
A PARALLEL ALGORITHM FOR BIG TENSOR DECOMPOSITION USING RANDOMLY
COMPRESSED CUBES (PARACOMP)

N.D. Sidiropoulos∗

Dept. of ECE, Univ. of Minnesota
Minneapolis, MN 55455, USA

E.E. Papalexakis, and C. Faloutsos†

Dept. of CS, Carnegie-Mellon Univ.
Pittsburgh, PA 15213, USA

ABSTRACT

A parallel algorithm for low-rank tensor decomposition that is es-

pecially well-suited for big tensors is proposed. The new algorithm

is based on parallel processing of a set of randomly compressed,

reduced-size ‘replicas’ of the big tensor. Each replica is indepen-

dently decomposed, and the results are joined via a master linear

equation per tensor mode. The approach enables massive paral-

lelism with guaranteed identifiability properties: if the big tensor

has low rank and the system parameters are appropriately chosen,

then the rank-one factors of the big tensor will be exactly recovered

from the analysis of the reduced-size replicas. The proposed algo-

rithm is proven to yield memory / storage and complexity gains of

order up to IJ
F

for a big tensor of size I × J × K of rank F with

F ≤ I ≤ J ≤ K.

Index Terms— Tensor decomposition, CANDECOMP /

PARAFAC, Big Data, Parallel and Distributed Computation, Cloud

Computing and Storage.

1. INTRODUCTION

Tensors are data structures indexed by three or more indices - a gen-

eralization of matrices, which are datasets indexed by two indices

(row, column). Tensor algebra has many similarities but also many

striking differences with matrix algebra - e.g., determining tensor

rank is NP-hard, while low-rank tensor factorization is unique un-

der mild conditions. Tensor factorizations have already found many

applications in signal processing (speech, audio, communications,

radar, signal intelligence, machine learning) and well beyond. Ten-

sors are becoming increasingly important, especially for analyzing

big data, and tensors easily turn really big, e.g., 1000×1000×1000
= 1 billion entries.

Memory issues related to tensor computations with large but

sparse tensors have been considered in [1], [2], and incorporated in

the sparse tensor toolbox [3]. The main idea in those references is

to avoid intermediate product ‘explosion’ when computing sequen-

tial mode products, but the assumption is that the entire tensor fits in

memory (in ‘coordinate-wise’ representation), and the mode prod-

ucts expand (as opposed to reduce) the size of the ‘core’ array that

they multiply. Adaptive tensor decomposition algorithms for cases

where the data is serially acquired (or ‘elongated’) along one mode

have been developed in [4], but these assume that the other two

modes are relatively modest in size. More recently, a divide-and-

conquer approach to tensor decomposition of large tensors has been

∗E-mail: nikos@umn.edu, Tel: +16126251242, Fax: +16126254583.
Supported by NSF IIS-1247632.

†E-mail: (epapalex,christos)@cs.cmu.edu. Supported by NSF IIS-
1247489.

proposed in [5], whose idea is to break the data in smaller ‘boxes’,

each one of which is factored independently, and the results are sub-

sequently concatenated using an iterative process. This assumes

that each smaller box admits a unique factorization (which cannot

be guaranteed from ‘global’ uniqueness conditions alone), requires

reconciling the different permutations and scalings of the different

blocks, and significant communication and signaling overhead.

All of the aforementioned techniques require that the full data

be stored in (possibly distributed) memory. Realizing that this is

a show-stopper for truly big tensors, [6] proposed a random sam-

pling approach, wherein judiciously sampled ‘significant’ parts of

the tensor are independently analyzed, and a common piece of data

is used to anchor the different permutations and scalings. The down-

side of [6] is that it only works for sparse tensors, and it offers no

identifiability guarantees - although it usually works well for sparse

tensors. A different approach was taken in [7], which proposed ran-

domly compressing a big tensor down to a far smaller one. Assuming

that the big tensor admits a low-rank decomposition with sparse la-

tent factors, such a random compression guarantees identifiability of

the low-rank decomposition of the big tensor from the low-rank de-

composition of the small tensor. The line of proof is a generalization

of compressed sensing ideas from the linear to the multi-linear case.

