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ABSTRACT

Many data are modeled as tensors, or multi dimensional arrays.
Examples include the predicates (subject, verb, object) in knowl-
edge bases, hyperlinks and anchor texts in the Web graphs, sen-
sor streams (time, location, and type), social networks over time,
and DBLP conference-author-keyword relations. Tensor decompo-
sition is an important data mining tool with various applications
including clustering, trend detection, and anomaly detection. How-
ever, current tensor decomposition algorithms are not scalable for
large tensors with billions of sizes and hundreds millions of nonze-
ros: the largest tensor in the literature remains thousands of sizes
and hundreds thousands of nonzeros.

Consider a knowledge base tensor consisting of about 26 mil-
lion noun-phrases. The intermediate data explosion problem, as-
sociated with naive implementations of tensor decomposition algo-
rithms, would require the materialization and the storage of a ma-
trix whose largest dimension would be ≈ 7 · 1014; this amounts to
∼ 10 Petabytes, or equivalently a few data centers worth of storage,
thereby rendering the tensor analysis of this knowledge base, in the
naive way, practically impossible. In this paper, we propose GI-
GATENSOR, a scalable distributed algorithm for large scale tensor
decomposition. GIGATENSOR exploits the sparseness of the real
world tensors, and avoids the intermediate data explosion problem
by carefully redesigning the tensor decomposition algorithm.

Extensive experiments show that our proposed GIGATENSOR

solves 100× bigger problems than existing methods. Furthermore,
we employ GIGATENSOR in order to analyze a very large real
world, knowledge base tensor and present our astounding findings
which include discovery of potential synonyms among millions
of noun-phrases (e.g. the noun ‘pollutant’ and the noun-phrase
‘greenhouse gases’).
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1. INTRODUCTION
Tensors, or multi-dimensional arrays appear in numerous appli-

cations: predicates (subject, verb, object) in knowledge bases [9],
hyperlinks and anchor texts in the Web graphs [20], sensor streams
(time, location, and type) [30], and DBLP conference-author-
keyword relations [22], to name a few. Analysis of multi-
dimensional arrays by tensor decompositions, as shown in Figure 1,
is a basis for many interesting applications including clustering,
trend detection, anomaly detection [22], correlation analysis [30],
network forensic [25], and latent concept discovery [20].

There exist two, widely used, toolboxes that handle tensors and
tensor decompositions: the Tensor Toolbox for Matlab [6], and
the N-way Toolbox for Matlab [3]. Both toolboxes are considered
the state of the art; especially, the Tensor Toolbox is probably the
fastest existing implementation of tensor decompositions for sparse
tensors (having attracted best paper awards, e.g. see [22]). How-
ever, the toolboxes have critical restrictions: 1) they operate strictly
on data that can fit in the main memory, and 2) their scalability is
limited by the scalability of Matlab. In [4, 22], efficient ways of
computing tensor decompositions, when the tensor is very sparse,
are introduced and are implemented in the Tensor Toolbox. How-
ever, these methods still operate in main memory and therefore
cannot scale to Gigabytes or Terabytes of tensor data. The need
for large scale tensor computations is ever increasing, and there is a
huge gap that needs to be filled. In Table 1, we present an indicative
sample of tensor sizes that have been analyzed so far; we can see
that these sizes are nowhere near as adequate as needed, in order to
satisfy current real data needs, which call for tensors with billions
of sizes and hundreds of millions of nonzero elements.

In this paper, we propose GIGATENSOR, a scalable distributed
algorithm for large scale tensor decomposition. GIGATENSOR can
handle Tera-scale tensors using the MAPREDUCE [11] framework,
and more specifically its open source implementation, HADOOP

[1]. To the best of our knowledge, this paper is the first approach of
deploying tensor decompositions in the MAPREDUCE framework.
The main contributions of this paper are the following.

• Algorithm. We propose GIGATENSOR, a large scale tensor
decomposition algorithm on MAPREDUCE. GIGATENSOR

is carefully designed to minimize the intermediate data size
and the number of floating point operations.

