Rasmus Bro and
Dr. Tamara Kolda for valuable conversations.

https://github.com/kperros/SPARTan

REFERENCES
[1] 2017. Clinical Classifications Software (CCS) for ICD-9-CM. https://www.hcup-us.

ahrq.gov/toolssoftware/ccs/ccs.jsp. (2017). Accessed: 2017-02-11.
[2] Evrim Acar and Bülent Yener. 2009. Unsupervised multiway data analysis: A

literature survey. IEEE transactions on knowledge and data engineering 21, 1 (2009),
6–20.

[3] Claus Andersson and Rasmus Bro. 2000. The N-way toolbox for MATLAB. Avail-
able online. (January 2000). http://www.models.life.ku.dk/source/nwaytoolbox/

[4] Brett W Bader and Tamara G Kolda. 2007. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (2007),
205–231.

[5] Brett W. Bader, Tamara G. Kolda, and others. 2015. MATLAB Tensor Toolbox
Version 2.6. Available online. (February 2015). http://www.sandia.gov/~tgkolda/
TensorToolbox/

[6] Rasmus Bro. 1997. PARAFAC. Tutorial and applications. Chemometrics and
intelligent laboratory systems 38, 2 (1997), 149–171.

[7] R Bro. 1998. Multi-way analysis in the food industry. (1998).
[8] Rasmus Bro, Claus A Andersson, and Henk AL Kiers. 1999. PARAFAC2-Part II.

Modeling chromatographic data with retention time shifts. Journal of Chemo-
metrics 13, 3-4 (1999), 295–309.

[9] Rasmus Bro and Sijmen De Jong. 1997. A fast non-negativity-constrained least
squares algorithm. Journal of chemometrics 11, 5 (1997), 393–401.

[10] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in
multidimensional scaling via an N-way generalization of "Eckart-Young" decom-
position. Psychometrika 35, 3 (1970), 283–319.

[11] Dehua Cheng, Richard Peng, Ioakeim Perros, and Yan Liu. 2016. SPALS: Fast
Alternating Least Squares via Implicit Leverage Scores Sampling. In Advances In
Neural Information Processing Systems. 721–729.

[12] Peter A Chew, Brett W Bader, Tamara G Kolda, and Ahmed Abdelali. 2007. Cross-
language information retrieval using PARAFAC2. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
143–152.

[13] Eric C Chi and Tamara G Kolda. 2012. On tensors, sparsity, and nonnegative
factorizations. SIAM J. Matrix Anal. Appl. 33, 4 (2012), 1272–1299.

[14] Joon Hee Choi and S Vishwanathan. 2014. DFacTo: Distributed factorization of
tensors. In Advances in Neural Information Processing Systems. 1296–1304.

[15] Gene H Golub and Charles F Van Loan. 2013. Matrix Computations. Vol. 3. JHU
Press.

[16] Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Models
and conditions for an "explanatory" multi-modal factor analysis. (1970).

[17] R. A. Harshman. 1972b. PARAFAC2: Mathematical and technical notes. UCLA
Working Papers in Phonetics 22 (1972b), 30–44.

[18] Richard A Harshman and Margaret E Lundy. 1996. Uniqueness proof for a
family of models sharing features of Tucker’s three-mode factor analysis and
PARAFAC/CANDECOMP. Psychometrika 61, 1 (1996), 133–154.

[19] Nathaniel E Helwig. 2013. The special sign indeterminacy of the direct-fitting
Parafac2 model: Some implications, cautions, and recommendations for Simulta-
neous Component Analysis. Psychometrika 78, 4 (2013), 725–739.

[20] Frank L Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of
products. Studies in Applied Mathematics 6, 1-4 (1927), 164–189.

[21] Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,
Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput candidate
phenotype generation via tensor factorization. Journal of biomedical informatics
52 (2014), 199–211.

[22] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 115–124.

[23] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012.
Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 316–324.

