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Abstract—How can we find useful patterns and anomalies
in large scale real-world data with multiple attributes? For
example, network intrusion logs, with (source-ip, target-ip, port-
number, timestamp)? Tensors are suitable for modeling these
multi-dimensional data, and widely used for the analysis of social
networks, web data, network traffic, and in many other settings.
However, current tensor decomposition methods do not scale for
tensors with millions and billions of rows, columns and ‘fibers’,
that often appear in real datasets. In this paper, we propose
HATEN2, a scalable distributed suite of tensor decomposition
algorithms running on the MAPREDUCE platform. By carefully
reordering the operations, and exploiting the sparsity of real
world tensors, HATEN2 dramatically reduces the intermediate
data, and the number of jobs. As a result, using HATEN2, we
analyze big real-world tensors that can not be handled by the
current state of the art, and discover hidden concepts.

I. INTRODUCTION

How can we find useful patterns and anomalies in large
scale real-world data that has multiple attributes? For instance,
network intrusion logs, where we record data of the form
(source-ip, target-ip, port-number, timestamp)? Tensors are
multi-dimensional arrays and are suitable for modeling multi-
aspect data. Tensor decompositions are widely used tensor
analysis tools for various real-world data such as knowledge
bases [1], web data [2], network traffic data [3], and many
others [4], [5]. Using tensor decompositions, we find latent
factors (or relations) between the data. These latent factors can
be roughly and informally seen as soft-clustering of the data;
in the (source-ip, target-ip, port-number, timestamp) example,
decomposing this tensor into R latent factors corresponds to
finding R clusters of source-ip’s that talk to a set of target-ip’s
on a set of port numbers and for a specific amount of time.

There are two major tensor decompositions: PARAFAC and
Tucker. Since there is no single generalization of the Singular
Value Decomposition (SVD) for tensors, both PARAFAC and
Tucker can be thought of as extensions of SVD to higher
dimensions. PARAFAC is mostly used when one is interested
in decomposing a tensor into a sum of rank-one tensors (and
is interested in the latent factors), while Tucker is more
appropriate for tensor compression as well as detection of
relations between latent factors.

Tensors have been used for various purposes of data mining
and analysis over the years. However, recently, the size of

real-world tensors size has started to become prohibitively
large, approaching millions and billions of rows, columns, and
‘fibers’. The problem is that most of tensor decomposition
algorithms do not scale to deal with those huge tensors due to
the high computational costs and space. The main challenge
is to overcome the intermediate data explosion problem where
the amount of intermediate data of an operation exceeds the
capacity of a single machine or even a cluster. For example,
in the n-mode product in Tucker decomposition, a straightfor-
ward implementation using distributed systems would require
1 Exabytes (=1018 bytes) of intermediate data, assuming the
size of the input tensor X ∈ RI×J×K is I = J = K = 1
millions. Thus, we need to develop scalable and distributed
tensor decomposition algorithms.

In this paper, we propose HATEN2 (which stands for
HADOOP Tensor method for 2 decompositions), a scalable ten-
sor decomposition suite of methods for Tucker and PARAFAC
decompositions on HADOOP [6], the open-source version of
the MAPREDUCE framework [7]. HATEN2 solves the inter-
mediate data explosion problem by carefully reordering the
operations, and exploiting the sparsity of real world tensors.
Furthermore, HATEN2 integrates several redundant jobs to
reduce the running time significantly. As a result, HATEN2
is able to analyze data that are several orders of magnitude
larger than what the state of the art can handle.

Our main contributions are the following:

• Algorithm. HATEN2 unifies the large scale Tucker and
PARAFAC tensor decomposition algorithms on MAPRE-
DUCE into a general framework, such that the intermedi-
ate data size and the running time are minimized.

• Scalability. HATEN2 decomposes 100× larger tensors
compared to existing methods, as shown in Figure 1.
Furthermore, HATEN2 enjoys near linear scalability on
the number of machines.

• Discovery. We discover interesting concepts by applying
HATEN2 on Freebase knowledge base tensor with 23
millions of entities and 99 millions of facts, which was
hard to analyze by existing methods.

The rest of paper is organized as follows. Section II presents
the preliminaries of the tensor and its decompositions. Sec-
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Fig. 1: Data scalability of our proposed HATEN2-DRI compared to other methods, for Tucker decomposition. The datasets
are explained in detail at Section IV-A. o.o.m: out of memory. Compared to the Tensor Toolbox, HATEN2-DRI decomposes
10 ∼ 100× larger data. Among the variants of HATEN2, HATEN2-DRI is the fastest, and analyzes 10× denser data than
HATEN2-DNN.

TABLE I: Table of symbols.

Symbol Definition

X a tensor
X(n) mode-n matricization of a tensor
a a scalar (lowercase, italic letter)
a a column vector (lowercase, bold letter)
A a matrix (uppercase, bold letter)
R number of components
◦ outer product
⊗ Kronecker product
� Khatri-rao product
∗ Hadamard product
· standard product
×̄n n-mode vector product
×n n-mode matrix product
∗̄n n-mode vector Hadarmard product (Definition 1)
∗n n-mode matrix Hadarmard product (Definition 5)
AT transpose of A
‖M‖F Frobenius norm of M
bin(X) function that converts non-zero elements of X to 1
nnz(X) number of nonzero elements in X
idx(X) set of indexes ((i, j, k) or (i, j, k, l)) of nonzero

elements in X
I, J,K dimensions of each mode of input tensor X
P,Q,R dimensions of each mode of core tensor G

tion III describes our proposed method for the scalable tensor
decompositions. After presenting the experimental results in
Section IV, we discuss related works in Section V. Then we
conclude in Section VI.

II. PRELIMINARIES

In this section, we describe the preliminaries on tensor and
its decompositions. Table I shows the definitions of symbols
used in this paper. Matrices are denoted by boldface capitals
(e.g. B), and the rth row of the matrix B is denoted by br.
Vectors are denoted by boldface lowercases (e.g. a).

A. Tensor

Tensor is a multi-dimensional array. Each ‘dimension’ of a
tensor is called mode or way. An N -mode or N -way tensor
is denoted by X ∈ RI1×I2×···×IN . bin(X) denotes a function
that converts non-zero elements in X to 1. nnz(X) means the

number of non-zero elements of X, and idx(X) means the
set of indexes (e.g. (i, j, k) for 3-mode tensor X) of non-zero
elements in X. i-th slice of X is denoted by nnz(Xi::), and
ij-th fiber of X is denoted by nnz(Xij:). We refer the reader
to [8] for further details.