• Scalability. GIGATENSOR decomposes 100× larger tensors
compared to existing methods, as shown in Figure 4. Fur-
thermore, GIGATENSOR enjoys near linear scalability on the
number of machines.
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Figure 1: PARAFAC decomposition of three-way tensor as sum
of R outer products (rank-one tensors), reminiscing of the rank-R
SVD of a matrix (top), and as product of matrices A, B, C, and a
super-diagonal core tensor G (bottom).

Non-

Work Tensor Size zeros

Kolda et al. [20] 787 × 787 × 533 3583
Acar et al. [2] 3.4 K × 100 × 18 (dense)

Maruhashi et al. [25] 2 K × 2 K × 6 K × 4 K 281 K

GIGATENSOR (This work) 26 M × 26 M × 48 M 144 M

Table 1: Indicative sizes of tensors analyzed in the data mining
literature. Our proposed GIGATENSOR analyzes tensors with ≈
1000× larger sizes and ≈ 500× larger nonzero elements.

• Discovery. We discover patterns in a very large knowledge-
base tensor dataset from the ‘Read the Web’ project [9],
which until now, was unable to be analyzed using ten-
sor tools. Our findings include potential synonyms of
noun-phrases, which were discovered after decomposing the
knowledge base tensor; these findings are shown in Table 2
and a detailed description of the discovery procedure is cov-
ered on Section 4.

The rest of paper is organized as follows. Section 2 presents
the preliminaries of the tensor decomposition. Sections 3 describes
our proposed algorithm for large scale tensor analysis. Section 4
presents the experimental results. After reviewing related works in
Section 5, we conclude in Section 6.

2. PRELIMINARIES; TENSOR DECOM-

POSITION
In this section, we describe the preliminaries on the tensor

decomposition whose fast algorithm will be proposed in Sec-
tion 3. Table 3 lists the symbols used in this paper. For
vector/matrix/tensor indexing, we use the Matlab-like notation:
A(i, j) denotes the (i, j)-th element of matrix A, whereas A(:, j)
spans the j-th column of that matrix.
Matrices and the bilinear decomposition. Let X be an I × J
matrix. The rank ofX is the minimum number of rank one matrices
that are required to compose X. A rank one matrix is simply an
outer product of two vectors, say ab

T , where a and b are vectors.
The (i, j)-th element of abT is simply a(i)b(j). If rank(X) = R,

(Given) (Discovered)

Noun Phrase Potential Contextual Synonyms

pollutants dioxin, sulfur dioxide,
greenhouse gases, particulates,
nitrogen oxide, air pollutants, cholesterol

disabilities infections, dizziness, injuries, diseases,
drowsiness, stiffness, injuries

vodafone verizon, comcast

Christian history European history, American history,
Islamic history, history

disbelief dismay, disgust, astonishment

cyberpunk online-gaming

soul body

Table 2: (Left:) Given noun-phrases; (right:) their potential con-

textual synonyms (i.e., terms with similar roles). They were au-
tomatically discovered using tensor decomposition of the NELL-1
knowledge base dataset (see Section 4 for details).

Symbol Definition

X a tensor
X(n) mode-n matricization of a tensor
m number of nonzero elements in a tensor
a a scalar (lowercase, italic letter)
a a column vector (lowercase, bold letter)
A a matrix (uppercase, bold letter)
R number of components
◦ outer product
⊙ Khatri-Rao product
⊗ Kronecker product
∗ Hadamard product
· standard product

A
T transpose of A

M
† pseudoinverse of M

‖M‖F Frobenius norm of M
bin(M) function that converts non-zero elements of M to 1

Table 3: Table of symbols.

then we can write

X = a1b
T
1 + a2b

T
2 + · · ·+ aRb

T
R,

which is called the bilinear decomposition of X. The bilinear
decomposition is compactly written as X = AB

T , where the
columns of A and B are ar and br , respectively, for 1 ≤ r ≤ R.
Usually, one may truncate this decomposition for R ≪ rank(X),
in which case we have a low rank approximation of X.