Still, this approach works only when the latent low-rank factors of

the big tenor are known to be sparse - and this is often not the case.

This paper considers appropriate compression strategies for big

(sparse or dense) tensors that admit a low-rank decomposition / ap-

proximation, whose latent factors need not be sparse. Latent sparsity

is usually associated with membership problems such as clustering

and co-clustering [8]. A novel parallel algorithm for low-rank ten-

sor decomposition that is especially well-suited for big tensors is

proposed. The new algorithm is based on parallel processing of a

set of randomly compressed, reduced-size ‘replicas’ or the big ten-

sor. Each replica is independently decomposed, and the results are

joined via a master linear equation per tensor mode. The approach

enables massive parallelism with guaranteed identifiability proper-

ties: if the big tensor has low rank, and the system parameters are

appropriately chosen, then the rank-one factors of the big tensor will

indeed be recovered from the analysis of the reduced-size replicas.

Furthermore, the approach affords memory / storage and complexity

gains of order up to IJ
F

for a big tensor of size I × J ×K of rank F

with F ≤ I ≤ J ≤ K. No sparsity is required in the tensor or the

underlying latent factors, although such sparsity can be exploited to

improve memory, storage and computational savings.

2. TENSOR DECOMPOSITION: PRELIMINARIES

What is a tensor? A matrix is a dataset indexed by two indices,

say (r, c) for (row,column). A tensor is a dataset indexed by three

or more indices, say (i, j, k, · · ·). The term tensor has a different

meaning in Physics, however it has been widely adopted in recent

years to describe what was previously known as a multi-way ar-

ray. Matrices are two-way tensors, and they are special because it

turns out that there is an interesting dichotomy between two-way

and three- or higher-way tensors, with the latter sharing common

algebraic properties which are simply very different from those of

matrices.

Notation: A scalar is denoted by an italic letter, e.g. a. A column

vector is denoted by a bold lowercase letter, e.g. a whose i-th entry

is a(i). A matrix is denoted by a bold uppercase letter, e.g., A with

(i, j)-th entry A(i, j); A(:, j) (A(i, :)) denotes the j-th column

(resp. i-th row) of A. A three-way array is denoted by an under-

lined bold uppercase letter, e.g., X, with (i, j, k)-th entry X(i, j, k).
Vector, matrix and three-way array size parameters (mode lengths)

are denoted by uppercase letters, e.g. I . ◦ stands for the vector outer

product: for two vectors a (I × 1) and b (J × 1), a ◦ b is an I × J

rank-one matrix with (i, j)-th element a(i)b(j); i.e., a ◦ b = abT .

For three vectors, a (I × 1), b (J × 1), c (K × 1), a ◦ b ◦ c is an

I × J ×K three-way array with (i, j, k)-th element a(i)b(j)c(k).
The vec(·) operator stacks the columns of its matrix argument in

one tall column; ⊗ stands for the Kronecker product; ⊙ stands for

the Khatri-Rao (column-wise Kronecker) product: given A (I × F)

and B (J × F), A⊙B is the JI × F matrix

A⊙B =
[

A(:, 1)⊗B(:, 1) · · ·A(:, F)⊗B(:, F)
]

Rank decomposition: The rank of an I×J matrix X is the smallest

number of rank-one matrices (vector outer products of the form a◦b)

needed to synthesize X as

X =
F
∑

f=1

af ◦ bf = AB
T
,

where A := [a1, · · · ,aF], and B := [b1, · · · ,bF]. This relation

can be expressed element-wise as

X(i, j) =
F
∑

f=1

af (i)bf (j).