B. Tensor Decomposition

Tensor decomposition is a general tool for tensor analysis.
Using tensor decomposition, we find latent factor or relations
among data. In this paper, we focus on two major tensor
decompositions, PARAFAC and Tucker.

1) PARAFAC Decomposition: PARAFAC (parallel factors)
decomposition [9], also called CANDECOMP (canonical de-
composition), decomposes a tensor into a sum of rank-one
tensors. There has been rich literature on algorithms for the
PARAFAC decomposition, a concise summary thereof can be
found in [10].

Fig. 2: Rank-R PARAFAC decomposition of a three-way
tensor. The tensor X is decomposed as three factor matrices
A, B, and C.

PARAFAC decomposition for 3-way tensor. Given a 3-way
tensor X ∈ RI×J×K and rank R, PARAFAC decomposition
factorizes the tensor into 3 factor matrices, A, B, and C, as
follows:

X ≈ [A,B,C] =

R∑
r=1

ar ◦ br ◦ cr

where, R is a positive integer, and A ∈ RI×R, B ∈ RJ×R,



and C ∈ RK×R are the factor matrices. Figure 2 shows the
3-way PARAFAC tensor decomposition.
PARAFAC decomposition for N -way tensor. Given an N -
way tensor X ∈ RI1×I2×...×IN and rank R, PARAFAC
decomposition factorizes the tensor into N factor matrices,
A(1), A(2), ... , A(N), as follows:

X ≈ [A(1),A(2), ...,A(N)] =

R∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(N)
r .

where, R is a positive integer, and A(1) ∈ RI1×R, A(2) ∈
RI2×R, ... , A(N) ∈ RIN×R are the factor matrices.
PARAFAC-ALS. Algorithm 1 shows the alternating least
squares algorithm for 3-way PARAFAC decomposition.

Algorithm 1: 3-way PARAFAC-ALS.
Input: Tensor X ∈ RI×J×K , rank R, maximum iterations T
Output: PARAFAC decomposition λ ∈ RR×1,A ∈ RI×R,

B ∈ RJ×R, C ∈ RK×R

1: Initialize A,B,C;
2: for t = 1, ..., T do
3: A← X(1) (C�B) (CTC ∗BTB)†;
4: Normalize columns of A (storing norms in vector λ);
5: B← X(2) (C�A) (CTC ∗ATA)†;
6: Normalize columns of B (storing norms in vector λ);
7: C← X(3) (B�A) (BTB ∗ATA)†;
8: Normalize columns of C (storing norms in vector λ);
9: if convergence criterion is met then

10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2) Tucker Decomposition: In Tucker decomposition [11],
called N-mode PCA or N-mode SVD, a tensor is decomposed
into a core tensor and factor matrices of each mode. The
factor matrices represent the principal components of each
mode and the core tensor represents the interactions between
the different components. Tucker decomposition is a more
generalized version of PARAFAC decomposition, since the
factors interact with all pairs of other factors.

Fig. 3: Tucker decomposition of a three-way tensor. The tensor
X is decomposed as a core tensor G, and three factor matrices
A, B, and C.

Tucker decomposition for 3-way tensor. The 3-way tensor
is decomposed as follows.

X ≈ [G;A,B,C] = G×1 A×2 B×3 C

=

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr

where, G ∈ RP×Q×R is the core tensor, and A ∈ RI×P ,B ∈
RJ×Q, and C ∈ RK×R are the factor matrices. Figure 3 shows

the Tucker decomposition of a 3-way tensor.
Tucker decomposition for N-way tensor. The N-way tensor
is decomposed as follows.

X ≈ [G;A(1),A(2), ...,A(N)]

= G×1 A
(1) ×2 A

(2)...×N A(N)

where, G ∈ RJ1×J2...×JN is the core tensor, and A(1) ∈
RI1×J1 ,A(2) ∈ RI2×J2 , ..., and A(N) ∈ RIN×JN are the
factor matrices.
Tucker-ALS. Tucker-ALS algorithm uses an alternating least
squares approach. For updating each factor, there are some
approaches such as SVD, Bauer-Rutishauser, Gram-Schmidt
and NIPALS [12]. Algorithm 2 shows the standard SVD-based
algorithm for 3-way Tucker decomposition.

Algorithm 2: 3-way Tucker-ALS
Input: Tensor X ∈ RI×J×K , desired core size: P ×Q×R
Output: Core tensor G ∈ RP×Q×R and orthogonal factor matrices

A ∈ RI×P ,B ∈ RJ×Q, and C ∈ RK×R

1: Initialize B,C;
2: repeat
3: Y← X×2 B

T ×3 C
T ;

4: A← P leading left singular vectors of Y(1);
5: Y← X×1 A

T ×3 C
T ;

6: B← Q leading left singular vectors of Y(2);
7: Y← X×1 A

T ×2 B
T ;

8: C← R leading left singular vectors of Y(3);
9: G← Y×3 C;

10: until ||G|| ceases to increase or the maximum number of outer
iterations is exceeded.

III. PROPOSED METHOD

In this section, we describe main ideas of HATEN2, the
proposed distributed MAPREDUCE algorithms for large scale
tensor decompositions.

A. Overview

How can we design scalable and efficient PARAFAC/Tucker
decomposition algorithms for very large tensors? The most
challenging parts of those algorithms are n-mode matrix
product Y← X×2B

T×3C
T (lines 3, 5, and 7 of Algorithm 2)

in Tucker-ALS, and Khatri-rao product Y ← X(1) (C�B)
(lines 3, 5, and 7 of Algorithm 1) in PARAFAC-ALS. There
are several challenges in designing efficient distributed algo-
rithms for these operations.
TABLE III: Summary of costs in all methods for computing
X×2B×3C in Tucker decomposition. We replace nnz(X×2

B) with nnz(X)Q according to the estimation of nnz(X×2B)
in Lemma 3 of Appendix A.

Method Max. Intermediate Data Total Jobs

HATEN2-Tucker-Naive nnz(X) + IJK Q+R
HATEN2-Tucker-DNN nnz(X)QR Q+R+ 2
HATEN2-Tucker-DRN nnz(X)(Q+R) Q+R+ 1
HATEN2-Tucker-DRI nnz(X)(Q+R) 2

• Minimize intermediate data. During the computation,
huge intermediate data are generated in the shuffle stage.
How can we minimize the intermediate data?



TABLE II: Comparison of all methods experimented. Our proposed and recommended method is HATEN2-DRI (or just
HATEN2) which incorporates all the proposed ideas.