One of the most popular matrix decompositions is the Singular
Value Decomposition (SVD):

X = UΣV
T ,

whereU,V are unitary I×I and J×J matrices, respectively, and
Σ is a rectangular diagonal matrix, containing the (non-negative)
singular values of X. If we pick A = UΣ and B = V, and pick
R < rank(X), then we obtain the optimal low rank approximation
ofX in the least squares sense [13]. The SVD is also a very power-
ful tool used in computing the so called Moore-Penrose pseudoin-
verse [28], which lies in the heart of the PARAFAC tensor decom-
position which we will describe soon. The Moore-Penrose pseu-



doinverse X† of X is given by

X
† = VΣ

−1
U

T
.

We now provide a brief introduction to tensors and the
PARAFAC decomposition. For a more detailed treatment of the
subject, we refer the interested reader to [21].
Introduction to PARAFAC. Consider a three way tensor X of di-
mensions I × J ×K; for the purposes of this initial analysis, we
restrict ourselves to the study of three way tensors. The generaliza-
tion to higher ways is trivial, provided that a robust implementation
for three way decompositions exists.

DEFINITION 1 (THREE WAY OUTER PRODUCT). The three

way outer product of vectors a,b, c is defined as

[a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k).

DEFINITION 2 (PARAFAC DECOMPOSITION). The

PARAFAC [14, 8] (also known as CP or trilinear) tensor

decomposition of X in R components is

X ≈

R
∑

r=1

ar ◦ br ◦ cr.

The PARAFAC decomposition is a generalization of the matrix
bilinear decomposition in three and higher ways. More compactly,
we can write the PARAFAC decomposition as a triplet of matrices
A,B, andC, i.e. the r-th column of which contains ar,br and cr ,
respectively.

Furthermore, one may normalize each column of the three factor
matrices, and introduce a scalar term λr , one for each rank-one
factor of the decomposition (comprising a R × 1 vector λ), which
forces the factor vectors to be of unit norm. Hence, the PARAFAC
model we are computing is:

X ≈

R
∑

r=1

λrar ◦ br ◦ cr.

DEFINITION 3 (TENSOR UNFOLDING/MATRICIZATION).
We may unfold/matricize the tensor X in the following three ways:

X(1) of size (I × JK), X(2) of size (J × IK) and X(3) of size

(K × IJ). The tensor X and the matricizations are mapped in the

following way.

X(i, j, k)→ X(1)(i, j + (k − 1)J). (1)

X(i, j, k)→ X(2)(j, i+ (k − 1)I). (2)

X(i, j, k)→ X(3)(k, i+ (j − 1)I). (3)

We now set off to introduce some notions that play a key role in the
computation of the PARAFAC decomposition.

DEFINITION 4 (KRONECKER PRODUCT). The Kronecker

product of A and B is:

A⊗B :=







BA(1, 1) · · · BA(1, J1)
...

. . .
...

BA(I1, 1) · · · BA(I1, J1)







If A is of size I1 × J1 and B of size I2 × J2, then A ⊗B is of

size I1I2 × J1J2.

DEFINITION 5 (KHATRI-RAO PRODUCT). The Khatri-Rao

product (or column-wise Kronecker product) (A⊙B), where

A,B have the same number of columns, say R, is defined as:

A⊙B =
[

A(:, 1)⊗B(:, 1) · · ·A(:, R)⊗B(:, R)
]

If A is of size I × R and B is of size J × R then (A⊙B) is of

size IJ ×R.

The Alternating Least Squares Algorithm for PARAFAC. The
most popular algorithm for fitting the PARAFAC decomposition is
the Alternating Least Squares (ALS). The ALS algorithm consists
of three steps, each one being a conditional update of one of the
three factor matrices, given the other two. The version of the algo-
rithm we are using is the one outlined in Algorithm 1; for a detailed
overview of the ALS algorithm, see [21, 14, 8].

Algorithm 1: Alternating Least Squares for the PARAFAC de-
composition.

Input: Tensor X ∈ R
I×J×K , rank R, maximum iterations T .

Output: PARAFAC decomposition λ ∈ R
R×1,A ∈ R

I×R,
B ∈ R

J×R, C ∈ R
K×R.