The rank of an I×J ×K three-way array X is the smallest number

of outer products needed to synthesize X as

X =

F
∑

f=1

af ◦ bf ◦ cf .

This relation can be expressed element-wise as

X(i, j, k) =

F
∑

f=1

af (i)bf (j)cf (k).

In the sequel we will assume that F is minimal, i.e., F = rank(X),
unless otherwise noted. The tensor X comprises K ‘frontal’

slabs of size I × J ; denote them {Xk}
K

k=1, with Xk := X(:
, :, k). Re-arranging the elements of X in a tall matrix X :=
[vec(X1), · · · , vec(XK)], it can be shown that

X = (B⊙A)CT ⇐⇒ x := vec(X) = (C⊙B⊙A)1,

where, A, B are as defined for the matrix case, C := [c1, · · · , cF],
1 is a vector of all 1’s, and we have used the vectorization property

of the Khatri-Rao product vec(AD(d)BT) = (B⊙A)d, where

D(d) is a diagonal matrix with the vector d as its diagonal.

CANDECOMP-PARAFAC: The above rank decomposition model

for tensors is known as parallel factor analysis (PARAFAC) [9,

10] or canonical decomposition (CANDECOMP) [11], or CP for

CANDECOMP-PARAFAC. CP is in a way the most basic tensor

model, because of its direct relationship to tensor rank and the con-

cept of rank decomposition; but other algebraic tensor models exist,

and we refer the reader to [12, 13] for gentle introductions to tensor

decompositions and applications.

Uniqueness: The key feature of the CP model is its essential unique-

ness: under certain conditions, A, B, and C can be identified from

X up to permutation and scaling [9–11, 14–18]. The Kruskal-rank

of A, denoted kA, is the maximum k such that any k columns of A

are linearly independent (kA ≤ rA := rank(A)). Given X (⇔ x),

(A,B,C) are unique up to a common column permutation and scal-

ing (e.g., scaling the first column of A and counter-scaling the first

column of B and/or C, so long as their product remains the same),

provided that kA + kB + kC ≥ 2F + 2. This is Kruskal’s cel-

ebrated uniqueness result, see [14–17]. Kruskal’s result applies to

given (A,B,C), i.e., it can establish uniqueness of a given decom-

position. Recently, more relaxed uniqueness conditions have been

obtained, which only depend on the size and rank of the tensor -

albeit they cover almost all tensors of the given size and rank, i.e.,

except for a set of measure zero. The latest available condition on

this front is the following.

Theorem 1 [18] Consider an I × J × K tensor X of rank F ,

and order the dimensions so that I ≤ J ≤ K Let i be maximal

such that 2i ≤ I , and likewise j maximal such that 2j ≤ J . If

F ≤ 2i+j−2, then X has a unique decomposition almost surely.

For I, J powers of 2, the condition simplifies to F ≤ IJ
4

. More

generally, the condition implies that if F ≤ (I+1)(J+1)
16

, then X has

a unique decomposition almost surely.

3. BIG TENSOR COMPRESSION

When dealing with big tensors X that do not fit in main memory,

a reasonable idea is to try to compress X to a much smaller tensor

that somehow captures most of the systematic variation in X. The

commonly used compression method is to fit a low-dimensional or-

thogonal Tucker3 model (with low mode-ranks) [12,13], then regress

the data onto the fitted mode-bases. This idea has been exploited in

existing PARAFAC model-fitting software, such as COMFAC [19],

as a useful quick-and-dirty way to initialize alternating least squares

computations in the uncompressed domain, thus accelerating conver-

gence. A key issue with Tucker3 compression of big tensors is that

it requires computing singular value decompositions of the various

matrix unfoldings of the full data, in an alternating fashion. This is a

serious bottleneck for big data. Another issue is that Tucker3 com-

pression is lossy, and it cannot guarantee that identifiability prop-

erties will be preserved. Finally, fitting a PARAFAC model to the

compressed data can only yield an approximate model for the origi-

nal uncompressed data, and eventually decompression and iterations

with the full data are required to obtain fine estimates.