Method Distributed? Decoupling the Steps (D/N) Remove Dependencies (R/N) Integrating Jobs (I/N)
(Section III-B2) (Section III-B3) (Section III-B4)

Tensor Toolbox No No No No
HATEN2-Naive Yes No No No
HATEN2-DNN Yes Yes No No
HATEN2-DRN Yes Yes Yes No

HATEN2-DRI (or just HATEN2) Yes Yes Yes Yes

• Minimize disk accesses. How can we minimize the disk
accesses to decrease the running time?

• Minimize jobs. How can we minimize the number of
MAPREDUCE jobs to decrease the running time?

Our main ideas to address the challenges are as follows.

• Decoupling the steps in n-mode vector product. We
decouple the multiplication and the addition steps in n-
mode vector product by introducing a new operation
called Hadamard-and-Merge which leads to decreasing
the intermediate data size (Section III-B2).

• Removing dependencies in sequential products. We
remove dependencies by carefully reordering the compu-
tations, and exploiting the sparsity of real world tensors.
It leads to further decreasing the intermediate data size
(Section III-B3).

• Integrating jobs by increasing memory usage. We inte-
grate multiple MAPREDUCE jobs by increasing memory
usage. The idea leads to minimizing the number of jobs
and the disk accesses (Section III-B4).

Figure 4 shows the framework of our proposed HATEN2-
DRI (or just HATEN2) method which contains all the above
ideas. Note that although the computations for the two
decompositions Tucker and PARAFAC are different, our
HATEN2 unifies them into a general framework where the
two methods differ only at the final merge step: HATEN2-
Tucker uses CrossMerge, while HATEN2-PARAFAC uses
PairwiseMerge (see Section III-B4 for details). In the next
subsection, we describe the three main ideas in detail.
TABLE IV: Summary of costs in all methods for computing
X(1)(B�C) in PARAFAC decomposition.

Method Max. Intermediate Data Total Jobs

HATEN2-PARAFAC-Naive nnz(X) + IJK 2R
HATEN2-PARAFAC-DNN nnz(X) + J 4R
HATEN2-PARAFAC-DRN 2nnz(X)R 2R+ 1
HATEN2-PARAFAC-DRI 2nnz(X)R 2

B. Method Details

In the following, we start with a naive method, and improve
the method gradually by adding several ideas one by one until
we reach the final method HATEN2-DRI (or just HATEN2).
Figure 5 and Table II summarize the differences between all
methods. Table III and IV show the total costs of all the
methods in terms of the maximum intermediate data size, and
the number of total MAPREDUCE jobs.

1) Naive Method: The most naive method is the straight-
forward implementation of the idea in MET [5], the state-of-
the art single machine implementation which was adopted by
Tensor Toolbox. The main idea is to perform each n-mode
vector product separately. HATEN2-Tucker-Naive computes
T = X×2B

T first by performing X×̄2b
T
q operation Q times,

and then computes T×3C
T by performing T×̄3c

T
r operation

R times, where bq and cr are the qth row of B, and the rth
row of C, respectively. Algorithm 3 shows HATEN2-Tucker-
Naive method.

Algorithm 3: HATEN2-Tucker-Naive for computing Y←
X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: Tq ← X×̄2b

T
q ;

3: end for
4: for r=1,..,R do
5: Yr ← T×̄3c

T
r ;

6: end for

Similarly, HATEN2-PARAFAC-Naive computes Tr =
X×̄2b

T
r first, and then computes Yr = Tr×̄3c

T
r . It computes

Y by performing these operations R times. Algorithm 4 shows
HATEN2-PARAFAC-Naive method.
Algorithm 4: HATEN2-PARAFAC-Naive for computing
Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: Tr ← X×̄2b

T
r ;

3: Yr ← Tr×̄3c
T
r ;

4: end for

MAPREDUCE algorithm. The MAPREDUCE algorithm of n-
mode vector product X×̄2b

T
q in HATEN2-Naive is as follows.

<Naive: X×̄2b
T
q >

• MAP: map < i, j, k,X(i, j, k) > on (iK + k), such
that tuples with the same key are shuffled to the
same reducer in the form of <key: (iK + k), values:
{(j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi:k)} >, and send bq to
the all the reducers in the form of <key: (iK+k)|∀(i, k),
values: {(j,bq(j))|∀j ∈ idx(bq)} >.

• REDUCE: take <key: (iK+k), values: {(j,bq(j))|∀j ∈
idx(bq)}, {(j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi:k)} >, and
emit < i, k,

∑J
j=1 X(i, j, k)bq(j) >.



Fig. 4: General computational framework in HATEN2 for Tucker and PARAFAC decompositions (Q = R in PARAFAC).
Although the two decompositions are different, our HATEN2 unifies them into a general framework where the two methods
differ only at the final merge step: CrossMerge for HATEN2-Tucker, and PairwiseMerge for HATEN2-PARAFAC (see
Section III-B4 for details).

The reducer processing the key iK+k receives the non-zero
elements of Xi:k and bq . Then it performs the inner product of
the two vectors, and outputs an element of the result tensor Tq .
T×̄3c

T
r operation is handled in the same manner. Although

simple, this naive implementation has too much overhead
because 1) the vector bTq is copied IK times which eventually
generates too much intermediate data (nnz(X) + IJK), and
2) the vector bTq might not fit in the memory of a machine
when J is very large. How can we improve this naive method?
In the following three subsections we incrementally improve
the naive method.

2) Decoupling the Steps in n-mode Vector Product: The
first idea to improve the naive method is to make the n-
mode vector product ×̄n scalable. As we saw in the previous
subsection, the naive algorithm which broadcasts the vector
bTq has too much overhead. Our idea, called Hadamard-and-
Merge, is to decouple the product into two steps: the Hadamard
product step where the element of the vector is multiplied
with the corresponding element of the tensor, and the merge
step where the multiplied values are summed. Hadamard-and-
Merge operation comprises the two following operations: n-
mode vector Hadamard product and Collapse.

Definition 1 (n-mode vector Hadamard product): The
n-mode vector Hadamard product of a tensor
X ∈ RI1×I2×···×IN and a vector v ∈ RIn is denoted by
X∗̄nv and is of size I1 × I2 × · · · × IN . It is defined by

(X∗̄nv)i1...in...iN = xi1...in...iN vin .

Definition 2 (Collapse(X)n): The Collapse operation of
a tensor X ∈ RI1×I2×···×IN on mode n is denoted by
Collapse(X)n and is of size I1×···×I(n−1)×I(n+1)×···×IN .
It is defined by

(Collapse(X)n)i1...in−1in+1...iN =

In∑
in=1

xi1...in...iN .