1: Initialize A,B,C;
2: for t = 1, ..., T do

3: A← X(1) (C⊙B) (CT
C ∗BT

B)†;
4: Normalize columns of A (storing norms in vector λ);
5: B← X(2) (C⊙A) (CT

C ∗AT
A)†;

6: Normalize columns of B (storing norms in vector λ);
7: C← X(3) (B⊙A) (BT

B ∗AT
A)†;

8: Normalize columns of C (storing norms in vector λ);
9: if convergence criterion is met then

10: break for loop;
11: end if

12: end for

13: return λ,A,B,C;

The stopping criterion for Algorithm 1 is either one of the fol-
lowing: 1) the maximum number of iterations is reached, or 2) the
cost of the model for two consecutive iterations stops changing sig-
nificantly (i.e. the difference between the two costs is within a small
number ǫ, usually in the order of 10−6). The cost of the model is
simply the least squares cost.

The most important issue pertaining to the scalability of Algo-
rithm 1 is the ‘intermediate data explosion’ problem. During the
life of Algorithm 1, a naive implementation thereof will have to ma-
terialize matrices (C⊙B) , (C⊙A) , and (B⊙A), which are
very large in sizes.

PROBLEM 1 (INTERMEDIATE DATA EXPLOSION). The

problem of having to materialize (C⊙B) , (C⊙A) , (B⊙A)
is defined as the intermediate data explosion.

In order to give an idea of how devastating this intermediate
data explosion problem is, consider the NELL-1 knowledge base
dataset, described in Section 4, that we are using in this work; this
dataset consists of about 26 · 106 noun-phrases (and for a moment,
ignore the number of the “context" phrases, which account for the
third mode). Then, one of the intermediate matrices will have an
explosive dimension of ≈ 7 · 1014, or equivalently a few data cen-
ters worth of storage, rendering any practical way of materializing
and storing it, virtually impossible.

In [4], Bader et al. introduce a way to alleviate the above prob-
lem, when the tensor is represented in a sparse form, in Matlab.
This approach is however, as we mentioned earlier, bound by the
memory limitations of Matlab. In Section 3, we describe our pro-
posed method which effectively tackles intermediate data explo-
sion, especially for sparse tensors, and is able to scale to very large
tensors, because it operates on a distributed system.



3. PROPOSED METHOD
In this section, we describe GIGATENSOR, our proposed

MAPREDUCE algorithm for large scale tensor analysis.

3.1 Overview
GIGATENSOR provides an efficient distributed algorithm for the

PARAFAC tensor decomposition on MAPREDUCE. The major
challenge is to design an efficient algorithm for updating factors
(line 3, 5, and 7 of Algorithm 1). Since the update rules are simi-
lar, we focus on updating the A matrix. As shown in the line 3 of
Algorithm 1, the update rule for A is

Â← X(1)(C⊙B)(CT
C ∗BT

B)†, (4)

where X(1) ∈ R
I×JK , B ∈ R

J×R, C ∈ R
K×R, (C⊙B) ∈

R
JK×R, and (CT

C ∗ BT
B)† ∈ R

R×R. X(1) is very sparse,
especially in real world tensors, while A, B, and C are dense.

There are several challenges in designing an efficient MAPRE-
DUCE algorithm for Equation (4) in GIGATENSOR:

1. Minimize flops. How to minimize the number of floating
point operations (flops) for computing Equation (4)?

2. Minimize intermediate data. How to minimize the inter-
mediate data size, i.e. the amount of network traffic in the
shuffling stage of MAPREDUCE?

3. Exploit data characteristics. How to exploit the data char-
acteristics including the sparsity of the real world tensor and
the skewness in matrix multiplications to design an efficient
MAPREDUCE algorithm?

We have the following main ideas to address the above chal-
lenges which we describe in detail in later subsections.