Consider compressing x into y = Sx, where S is d × IJK,

d ≪ IJK. Sidiropoulos & Kyrillidis [7] proposed using a spe-

cially structured compression matrix S = UT ⊗VT ⊗WT , which

corresponds to multiplying (every slab of) X from the I-mode with

UT , from the J-mode with VT , and from the K-mode with WT ,

where U is I × L, V is J × M , and W is K × N , with L ≤ I ,

M ≤ J , N ≤ K and LMN ≪ IJK. Such an S corresponds

to compressing each mode individually, which is often natural, and

the associated multiplications can be efficiently implemented when

the tensor is sparse. Due to a fortuitous property of the Kronecker

product [20],

(

U
T ⊗V

T ⊗W
T
)

(A⊙B⊙C) =

(

(UT
A)⊙ (VT

B)⊙ (WT
C)

)

,

from which it follows that

y =
(

(UT
A)⊙ (VT

B)⊙ (WT
C)

)

1 =
(

Ã⊙ B̃⊙ C̃
)

1.

i.e., the compressed data follow a PARAFAC model of size L×M×
N and order F parameterized by (Ã, B̃, C̃), with Ã := UTA,

B̃ := VTB, C̃ := WTC.

Remark 1 It can be shown that multi-way tensor compression (i.e.,

computing Y from X, or, equivalently, y from x) can be ac-

complished at computational complexity O(max(L,M,N)IJK)
if memory and speed of memory access are not an issue, or

O(LMNIJK) if memory and access are severely limited. If X

has only NZ(X) nonzero elements, then computational complexity

can be reduced to NZ(X)LMN without requiring any extra mem-

ory or memory access. We skip details due to space limitations, but

full details will be included in the journal version.

Using a Lemma in [7] and Theorem 1 from [18], we have estab-

lished the following result.

Theorem 2 Let x = (A⊙B⊙C)1 ∈ R
IJK , where A is

I × F , B is J × F , C is K × F , and consider compressing it to

y =
(

UT ⊗VT ⊗WT
)

x =
(

(UTA)⊙ (VTB)⊙ (WTC)
)

1

=
(

Ã⊙ B̃⊙ C̃
)

1 ∈ R
LMN , where the mode-compression matri-

ces U (I×L,L ≤ I), V (J×M,M ≤ J), and W (K×N,N ≤ K)

are independently drawn from an absolutely continuous distribution

with respect to the Lebesgue measure in R
IL, RJM , and R

KN , re-

spectively. If F ≤ min(I, J,K), A, B, C are all full column rank

(F), L ≤ M ≤ N , and

(L+ 1)(M + 1) ≥ 16F,

then Ã, B̃, C̃ are almost surely identifiable from the compressed

data y up to a common column permutation and scaling.

Theorem 2 can establish uniqueness of Ã, B̃, C̃, but we are ulti-

mately interested in A,B,C. We know that Ã = UTA, and we

know UT , but, unfortunately, it is a fat matrix that cannot be in-

verted. In order to uniquely recover A, one needs additional struc-

tural constraints. Sidiropoulos & Kyrillidis [7] proposed exploiting

column-wise sparsity in A (and likewise B,C), which is often plau-

sible in practice1. Sparsity is a powerful constraint, but it is not al-

ways valid (or a sparsifying basis may be unknown). For this reason,

we propose here a different solution, based on creating and factoring

a number of randomly reduced ‘replicas’ of the full data.

1
A need only be sparse with respect to (when expressed in) a suitable

basis, provided the sparsifying basis is known a priori.