[24] Henk AL Kiers, Jos MF Ten Berge, and Rasmus Bro. 1999. PARAFAC2-Part I. A
direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics 13,
3-4 (1999), 275–294.

[25] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455–500.

[26] Joseph B Kruskal. 1977. Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics. Linear
algebra and its applications 18, 2 (1977), 95–138.

[27] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. 2010. Temporal
diversity in recommender systems. In Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval. ACM,
210–217.

[28] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. 2015.
ParCube: Sparse Parallelizable CANDECOMP-PARAFAC Tensor Decomposition.
ACM Transactions on Knowledge Discovery from Data (TKDD) 10, 1 (2015), 3.

[29] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. 2016.
Tensors for data mining and data fusion: Models, applications, and scalable
algorithms. ACM Transactions on Intelligent Systems and Technology (TIST) 8, 2
(2016), 16.

[30] Rachel L Richesson, Jimeng Sun, Jyotishman Pathak, Abel N Kho, and Joshua C
Denny. 2016. Clinical phenotyping in selected national networks: demonstrating
the need for high-throughput, portable, and computational methods. Artificial
Intelligence in Medicine 71 (2016), 57–61.

[31] Nicholas D Sidiropoulos and Rasmus Bro. 2000. On the uniqueness of multilinear
decomposition of N-way arrays. Journal of chemometrics 14, 3 (2000), 229–239.

[32] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evange-
los E Papalexakis, and Christos Faloutsos. 2016. Tensor decomposition for signal
processing and machine learning. arXiv preprint arXiv:1607.01668 (2016).

[33] Vergil N Slee. 1978. The International classification of diseases: ninth revision
(ICD-9). Annals of internal medicine 88, 3 (1978), 424–426.

[34] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis.
2015. SPLATT: Efficient and parallel sparse tensor-matrix multiplication. In
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
IEEE, 61–70.

[35] Alwin Stegeman and Tam TT Lam. 2015. Multi-set factor analysis by means of
Parafac2. Brit. J. Math. Statist. Psych. (2015).

[36] Jimeng Sun, Charalampos E Tsourakakis, Evan Hoke, Christos Faloutsos, and
Tina Eliassi-Rad. 2008. Two heads better than one: pattern discovery in time-
evolving multi-aspect data. Data Mining and Knowledge Discovery 17, 1 (2008),
111–128.

[37] Jos MF ten Berge and Henk AL Kiers. 1996. Some uniqueness results for
PARAFAC2. Psychometrika 61, 1 (1996), 123–132.

[38] Lloyd N Trefethen and David Bau III. 1997. Numerical linear algebra. (1997).
[39] FeiWang, Noah Lee, Jianying Hu, Jimeng Sun, Shahram Ebadollahi, and Andrew F

Laine. 2013. A framework for mining signatures from event sequences and its
applications in healthcare data. IEEE transactions on pattern analysis and machine
intelligence 35, 2 (2013), 272–285.

[40] Fei Wang, Jiayu Zhou, and Jianying Hu. 2014. DensityTransfer: A Data Driven
Approach for Imputing Electronic Health Records. In Pattern Recognition (ICPR),
2014 22nd International Conference on. IEEE, 2763–2768.

[41] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor
factorization and completion for health data analytics. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1265–1274.

[42] Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye. 2014. From micro to macro:
data driven phenotyping by densification of longitudinal electronic medical
records. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 135–144.

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
http://www.models.life.ku.dk/source/nwaytoolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

	Abstract
	1 Introduction
	2 Background
	2.1 Tensors and Tensor Operations
	2.2 CP Decomposition

	3 PARAFAC2 Overview & Challenges
	3.1 Model
	3.2 Classical Algorithm for PARAFAC2
	3.3 Challenges of PARAFAC2 on sparse data

	4 The SPARTan approach
	4.1 Overview
	4.2 Methodology

	5 Experiments
	5.1 Setup
	5.2 SPARTan is fast and memory-efficient
	5.3 Phenotype discovery on CHOA EHR Data

	6 Discussion & Conclusions
	Acknowledgments
	References