1. Careful choice of order of computations in order to mini-
mize flops (Section 3.2).

2. Avoiding intermediate data explosion by exploiting the
sparsity of real world tensors (Section 3.3 and 3.4.1).

3. Parallel outer products to minimize intermediate data (Sec-
tion 3.4.2).

4. Distributed cache multiplication to minimize intermedi-
ate data by exploiting the skewness in matrix multiplications
(Section 3.4.3).

3.2 Ordering of Computations
Equation (4) entails three matrix-matrix multiplications, assum-

ing that we have already computed (C⊙B) and (CT
C∗BT

B)†.
Since matrix multiplication is commutative, Equation (4) can be
computed by either multiplying the first two matrices, and multi-
plying the result with the third matrix:

[X(1)(C⊙B)](CT
C ∗BT

B)†, (5)

or multiplying the last twomatrices, and multiplying the first matrix
with the result:

X(1)[(C⊙B)(CT
C ∗BT

B)†]. (6)

The question is, which equation is better between (5) and (6)?
From a standard result of numerical linear algebra (e.g. [7]), the
Equation (5) requires 2mR + 2IR2 flops, where m is the num-
ber of nonzeros in the tensor X, while the Equation (6) requires
2mR + 2JKR2 flops. Given that the product of the two dimen-
sion sizes (JK) is larger than the other dimension size (I) in most

practical cases, Equation (5) results in smaller flops. For example,
referring to the NELL-1 dataset of Table 7, Equation (5) requires
≈ 8 · 109 flops while Equation (6) requires ≈ 2.5 · 1017 flops. For
the reason, we choose the Equation (5) ordering for updating fac-
tor matrices. That is, we perform the following three matrix-matrix
multiplications for Equation (4):

Step 1 : M1 ← X(1)(C⊙B) (7)

Step 2 : M2 ← (CT
C ∗BT

B)† (8)

Step 3 : M3 ←M1M2 (9)

3.3 Avoiding the Intermediate Data Explo-
sion Problem

As introduced at the end of Section 2, one of the most important
issue for scaling up the tensor decomposition is the intermediate
data explosion problem. In this subsection we describe the problem
in detail, and propose our solution.

Problem. A naive algorithm to computeX(1)(C⊙B) is to first
construct C⊙B, and multiply X(1) with C⊙B, as illustrated in
Figure 2. The problem (“intermediate data explosion ") of this algo-
rithm is that although the matricized tensor X(1) is sparse, the ma-
trix C⊙B is very large and dense; thus, C⊙B cannot be stored
even in multiple disks in a typical HADOOP cluster.

Figure 2: The “intermediate data explosion " problem in comput-
ing X(1)(C⊙B). Although X(1) is sparse, the matrix C⊙B

is very dense and long. Materializing C⊙B requires too much
storage: e.g., for J = K ≈ 26 million as in the NELL-1 data of
Table 7, C⊙B explodes to 676 trillion rows.

Our Solution. Our crucial observation is thatX(1)(C⊙B) can

be computed without explicitly constructing C⊙B. 1 Our main
idea is to decouple the two terms in the Khatri-Rao product, and
perform algebraic operations involvingX(1) andC, thenX(1) and
B, and then combine the result. Our main idea is described in Al-
gorithm 2 as well as in Figure 3. In line 7 of Algorithm 2, the
Hadamard product of X(1) and a matrix derived from C is per-
formed. In line 8, the Hadamard product of X(1) and a matrix de-
rived from B is performed, where the bin() function converts any
nonzero value into 1, preserving sparsity. In line 9, the Hadamard
product of the two result matrices from lines 7 and 8 is performed,
and the elements of each row of the resulting matrix are summed
up to get the final result vector M1(:, r) in line 10. The following
Theorem demonstrates the correctness of Algorithm 2.

THEOREM 1. Computing X(1)(C⊙B) is equivalent to com-

puting (N1 ∗N2) · 1JK , where N1 = X(1) ∗ (1I ◦ (C(:, r)T ⊗

1
T
J )), N2 = bin(X(1)) ∗ (1I ◦ (1

T
K ⊗B(:, r)T )), and 1JK is an

all-1 vector of size JK.

1Bader et al. [4] has an alternative way to avoid the intermediate
data explosion.