4. THE PARACOMP APPROACH

Consider spawning P randomly compressed reduced-size ‘replicas’
{

Yp

}P

p=1
of the tensor X, where Yp is created using mode com-

pression matrices (Up,Vp,Wp), see Fig. 1. Assume that identifia-

bility conditions per Theorem 2 hold, so that Ãp, B̃p, C̃p are almost

surely identifiable (up to permutation and scaling of columns) from

Yp. Then, upon factoring Yp into F rank-one components, one will

obtain

Ãp = U
T
p AΠpΛp. (1)

Assume that the first two columns of each Up (rows of UT
p) are

common, and let Ū denote this common part, and Āp denote the

first two rows of Ãp. We therefore have

Āp = Ū
T
AΠpΛp.

Dividing each column of Āp by the element of maximum modulus

in that column, and denoting the resulting 2 × F matrix Âp, we

obtain

Âp = Ū
T
AΛΠp.

Notice that Λ does not affect the ratio of elements in each 2× 1 col-

umn. If these ratios are distinct (which is guaranteed almost surely if

Ū and A are independently drawn from absolutely continuous distri-

butions), then the different permutations can be matched by sorting

the ratios of the two coordinates of each 2×1 column of Âp. In prac-

tice using a few more ‘anchor’ rows will improve the permutation-

matching performance, and is recommended in difficult cases with

high noise variance. When S anchor rows are used, the optimal

permutation matching problem can be cast as a Linear Assignment

Problem (LAP), which can be efficiently solved using the Hungar-

ian Algorithm. After this column permutation-matching process, we

go back to (1) and permute its columns to obtain Ăp satisfying

Ăp = U
T
p AΠΛp.

It remains to get rid of Λp. For this, we can again resort to the

first two common rows, and divide each column of Ăp with its top

element. This finally yields

Ǎp = U
T
p AΠΛ.

For recovery of A up to permutation and scaling of its columns, we

then require that the matrix of the linear system







Ǎ1

...

ǍP






=







UT
1

...

UT
P






AΠΛ (2)

be full column rank. This implies that

2 +

P
∑

p=1

(Lp − 2) ≥ I

i.e.,
P
∑

p=1

(Lp − 2) ≥ I − 2.

Note that every sub-matrix contains the two anchor rows which are

common, and duplicate rows clearly do not increase the rank. Also

note that once the dimensionality requirement is met, the matrix will

be full rank with probability 1, because its non-redundant entries are

drawn from a jointly continuous distribution (by design).

Assuming Lp = L, ∀p ∈ {1, · · · , P} for simplicity (and sym-

metry of computational load), we obtain P (L − 2) ≥ I − 2, or, in

terms of the number of threads P ≥ I−2
L−2

. Likewise, from the corre-

sponding full column rank requirements for the other two modes, we

obtain P ≥ J
M

, and P ≥ K
N

. Notice that we do not subtract 2 from

numerator and denominator for the other two modes, because the

permutation of columns of Ãp, B̃p, C̃p is common - so it is enough

to figure it out from one mode, and apply it to other modes as well.

One can pick the mode used to figure out the permutation ambiguity,

leading to a symmetrized condition. If the compression ratios in the

different modes are similar, it makes sense to use the longest mode

for this purpose; if this is the last mode, then

P ≥ max

(

I

L
,
J

M
,
K − 2

N − 2

)

We have thus established the following result.

Theorem 3 In reference to Fig. 1, assume x := vec (X) =
(A⊙B⊙C)1 ∈ R

IJK , where A is I×F , B is J×F , C is K×F

(i.e., the rank of X is at most F). Assume that F ≤ I ≤ J ≤ K,

and A, B, C are all full column rank (F). Further assume that

Lp = L, Mp = M , Np = N , ∀p ∈ {1, · · · , P}, L ≤ M ≤ N ,

(L+ 1)(M + 1) ≥ 16F , the elements of {Up}
P

p=1 are drawn from

a jointly continuous distribution, and likewise for {Vp}
P

p=1, while

each Wp contains two common anchor columns, and the elements

of {Wp}
P

p=1 (except for the repeated anchors, obviously) are drawn

from a jointly continuous distribution. Then the data for each thread

yp := vec
(

Yp

)

can be uniquely factored, i.e.,
(

Ãp, B̃p, C̃p

)

is

unique up to column permutation and scaling. If, in addition to

the above, we also have P ≥ max
(

I
L
, J
M
, K−2
N−2

)

parallel threads,

then (A,B,C) are almost surely identifiable from the thread out-

puts
{(

Ãp, B̃p, C̃p

)}P

p=1
up to a common column permutation

and scaling.