Intuitively, the n-mode vector Hadamard product is a
generalization of Hadamard product of two vectors. The

Collapse(X)n operation sums up all the values of a tensor
X across the mode n. With these definitions, HATEN2-
DNN expresses the original n-mode vector product X×̄2b

T
q

by Collapse(X∗̄2bTq )2. By decoupling the n-mode vector
product into two steps, HATEN2-DNN greatly decreases the
intermediate data size of HATEN2-Naive from nnz(X) +
IJK to nnz(X)QR for Tucker, and from nnz(X) + IJK
to nnz(X) + J for PARAFAC. Algorithms 5 and 6 show
HATEN2-DNN for Tucker and PARAFAC decompositions,
respectively. In HATEN2-Tucker-DNN, we compute T =
X×2B

T ∈ RI×Q×K by iteratively performing T′
q = X∗̄2bTq

for Q times, and then merging them using the operation
Collapse(T′)2. T ×3 CT operation is handled in the same
manner. In HATEN2-PARAFAC-DNN, Collapse is applied
right after the individual n-mode vector Hadamard product.

Algorithm 5: HATEN2-Tucker-DNN for computing Y←
X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: T ← Collapse(T′)2;
5: for r=1,..,R do
6: Y′

r ← T∗̄3cTr ;
7: end for
8: Y← Collapse(Y′)3;

MAPREDUCE algorithm. The MAPREDUCE algorithms of
n-mode vector Hadamard product and Collapse(X)n in
HATEN2-DNN are expressed as follows.
< X∗̄2bTq >
• MAP: map < i, j, k,X(i, j, k) > on j, and <
j, q,bq(j) > on j such that tuples with the same key are
shuffled to the same reducer in the form of <key: j, val-
ues: (q,bq(j)), {(i, k,X(i, j, k))|∀(i, k) ∈ idx(Xi:k)} >.



(a) HATEN2-Naive (b) HATEN2-DNN

(c) HATEN2-DRN (d) HATEN2-DRI
Fig. 5: Comparison of all HATEN2 variants for Tucker decomposition. Areas with the same color are sent to the same reducer
in the MAPREDUCE jobs for n-mode (Hadamard) product.

Algorithm 6: HATEN2-PARAFAC-DNN for computing
Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: T′

r ← X∗̄2bT
r ;

3: Tr ← Collapse(T′
r)2;

4: Y′
r ← Tr ∗̄3cTr ;

5: Yr ← Collapse(Y′
r)3;

6: end for

• REDUCE: take <key: j, values:
(q,bq(j)), {(i, k,X(i, j, k))|∀(i, k) ∈ idx(Xi:k)} >
and emit < i, j, k, q,X(i, j, k)bq(j) > for each
(i, k) ∈ idx(Xi:k).

< Collapse(T)2 >

• MAP: map < i, j, k, q,X(i, j, k)B(j, q) > on (iK + k)
such that tuples with the same key are shuffled to the
same reducer in the form of <key: (iK + k), values:
{(q,X(i, j, k)B(j, q))|∀(i, j, k, q) ∈ idx(Ti:k:)} >.

• REDUCE: take <key: (iK + k), values:
{(q,X(i, j, k)B(j, q))|∀(i, j, k, q) ∈ idx(Ti:k:)} >
and emit < i, q, k,

∑
j X(i, j, k)B(j, q) > for each

(i, j, k, q) ∈ idx(Ti:k:).
In n-mode vector Hadamard product, the mappers send

nnz(X:j:) of j-th slice and an element of bq to reducers
using j as the key. The reducers multiply the vector element
with the tensor elements. In Collapse operation, mappers send
nnz(Xi:k)Q elements to reducers using iK+k as the key. The
reducers aggregate the values.

3) Removing Dependencies in Sequential Products : The
previous two methods HATEN2-Naive and HATEN2-DNN

have a significant problem: they have dependencies in their
computation sequences. In Tucker decomposition, to compute
Y ← X ×2 BT ×3 CT , both of the previous methods first
compute T = X×2 B

T by multiplying X and columns of B,
and then multiply T with the columns of C. That is, the second
step cannot be initiated until the first step is finished. Similarly,
in PARAFAC decomposition, computing Y ← X(1) (C�B)
has a dependency: X is multiplied with bT first, and the result
is multiplied with cT . These dependencies in the computation
have the following problems.

• Too large intermediate data: in Tucker decomposition, the
number nnz(T) of nonzero elements in T = X ×2 B

T

is estimated to be nnz(X)Q for a sparse tensor X, as
described in Lemma 3 of Appendix A. Thus, multiplying
T with CT would require intermediate data of size
nnz(X)QR which is prohibitively large.

• Too many MAPREDUCE jobs: in PARAFAC decompo-
sition, HATEN2-PARAFAC-DNN requires 4R MAPRE-
DUCE jobs, since the first multiplication with bT , and the
second multiplication with cT are performed in sequence.

Our idea to solve the problems is to remove the dependen-
cies by carefully reordering the computations, and exploiting
the sparsity of real world tensors. Before describing the
details, we introduce two new operations CrossMerge and
PairwiseMerge as follows.

Definition 3 (CrossMerge): The CrossMerge operation of
N − 1 tensors X1 ∈ RI1×...×IN×J1 , ..., Xn−1,Xn+1, ...,XN ∈
RI1×...×IN×JN on the mode n is denoted by
CrossMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n) and is of size
RIn×J1×...×JN . It is defined by

(CrossMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n))inj1...jN =



I1,...,In−1,In+1,...,IN∑
(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, ..., iN , j1)×· · ·×Xm(i1, ...iN , jN )

, for all ji = 1, ..., Ji where i 6= n.
Definition 4 (PairwiseMerge): The PairwiseMerge

operation of N − 1 tensors X1, ...,Xn−1,Xn+1, ...,XN ∈
RI1×...×IN×J on the mode n is denoted by
PairwiseMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n) and is of
size RIn×J . It is defined by

(PairwiseMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n))inj =
I1,...,In−1,In+1,...,IN∑

(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, ..., iN , j)×· · ·×Xm(i1, ...iN , j)

, for all j = 1, ..., J .
Our crucial observation is that these two operations can be

used for removing the dependencies in the computations of
X×2B

T ×3C
T and X(1) (C�B), respectively, as shown in

the following lemmas.
Lemma 1 (CrossMerge): Given X ∈ RI×J×K , B ∈ RJ×Q,

and C ∈ RK×R,
X×2 B

T ×3 C
T ⇔ CrossMerge(T′,T′′)(1)

where T′ ∈ RI×J×K×Q is a tensor whose qth subtensor T′
:::q

is given by X∗̄2bTq , and T′′ ∈ RI×J×K×R is a tensor whose
rth subtensor T′

:::r is given by bin(X)∗̄3cTr .
Proof: See the supplementary material [8].