Figure 3: Our solution to avoid the intermediate data explosion. The main idea is to decouple the two terms in the Khatri-Rao product, and
perform algebraic operations using X(1) and C, and then X(1) with B, and combine the result. The symbols ◦,⊗, ∗, and · represents the
outer, Kronecker, Hadamard, and the standard product, respectively. Shaded matrices are dense, and empty matrices with several circles are
sparse. The clouds surrounding matrices represent that the matrices are not materialized. Note that the matrix C⊙B is never constructed,
and the largest dense matrix is either the B or the C matrix.

Algorithm 2: Multiplying X(1) and C⊙B in GIGATENSOR.

Input: Tensor X(1) ∈ R
I×JK , C ∈ R

K×R, B ∈ R
J×R.

Output: M1 ← X(1)(C⊙B).
1: M1 ← 0;
2: 1I ← all 1 vector of size I;
3: 1J ← all 1 vector of size J ;
4: 1K ← all 1 vector of size K;
5: 1JK ← all 1 vector of size JK;
6: for r = 1, ..., R do

7: N1 ← X(1) ∗ (1I ◦ (C(:, r)T ⊗ 1
T
J ));

8: N2 ← bin(X(1)) ∗ (1I ◦ (1
T
K ⊗B(:, r)T ));

9: N3 ← N1 ∗N2;
10: M1(:, r)← N3 · 1JK ;
11: end for

12: return M1;

PROOF. The (i, y)-th element of N1 is given by

N1(i, y) = X(1)(i, y)C(⌈
y

J
⌉, r).

The (i, y)-th element of N2 is given by

N2(i, y) = B(1 + (y − 1)%J, r).

The (i, y)-th element of N3 = N1 ∗N2 is

N3(i, y) = X(1)(i, y)C(⌈
y

J
⌉, r)B(1 + (y − 1)%J, r).

Multiplying N3 with 1JK , which essentially sums up each row
of N3, sets the i-th element M1(i, r) of the M1(:, r) vector equal
to the following:

M1(i, r) =
JK
∑

y=1

X(1)(i, y)C(⌈
y

J
⌉, r)B(1 + (y − 1)%J, r),

which is exactly the equation that we want from the definition of
X(1)(C⊙B).

Notice that in Algorithm 2, the largest dense matrix required is
either B or C (not C⊙B as in the naive case), and therefore we
have effectively avoided the intermediate data explosion problem.

Discussion. Table 4 compares the cost of the naive algorithm and
GIGATENSOR for computing X(1)(C⊙B). The naive algorithm
requires total JKR+2mR flops (JKR for constructing (C⊙B),
and 2mR for multiplying X(1) and (C⊙B)), and JKR + m
intermediate data size (JKR for (C⊙B), and m for X(1)). On
the other hand, GIGATENSOR requires only 5mR flops (3mR for
three Hadamard products, and 2mR for the final multiplication),
andmax(J +m,K +m) intermediate data size. The dependence
on the term JK of the naive method makes it inappropriate for
real world tensors which are sparse and the sizes of dimensions are
much larger compared to the number m of nonzeros (JK ≫ m).
On the other hand, GIGATENSOR depends onmax(J+m,K+m)
which is O(m) for most practical cases, and thus fully exploits the
sparsity of real world tensors.

Algorithm Flops Intermediate Data

Naive JKR+ 2mR JKR+m
GIGATENSOR 5mR max(J +m,K +m)

Table 4: Cost comparison of the naive and GIGATENSOR for com-
puting X(1)(C⊙B). J and K are the sizes of the second and the
third dimensions, respectively, m is the number of nonzeros in the
tensor, and R is the desired rank for the tensor decomposition (typ-
ically, R ∼ 10). GIGATENSOR does not suffer from the interme-
diate data explosion problem, and is much more efficient than the
naive algorithm in terms of both flops and intermediate data sizes.
An arithmetic example, referring to the NELL-1 dataset of Table 7,
for 8 bytes per value, and R = 10 is: 1.25 · 1016 flops, 100 PB for
the naive algorithm and 8.6 · 109 flops, 1.5GB for GIGATENSOR.