The above result is indicative of a family of results that can be de-

rived. Its significance may not be immediately obvious, so it is worth

elaborating further at this point. On one hand, Theorem 3 shows

that fully parallel computation of the big tensor decomposition is

possible – the first such result, to the best of our knowledge, that

guarantees identifiability of the big tensor decomposition from the

intermediate small tensor decompositions, without placing stringent

additional constraints. On the other hand, the memory/storage and

computational savings are not necessarily easy to see. The following

claim nails down the take-home message.

Claim 1 Under the conditions of Theorem 3, if K−2
N−2

=

max
(

I
L
, J
M
, K−2
N−2

)

, then the memory / storage and computational

complexity savings afforded by the PARACOMP approach in Fig. 1

relative to brute-force computation are of order IJ
F

.

5. SIMULATIONS

For simulations, we set I = J = K = 500 and L = M = N = 50,

so P ≥ 11 ≥ 10.375 = max
(

I
L
, J
M
, K−2
N−2

)

for identifiability.

The big tensor has 125M elements, or about 1Gbyte if stored in dou-

ble precision. This allows in-memory factoring of the big tensor

for comparison purposes. Each small tensor has 125K elements, or

about 1Mbyte in double precision; for P = 11, the overall stor-

age needed for all 11 small tensors is only 11Mbytes, or about 1%

of the big tensor. We set F = 5 and generate the noiseless ten-

sor by randomly and independently drawing A, B, and C from

randn(500,5), and then taking the sum of outer products of their

corresponding columns. Gaussian i.i.d. measurement noise of stan-

dard deviation σ = 0.01 is added to the noiseless tensor to produce

X. Fig. 6 shows ||A − Â||22, where Â denotes the PARACOMP

estimate of A, as a function of P . The baseline is the total squared

error attained by directly fitting the uncompressed X. PARACOMP

yields respectable accuracy with only 1.2% of the full data, and total

squared error of order 10−6 − 10−5 with 24% of the full data, vs.

10−7 for the baseline algorithm that has access to 100% of the data.

6. CONCLUSIONS

We have proposed a new parallel algorithm for tensor decomposi-

tion that is especially well-suited for big tensors. This new approach

is the first to enable complete parallelism of the core computation

together with substantial memory/storage savings and identifiability

guarantees. An in-depth study of pertinent trade-offs and extensions

is currently underway, and the results will be reported in follow-up

publications.

I

J

K

X_

(U2,V2,W2)

Y

M1

L1

N1

Y_ 1

M2

L2

N2

Y_ 2

MP

LP

NP

Y_ P

(A,B,C)

Join
(Linear Least Squares)

Fork

Fig. 1. The fork spawns
{

Yp

}P

p=1
, where Yp is obtained by ap-

plying (Up,Vp,Wp) to X. Each Yp is independently factored in

parallel. The join step anchors all
{

Ãp

}P

p=1
to a common reference,

and solves a linear problem for the overall A; likewise for B, C.

20 40 60 80 100 120 140 160 180 200

10
−7

10
−6

10
−5

10
−4

10
−3

P

||
A

−
A

h
a
t|
| F2

I=J=K=500; L=M=N=50; F=5; sigma=0.01; S=3

PARACOMP

Direct, no compression
P=12 with 0.1% of
full data each (total
storage used 1.2%
of full data)

P=240 with 0.1% of
full data each (total
storage used 24%
of full data)

Fig. 2. MSE vs. # of cores/repetitions P .