Lemma 2 (PairwiseMerge): Given X ∈ RI×J×K , B ∈
RJ×R, and C ∈ RK×R,

X(1) (C�B)⇔ PairwiseMerge(F′,T′′)(1)
where F′ ∈ RI×J×K×R is a tensor whose rth subtensor F′

:::r

is given by X∗̄2bTr , and T′′ ∈ RI×J×K×R is a tensor whose
rth subtensor T′

:::r is given by bin(X)∗̄3cTr .
Proof: See the supplementary material [8].

Fig. 6: Comparison of HATEN2-Tucker-DNN and HATEN2-
Tucker-DRN.

Using these two operations, HATEN2-Tucker-DRN, shown
in Algorithm 7, computes T′ and T′′ first, and then merges the
result. Figure 6 illustrates the difference of HATEN2-Tucker-
DRN and HATEN2-Tucker-DNN. Note that both T′ and T′′

are sparse if the input tensor X is sparse, which is true in
most real world tensors. Thus, HATEN2-Tucker-DRN further
decreases the intermediate data size of HATEN2-DNN from
nnz(X)QR to nnz(X)(Q + R). We want to emphasize that
this decrease of the intermediate data size comes from the
sparsity of real world tensors where nnz(X) ∼ I; if the input
tensor is a full tensor (which is not realistic), the interme-
diate data size of HATEN2-DNN becomes nnz(X)Q which
is smaller than that of HATEN2-DRN. Also, note that the
removal of dependency in HATEN2-DRN enables computing
T′ and T′′ in parallel; the idea is reflected in HATEN2-DRI

(see Section III-B4 for details). For PARAFAC decomposition,
HATEN2-PARAFAC-DRN, shown in Algorithm 8, decreases
the number of MAPREDUCE jobs of HATEN2-PARAFAC-
DNN from 4R to 2R+ 1.

Algorithm 7: HATEN2-Tucker-DRN for computing Y←
X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cTr ;
6: end for
7: Y← CrossMerge(T′,T′′)(1);

Algorithm 8: HATEN2-PARAFAC-DRN for computing
Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: F′

r ← X∗̄2bT
r ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cTr ;
6: end for
7: Y← PairwiseMerge(F′,T′′)(1);

MAPREDUCE algorithm. The MAPREDUCE algorithms
of CrossMerge(T′,T′′)(1) and PairwiseMerge(F′,T′′)(1)
operations are as follows.
< CrossMerge(T′,T′′)(1) >

• MAP: map < i, j, k, q,X(i, j, k)bq(j) > on (i, rQ + q)
for all r = 1, ...R, and < i, j, k, r, cr(k) > on (i, rQ+q)
for all q = 1, ...Q such that tuples with the same key
are shuffled to the same reducer in the form of <key:
(i, r ∗Q+ q), values: {(j, k,X(i, j, k)bq(j))
|∀(i, j, k) ∈ idx(Xi::)}, {(j, k, r, cr(k))|∀(i, j, k) ∈
idx(Xi::)} >.

• REDUCE: take <key: (i, rQ + q), val-
ues: {(j, k,X(i, j, k)bq(j))|∀(i, j, k) ∈
idx(Xi::)}, {(j, k, r, cr(k))|∀(i, j, k) ∈ idx(Xi::)} >
and emit < {i, q, r,

∑
j,kX(i, j, k)bq(j)cr(k) for all

q=1, ..., Q, r=1, ..., R} > for each (i, j, k) ∈ idx(Xi::).

< PairwiseMerge(F′,T′′)(1) >

• MAP: map < i, j, k, r,X(i, j, k)br(j) > on (i, r),
and < i, j, k, r, cr(k) > on (i, r) such that tuples with the
same key are shuffled to the same reducer in the form of
<key: (i, r), values: {(j, k,X(i, j, k)br(j))|∀(i, j, k)
∈ idx(Xi::)}, {(j, k, cr(k))|∀(i, j, k) ∈ idx(Xi::)} >.

• REDUCE: take
<key: (i, r), values: {(j, k,X(i, j, k)br(j))|∀(i, j, k) ∈
idx(Xi::)}, {(j, k, cr(k))|∀(i, j, k) ∈ idx(Xi::)} >
and emit < {i, r,

∑
j,kX(i, j, k)br(j)cr(k) for all

r = 1, ..., R} > for each (i, j, k) ∈ idx(Xi::).



4) Integrating Jobs by Increasing Memory Usage: Al-
though HATEN2-DRN decreased the intermediate data size
and the number of MAPREDUCE jobs, the number of jobs is
still significant: it is Q + R + 1 for HATEN2-Tucker-DRN
and 2R+ 1 for HATEN2-PARAFAC-DRN. In this subsection,
we propose HATEN2-DRI to further decrease the number
of jobs to 2, thereby decreasing the disk accesses and the
running time. Algorithms 9 and 10 show HATEN2-Tucker-
DRI, and HATEN2-PARAFAC-DRI, respectively. HATEN2-
DRI has two main ideas: integrating 1) vector products into a
matrix product, and 2) products for different factor matrices.

Algorithm 9: HATEN2-Tucker-DRI for computing Y ←
X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: (T′,T′′)← IMHP (X,B,C);
2: Y← CrossMerge(T′,T′′)(1);

Algorithm 10: HATEN2-PARAFAC-DRI for computing
Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: (T′,T′′)← IMHP (X,B,C);
2: Y← PairwiseMerge(T′,T′′)(1);

Integrating vector products into a matrix product.
HATEN2-DRI performs several n-mode vector Hadamard
products together in one MAPREDUCE job, instead of multiple
jobs, using the n-mode matrix Hadamard product which we
define as follows.

Definition 5 (n-mode matrix Hadamard product): The n-
mode matrix Hadamard product of a tensor
X ∈ RI1×I2×···×IN with a matrix U ∈ RQ×In is denoted by
X ∗nU and is of size I1× I2× · · ·× IN ×Q . It is defined by

(X ∗n U)i1i2...iNq = (X∗̄nuq)i1i2...iN .
MAPREDUCE algorithm. The MAPREDUCE algorithm of n-
mode matrix Hadamard product is as follows:
< X ∗2 B >

• MAP: map < i, j, k,X(i, j, k) > on j, and
< j, q,B(j, q) > on j such that tuples with the same
key are shuffled to the same reducer in the form of
<key: j, values: {(q,B(j, q))|∀q ∈
{1, ..., Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >.

• REDUCE: take <key: j, values: {(q,B(j, q))|∀q ∈
{1, ..., Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >
and emit < i, j, k, q,X(i, j, k)B(j, q) > for each
(i, j, k) ∈ idx(X:j:) and q ∈ {1, ..., Q}.