3.4 Our Optimizations for MapReduce
In this subsection, we describe MAPREDUCE algorithms for

computing the three steps in Equations (7), (8), and (9).

3.4.1 Avoiding the Intermediate Data Explosion

The first step is to compute M1 ← X(1)(C⊙B) (Equa-



tion (7)). The factors C and B are given in the form of <
j, r,C(j, r) > and < j, r,B(j, r) >, respectively. The tensor
X is stored in the format of < i, j, k,X(i, j, k) >, but we as-
sume the tensor data is given in the form of mode-1 matricization
(< i, j,X(1)(i, j) >) by using the mapping in Equation (1). We

use Qi and Qj to denote the set of nonzero indices in X(1)(i, :)
and X(1)(:, j), respectively: i.e., Qi = {j|X(1)(i, j) > 0} and

Qj = {i|X(1)(i, j) > 0}.
We first describe the MAPREDUCE algorithm for line 7 of Algo-

rithm 2. Here, the tensor data and the factor data are joined for the
Hadamard product. Notice that only the tensor X and the factor C
are transferred in the shuffling stage.

• MAP-1: map < i, j,X(1)(i, j) > on ⌈ j
J
⌉, and <

j, r,C(j, r) > on j such that tuples with the same
key are shuffled to the same reducer in the form of <
j, (C(j, r), {(i,X(1)(i, j))|∀i ∈ Qj}) >.
• REDUCE-1: take < j, (C(j, r), {(i,X(1)(i, j))|∀i ∈

Qj}) > and emit < i, j,X(1)(i, j)C(j, r) > for each

i ∈ Qj .

In the second MAPREDUCE algorithm for line 8 of Algorithm 2,
we perform the similar task as the first MAPREDUCE algorithm but
we do not multiply the value of the tensor, since line 8 uses the
binary function. Again, only the tensor X and the factor B are
transferred in the shuffling stage.

• MAP-2: map < i, j,X(1)(i, j) > on ⌈ j
J
⌉, and <

j, r,B(j, r) > on j such that tuples with the same
key are shuffled to the same reducer in the form of <
j, (B(j, r), {i|∀i ∈ Qj}) >.
• REDUCE-2: take < j, (B(j, r), {i|∀i ∈ Qj}) > and emit

< i, j,B(j, r) > for each i ∈ Qj .

Finally, in the third MAPREDUCE algorithm for lines 9 and 10,
we combine the results from the first and the second steps using
Hadamard product, and sums up each row to get the final result.

• MAP-3: map < i, j,X(1)(i, j)C(j, r) > and <
i, j,B(j, r) > on i such that tuples with the same
i are shuffled to the same reducer in the form of <
i, {(j,X(1)(i, j)C(j, r),B(j, r))}|∀j ∈ Qi >.
• REDUCE-3: take< i, {(j,X(1)(i, j)C(j, r),B(j, r))}|∀j ∈

Qi > and emit < i,
∑

j
X(1)(i, j)C(j, r)B(j, r) >.

Note that the amount of data traffic in the shuffling stage is small
(2 times the nonzeros of the tensorX), considering thatX is sparse.

3.4.2 Parallel Outer Products

The next step is to compute (CT
C ∗ BT

B)† (Equation (8)).
Here, the challenge is to compute C

T
C ∗BT

B efficiently, since
once the C

T
C ∗ BT

B is computed, the pseudo-inverse is trivial
to compute because matrix C

T
C ∗ BT

B is very small (R × R
where R is very small; e.g. R ∼ 10). The question is, how to
compute C

T
C ∗BT

B efficiently? Our idea is to first compute
C

T
C, then B

T
B, and performs the Hadamard product of the two

R × R matrices. To compute CT
C, we express CT

C as the sum
of outer products of the rows:

C
T
C =

K
∑

k=1

C(k, :)T ◦C(k, :), (10)

where C(k, :) is the kth row of the C matrix. To implement the
Equation (10) efficiently in MAPREDUCE, we partition the fac-
tor matrices row-wise [24]: we store each row of C into a line in

the HADOOP File System (HDFS). The advantage of this approach
compared to the column-wise partition is that each unit of data is
self-joined with itself, and thus can be independently processed;
column-wise partition would require each column to be joined with
other columns which is prohibitively expensive.