7. REFERENCES

[1] B.W. Bader and T.G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, December 2007.

[2] T.G. Kolda and J. Sun, “Scalable tensor decompositions for multi-
aspect data mining,” in ICDM 2008: Proceedings of the 8th IEEE

International Conference on Data Mining, December 2008, pp. 363–
372.

[3] B.W. Bader and T.G. Kolda, “Matlab tensor toolbox version 2.5,”
http://www.sandia.gov/˜tgkolda/TensorToolbox/,
January 2012.

[4] D. Nion and N.D. Sidiropoulos, “Adaptive algorithms to track the
parafac decomposition of a third-order tensor,” IEEE Trans. on Sig-

nal Processing, vol. 57, no. 6, pp. 2299–2310, 2009.

[5] A.H. Phan and A. Cichocki, “Parafac algorithms for large-scale prob-
lems,” Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.

[6] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D.
Sidiropoulos, “Parcube: Sparse parallelizable tensor decompositions.,”
in ECML/PKDD (1), Peter A. Flach, Tijl De Bie, and Nello Cristian-
ini, Eds. 2012, vol. 7523 of Lecture Notes in Computer Science, pp.
521–536, Springer.

[7] N.D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing
for sparse low-rank tensors,” IEEE Signal Processing Letters, vol. 19,
no. 11, pp. 757–760, 2012.

[8] E.E. Papalexakis, N.D. Sidiropoulos, and R. Bro, “From k -means to
higher-way co-clustering: Multilinear decomposition with sparse latent
factors,” IEEE Trans. on Signal Processing, vol. 61, no. 2, pp. 493–506,
2013.

[9] R.A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an “explanatory” multimodal factor analysis,” UCLA

Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[10] R.A. Harshman, “Determination and proof of minimum uniqueness
conditions for PARAFAC-1,” UCLA Working Papers in Phonetics, vol.
22, pp. 111–117, 1972.

[11] J.D. Carroll and J.J. Chang, “Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of Eckart-Young de-
composition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[12] A.K. Smilde, R. Bro, P. Geladi, and J. Wiley, Multi-way analysis with

applications in the chemical sciences, Wiley, 2004.

[13] P.M. Kroonenberg, Applied multiway data analysis, Wiley, 2008.

[14] J.B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear Algebra and its Applications, vol. 18, no. 2, pp. 95–138, 1977.

[15] N.D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear de-
composition of N-way arrays,” Journal of chemometrics, vol. 14, no.
3, pp. 229–239, 2000.

[16] T. Jiang and N.D. Sidiropoulos, “Kruskal’s permutation lemma and the
identification of CANDECOMP/PARAFAC and bilinear models with
constant modulus constraints,” IEEE Transactions on Signal Process-

ing, vol. 52, no. 9, pp. 2625–2636, 2004.

[17] A. Stegeman and N.D. Sidiropoulos, “On Kruskal’s uniqueness condi-
tion for the CANDECOMP/PARAFAC decomposition,” Linear Alge-

bra and its Applications, vol. 420, no. 2-3, pp. 540–552, 2007.

[18] L. Chiantini and G. Ottaviani, “On generic identifiability of 3-tensors
of small rank,” SIAM. J. Matrix Anal. & Appl., vol. 33, no. 3, pp. 1018–
1037, 2012.

[19] R. Bro, N.D. Sidiropoulos, and G.B. Giannakis, “A fast least squares
algorithm for separating trilinear mixtures,” in Proc. ICA99 Int. Work-

shop on Independent Component Analysis and Blind Signal Separation,
1999, pp. 289–294.

[20] J.W. Brewer, “Kronecker products and matrix calculus in system the-
ory,” IEEE Trans. on Circuits and Systems, vol. 25, no. 9, pp. 772–781,
1978.