The previous HATEN2-DRN method performs the n-
mode vector Hadamard product X∗̄2bTq for Q times using
nnz(X:j:) + 1 of memory space per reducer; however, our
new method HATEN2-DRI performs X∗2BT only once using
nnz(X:j:) + Q of memory space per reducer where Q is
used for storing a column of BT . HATEN2-DRI decreases

the number of jobs significantly without introducing too much
overhead since Q is very small (e.g., 10 or 20).

Integrating products for different factor matrices.
HATEN2-DRI also integrates X ∗2 BT and bin(X) ∗3 CT

computations into one MAPREDUCE job. This integration
is possible since the dependency of the two operations is
removed in HATEN2-DRN (and, hence in HATEN2-DRI).
Thanks to the integration, the original tensor data X needs
to be read from disks only once (not twice as in previous
methods), and thus we further decrease the running time.
MAPREDUCE algorithm. The integrating operation, denoted
by IMHP (X,B,C), is as follows.
IMHP (X,B,C)

• MAP: map < i, j, k,X(i, j, k) > on j,
< j, q,B(j, q) > on j, < i, j, k,X(i, j, k) > on k, and
< k, r,C(k, r) > on k such that tuples with the same
key are shuffled to the same reducer in the form of
<key: j, values: {(q,B(j, q))|∀q ∈
{1, ..., Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >,
and <key: k, values: {(r,C(k, r))|∀r ∈
{1, ..., R}}, {(i, j,X(i, j, k))|∀(i, j, k) ∈ idx(X:k:)} >.

• REDUCE: take
<key: j, values: {(q,B(j, q))|∀q ∈
{1, ..., Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >
and emit < i, j, k, q,X(i, j, k)B(j, q) > for each
(i, j, k) ∈ idx(X:j:) and q ∈ {1, ..., Q}, and take
<key: k, values: {(r,C(k, r))|∀r ∈
{1, ..., R}}, {(i, j,X(i, j, k))|∀(i, j, k) ∈ idx(X:k:)} >
and emit < i, j, k, r,C(k, r) > for each
(i, j, k) ∈ idx(X:k:) and r ∈ {1, ..., R}.

Finally, we note that although the two decompositions
Tucker and PARAFAC are different, our HATEN2-DRI unifies
them in a general framework of IMHP and merge. As seen
in Algorithms 9 and 10, as well as in Figure 4, HATEN2-
Tucker-DRI and HATEN2-PARAFAC-DRI differ only in the
merge function (CrossMerge for HATEN2-Tucker-DRI, and
PairwiseMerge for HATEN2-PARAFAC-DRI). This general
framework allows easier extension of the method for other
algorithms, as well as simple maintenance of the code.

IV. EXPERIMENT

In this section, we present experimental results to answer
the following questions.
Q1 What is the performance of HATEN2-DRI compared with

other methods?
Q2 How well does HATEN2-DRI scale up with various

factors (nonzeros, dimensionality, density, core tensor
size, and machines)?

Q3 What are the discoveries on real world tensors?
Q4 What are the differences between PARAFAC and Tucker

decompositions on real world tensors?
After describing the experimental settings in Section IV-A,

we present the scalability results in Section IV-B to answer
Q1 and Q2. Then we present the discovery results to answer
Q3 and Q4.



TABLE V: Summary of the tensor data used. B: billion, M: million, K: thousand.

Data I J K Nonzeros Density

Freebase-music 23 M 23 M 166 99 M 1.127× 10−9

NELL 26 M 26 M 48 M 144 M 4.387× 10−15

Random 1 K∼100 M 1 K∼100 M 1 K∼100 M 10 K∼10 B 10−15 ∼ 10−5

(a) Nonzeros and Dimensionality (b) Density (c) Core
Fig. 7: Data scalability of our proposed HATEN2-DRI compared to other methods, for PARAFAC decomposition. The datasets
are explained in detail at Section IV-A. o.o.m: out of memory. Compared to the Tensor Toolbox, HATEN2-DRI decomposes
10 ∼ 100× larger data. Among the variants of HATEN2, HATEN2-DRI is the fastest, and analyzes 10× larger data than
HATEN2-DNN.

A. Experimental Settings

We compare our final method HATEN2-DRI with other
methods (HATEN2-Naive, HATEN2-DNN, HATEN2-DRN) as
well as the Tensor Toolbox [13], the state of the art tensor
computation package for single machine.

1) Machines: HATEN2 is run on a HADOOP cluster with
40 machines where each machine has a quad-core Intel Xeon
E3 1230v3 3.3Ghz CPU, 32 GB RAM, and 12 Terabytes disk.
The Tensor Toolbox is run on a machine from the HADOOP
cluster.

2) Dataset: The tensor dataset used in our experiments are
summarized in Table V, with the following details.
• Freebase-music: RDF dataset containing music-related

(subject entity, object entity, relation) triples from Free-
base [14].

• NELL: real world knowledge base data containing (noun
phrase 1, noun phrase 2, context) triples (e.g. ‘George
Harrison’, ‘guitars’, ‘plays’) from the ‘Read the Web’
project [1].

• Random: synthetic random tensor of size I × I × I . The
size I varies from 103 to 108, the number of nonzeros
varies from 104 to 1010, and the density varies from
10−15 ∼ 10−5.

B. Scalability

To answer the questions Q1 and Q2, we compare the
machine and the data scalabilities of HATEN2-DRI with other
methods.

1) Data Scalability: Data scalability is measured for the
following three aspects: number of nonzeros and dimension-
ality, density, and core tensor size. We change the input tensor
in terms of each aspect one by one, while fixing other aspects,
and measure the running time using all the 40 machines in the

cluster. Since the HATEN2-Naive method cannot process even
a 104 scale tensor (Figures 1(a) and 7(a)), HATEN2-Naive
is omitted from the density and core scalability experiments
(Figures 1(b,c) and 7(b,c)).

Nonzeros and Dimensionality. We increase the dimen-
sionality I = J = K of modes from 103 to 108. The
number of nonzeros is set to dimensionality ×10. For Tucker
decomposition, the size P ×Q×R of the core tensor is fixed
to 10 × 10 × 10. For PARAFAC decomposition, the rank R
is set to 10. As shown in Figures 1(a) and 7(a), our best
method HATEN2-DRI shows the best result: HATEN2-DRI
analyzes 108 scale tensor the most quickly. HATEN2-Naive
and HATEN2-DNN failed for tensors with size beyond 103

and 107, respectively. Although HATEN2-DRN also analyzes
108 scale tensor, the running time is 1.3 times slower than that
of HATEN2-DRI.

Density. We increase the density of input tensor from 10−9

to 10−5; accordingly, the number of nonzeros becomes 1
billion to 1 trillion, and they take 20MB to 196GB disk space.
The dimensionality of each mode is set to 105 (I = J = K).
For Tucker decomposition, the size P × Q × R of the core
tensor is fixed to 10×10×10. For PARAFAC decomposition,
the rank R is set to 10. As shown in Figures 1(b) and 7(b),
HATEN2-DRI decomposes 100× denser data than the Tensor
Toolbox, and is the fastest among the variants of HATEN2.
Core Tensor Size. We increase the core size of a random
tensor of size 106×106×106 with 107 nonzeros, and measure
the running time. For Tucker decomposition, the core tensor
size increases from 10 × 10 × 10 to 80 × 80 × 80; for
PARAFAC, the rank R increases from 10 to 80. As shown
in Figures 1(c) and 7(c), HATEN2-DRI scales well, providing
the best performance for all the core sizes. When the core
size is 80, HATEN2-DRI outperforms the second best method



(HATEN2-DRN) by 2.25 times.

Fig. 8: Machine scalability of HATEN2-Tucker-DRI and
HATEN2-PARAFAC-DRI with regard to the “Scale Up” factor
T10

TM
, where TM is the running time with M machines. Note

that for both Tucker and PARAFAC, HATEN2-DRI scales near
linearly in the beginning, while the performance flattens as
more machines are added due to the overhead in distributed
systems.

2) Machine Scalability: To measure the machine scala-
bility, we increase the number of machines from 10 to 40,
and report T10/TM where TM is the running time with M
machines. We use the NELL tensor data of size 26M ×26M
×48M containing 144M nonzeros. For Tucker decomposition,
the core tensor size is set to 10 × 10 × 10. For PARAFAC
decomposition, the rank size is set to 10. As shown in
Figures 8, for both Tucker and PARAFAC, our best method
HATEN2-DRI scales near linearly in the beginning, while the
performance flattens as the number of machines grows due
to the overhead in distributed systems (e.g., synchronization
time, JVM loading time, etc.).

C. Discovery
We apply HATEN2 for analyzing large scale real-world

tensors to answer questions Q3 and Q4. We present the results
on the Freebase-music data; more results on the NELL data
is in the supplementary material [8].
Pre-processing. We pre-process the Freebase-music data for
removing noises and improving the quality of the analysis.
First, we remove the triples containing literal entities (e.g.,
(John, “John”, name)) since they represent definitions which
do not help reveal the latent concepts. Next, we filter unim-
portant triples in a way similar to the Term Frequency/Inverse
Document Frequency based filtering: we remove too scarce
triples whose predicates appear only once in the data, as well
as too frequent triples whose predicates appear in more than 40
percent of all triples. Finally, we reweight the elements of the
tensor data to alleviate the general term’s domination [15]: we
change the element 1 for the triple (x, y, z) to 1 + log α

links(z)
where α is the number of triples for the most frequent pred-
icate, and links(z) is the number of triples for the predicate
z.
Concept discovery. We find latent concepts in the Freebase-
music data by applying HATEN2-Tucker and HATEN2-
PARAFAC on it. For each element in an output factor matrix,
we normalize the value by dividing it with the sum of all
the values of the same element in the same factor matrix,

to further mitigate the effects of dominant terms. Then, we
choose top-k highest valued elements from each column of the
factors. Table VI shows the results from HATEN2-PARAFAC
where we use rank 10. We see several concepts (e.g., “Classic
Album”, “Pop/Rock Music”, and “Instrumentalist”) each of
which contains groups of subjects, objects, and relations. Note
that each subject group is tightly coupled only with an object
group and a relation group, due to the diagonal core tensor of
PARAFAC. On the other hand, Tucker decomposition gives
more diverse concepts from various groups. Table VII shows
the factors from HATEN2-Tucker where we use the core
size 10 × 10 × 10. We found several groups for each mode:
e.g., for the ‘subject’ mode, we found the groups “Classic
Orchestra”, “Instrument”, and “Record Labels”. Table VIII
shows the concepts each of which combines the groups from
the subject, the object, and the relation factors. The first
concept “Instrumental Pieces” contains the subject group S2
(“Instruments”), the object group O1 (“Classic Music”), and
the relation group (“Instrumentalists”); the second concept
“Classics” contains the subject group S1 (“Classic Composers
and Performers”), the object group O1 (“Classic Music”), and
the relation group (“Albums”). Note that the object group O1
appears in both of the concepts, exemplifying the Tucker’s
ability to find concepts from various, possibly overlapping
groups. Similarly, the second and the third concepts share the
relation group R3 (“Albums”).

V. RELATED WORK

A. CP/PARAFAC

1) CP/PARAFAC at work: Acar et al. [16] use the
PARAFAC decomposition in order to detect epilepsy in brain
measurements. In [2], Kolda and Bader extend the popu-
lar HITS algorithm for ranking web-pages, by incorporat-
ing anchor text information to the hyperlinks, and using
PARAFAC in order to derive hubs and authorities from the
data. PARAFAC has also been used in anomaly detection;
[3] and [17] detect network anomalies in computer network
connection logs and specifically [17] spots anomalies in time-
evolving social networks as well. Last but not least, the
PARAFAC decomposition has been used in community de-
tection, where we have different views of the same network
of people [18], or the network evolves over time and we are
interested in identifying communities over time [19].

B. Tucker

1) Tucker at work: In [20], apart from a highly memory
efficient Tucker decomposition algorithm, there is an overview
of the various aspects of the Tucker decomposition as a data
mining tool. The authors of [21] use a tensor in order to
represent multiple semantic relations (such as “synonym” or
“antonym”) and use Tucker as a higher order generalization of
SVD, in order to perform Latent Semantic Analysis. One of
the most widely used Tucker variation is the so called Higher
Order Singular Value Decomposition (HOSVD) [22] which is
a Tucker3 model with additional orthonormality constraints on
the factor matrices. An exemplary work of employing HOSVD



TABLE VI: Concept discovery result from HATEN2-PARAFAC on Freebase-music dataset.

Concepts Subject Entity Object Entity Relation

Concept1: EP 13 Preludes, Op. 32, No. 2 in B-flat Minor: Allegretto ns:music.album-release-type.albums
“Classic Album” Compilation Album Symphony No. 7 in E minor: IVa. Nachtmusik II: Andante amoroso ns:music.artist.track

Live Album Fantaisie a quatre mains sur Don Juan, op. 26: V. Variation 3 ns:music.performance-role.track-performances

Concept2: Rock music Our Album! (Pop album) ns:music.album-release-type.albums
“Pop/Rock music” Pop music Plastic Parachute (Rock band) ns:music.genre.albums

Alternative rock Since the Accident (Rock album) ns:music.voice.singers

Concept3: Guitar Klezmatov (Violinist) ns:music.performance-role.regular-performances
“Instrumentalist” Cor anglais George Baquet (Jazz clarinetist) ns:music.instrument.instrumentalists

Flute Manuel Staropoli (Recorder player) ns:music.genre.artists

TABLE VII: Discovered factors from HATEN2-Tucker on Freebase-music dataset.

Subject S1: Classic Composers and Performers Subject S2: Instruments Subject S3: Labels

London Symphony Orchestra Guitar EMI
Subject Wolfgang Amadeus Mozart Keyboard Atlantic Records

Entity Ludwig van Beethoven Drums Universal Music Group
New York Philharmonic Bass guitar Warner Bros. Records

Object O1: Classic Music Object O2: Songs Object O3: Albums

Faust: Soldatenchor Love Is Like Oxygen Sikidim (by Warner Music Group)
Object Main Theme Honeysuckle Love Terrifying Tales (by EMI)
Entity 3 Trios for Flute, Violin, Cello, no. 1: IV. Rondo: Allegro True Love Rose of Tralee (by EMI)

Piano Concerto in A minor, op. 54: III. Allegro vivace Jungle Luftbahn (by Warner Music Group)

Relation R1: Concert Music Relation R2: Instrumentalists Relation R3: Albums

ns:music.concert.concert-video ns:music.instrument.instrumentalists ns:music.release.region
Relation ns:music.concert-tour.concert-films-or-videos ns:music.instrument.variation ns:music.record-label.artist

ns:music.live-album.concert ns:music.instrument.family ns:music.album.artist
ns:music.concert-film.concert ns:music.guitar.guitarists ns:music.release.album

TABLE VIII: Concept discovery result from HATEN2-Tucker on Freebase-music dataset.

Concepts Subject Entity Object Entity Relation

Concept1:(S2,O1,R2) Guitar Faust: Soldatenchor ‘ns:music.instrument.instrumentalists’
“Instrumental Pieces” Keyboard 3 Trios for Flute, Violin, Cello, no. 1: IV. Rondo: Allegro ‘ns:music.instrument.variation’

Drums Piano Concerto in A minor, op. 54: III. Allegro vivace ‘ns:music.album.artist’
Concept2: (S1,O1,R3) London Symphony Orchestra Faust: Soldatenchor ‘ns:music.release.region’

“Classics” Wolfgang Amadeus Mozart 3 Trios for Flute, Violin, Cello, no. 1: IV. Rondo: Allegro ns:music.record-label.artist’
Ludwig van Beethoven Piano Concerto in A minor, op. 54: III. Allegro vivace ‘ns:music.album.artist’

Concept3: (S3,O3,R3) Columbia Sikidim (by Warner Music Group) ‘ns.music.release.region’
“Musics from Labels” EMI Terrifying Tales (by EMI) ‘ns:record-label.artist’

Atlantic Records Rose of Tralee (by EMI) ‘ns:music.album.artists’

is [23] where the authors provide web search recommendations
to users. HOSVD has been extensively used in Computer
Vision applications [24][25]

C. Scalable Algorithms for Tensor Analysis

The pioneering work [26] of Bader and Kolda develop
efficient algorithms for sparse tensors, where they avoid the
materialization of very large, unnecessary intermediate Khatri-
Rao products. Kang et al. proposed GigaTensor [27], [28]
that first uses a distributed system for PARAFAC decomposi-
tion. GigaTensor is similar to HATEN2-PARAFAC-DRN in
this paper, however in this work we provide a significant
improvement upon [27]. It can be shown that the ways
that GigaTensor [27] and [26] avoid the intermediate data
explosion are equivalent, however, GigaTensor [27] provides
an algorithm which is optimized for the distributed setting.
In [29] Beutel et al. propose FlexiFaCT, a MAPREDUCE
algorithm based on Distributed Stochastic Gradient Descent
for PARAFAC and coupled PARAFAC decompositions. In
[30], Bro and Sidiropoulos use Tucker to compress a tensor,

then do the PARAFAC decomposition on the compressed
tensor and finally decompress the factors, thus speeding up
the PARAFAC decomposition. An alternative approach, DBN,
is introduced in [31] where the authors use Relational Algebra
to break down the tensor into smaller tensors, using relational
decomposition, and thus achieving scalability. Furthermore,
[17], introduces ParCube, an approximate and highly paralel-
lizable algorithm for sparse PARAFAC decomposition. For
scalable Tucker decomposition, there exists several previous
works. Kolda and Sun [20] propose MET (Memory-Efficient
Tucker) for scalable Tucker decomposition algorithm running
on Matlab. Finally, Erdos and Miettinen introduce a scalable
boolean tensor decomposition using random walks [32].

VI. CONCLUSION

In this paper we propose HATEN2, a scalable method for
distributed tensor decompositions on MAPREDUCE. HATEN2
unifies the two major tensor decomposition algorithms, Tucker
and PARAFAC, into a general framework such that the inter-
mediate data size and the running times are minimized. Due to



the careful design, HATEN2 decomposes 100× larger tensors
compared to existing methods. Furthermore, HATEN2 enjoys
near linear scalability on the number of machines. Applying
HATEN2 on a knowledge base tensor with 23 millions of
entities and 99 millions of facts, we discover interesting
concepts of entities and relations.

Future research directions include extending our framework
to other settings such as tensor decompositions with missing
values or nonnegative tensor decompositions.
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APPENDIX

A. Nonzeros in X×2 B

Lemma 3: Given a sparse X ∈ RI×J×K , and a fully dense
B ∈ RJ×Q, the first-order Taylor approximation of the number
of nonzeros in X×2 B is nnz(X)Q.

Proof: Let P (Xijk) be the probability that Xijk 6= 0.
Assuming uniform distribution, P (Xijk) is estimated to be
nnz(X)
IJK . Since B is a fully-dense matrix, a nonzero element

in Xi:k fiber, when multiplied with B, appears as Q nonzero
elements in the result tensor X×2B. Thus, the probability that
there is no element in the (i, k)-th fiber of X ×2 B is given
by Q(1− P (Xijk))J = Q(1− nnz(X)

IJK )J . Then the estimated
number of nonzero elements in X×2 B is given by (1− (1−
nnz(X)
IJK )J)× IQK. Applying the first-order Taylor expansion

of (1 + x)n ≈ 1 + nx to the equation (1− nnz(X)
IJK )J , we get

(1− (1− nnz(X)

IJK
)J)× IQK ≈

(1− (1− J nnz(X)
IJK ))× IQK = nnz(X)Q