The MAPREDUCE algorithm for Equation (10) is as follows.

• MAP: map < j,C(j, :) > on 0 so that all the output is shuf-
fled to the only reducer in the form of< 0, {C(j, :)T ◦C(j, :
)}∀j >.
• COMBINE, REDUCE: take < 0, {C(j, :)T ◦ C(j, :)}∀j >

and emit < 0,
∑

j
C(j, :)T ◦C(j, :) >.

Since we use the combiner as well as the reducer, each mapper
computes the local sum of the outer product. The result is that the
size of the intermediate data, i.e. the number of input tuples to the
reducer, is very small (d ·R2 where d is the number of mappers) in
GIGATENSOR. On the other hand, the naive column-wise partition
method requiresKR (the size ofCT ) +K (the size of a column of
C) intermediate data for 1 iteration, and thereby requires K(R2 +
R) intermediate data for R iterations, which is much larger than
the intermediate data size d · R2 of GIGATENSOR, as summarized
in Table 5.

Algorithm Flops Intermediate Data Example

Naive KR2 K(R2 +R) 40 GB

GIGATENSOR KR2 d ·R2 40 KB

Table 5: Cost comparison of the naive (column-wise partition)
method and GIGATENSOR for computing C

T
C. K is the size of

the third dimension, d is the number of mappers used, and R is
the desired rank for the tensor decomposition (typically, R ∼ 10).
Notice that although the flops are the same for both methods, GI-
GATENSOR has much smaller intermediate data size compared to
the naive method, considering K ≫ d. The example refers to the
intermediate data size for NELL-1 dataset of Table 7, for 8 bytes
per value, R = 10 and d = 50.

3.4.3 Distributed Cache Multiplication

The final step is to multiply X(1)(C⊙B) ∈ R
I×R and

(CT
C ∗ BT

B)† ∈ R
R×R (Equation (9)). We note the skew-

ness of data sizes: the first matrix X(1)(C⊙B) is large and does
not fit in the memory of a single machine, while the second ma-
trix (CT

C ∗ BT
B)† is very small to fit in the memory. To ex-

ploit this into better performance, we propose to use the distributed
cache multiplication [16] to broadcast the second matrix to all the
mappers that process the first matrix, and perform join in the first
matrix. The result is that our method requires only one MAPRE-
DUCE job with smaller intermediate data size (IR2). On the other
hand, the standard naive matrix-matrix multiplication requires two
MAPREDUCE jobs: the first job for grouping the data by the col-
umn id ofX(1)(C⊙B) and the row id of (CT

C∗BT
B)†, and the

second job for aggregation. Our proposed method is more efficient
than the naive method since in the naive method the intermediate
data size increases to I(R+R2)+R2 (the first job: IR+R2, and
the second job: IR2), and the first job’s output of size IR2 should
be written to and read from discs for the second job, as summarized
in Table 6.

4. EXPERIMENTS
To evaluate our system, we perform experiments to answer the

following questions:



Algorithm Flops Intermediate Data Example

Naive IR2 I(R+R2) +R2 23 GB

GIGATENSOR IR2 IR2 20 GB

Table 6: Cost comparison of the naive (column-wise partition)
method and GIGATENSOR for multiplying X(1)(C⊙B) and

(CT
C ∗BT

B)†. I is the size of the first dimension, and R is the
desired rank for the tensor decomposition (typically, R ∼ 10). Al-
though the flops are the same for both methods, GIGATENSOR has
smaller intermediate data size compared to the naive method. The
example refers to the intermediate data size for NELL-1 dataset of
Table 7, for 8 bytes per value and R = 10.

Q1 What is the scalability of GIGATENSOR compared to other
methods with regard to the sizes of tensors?

Q2 What is the scalability of GIGATENSOR compared to other
methods with regard to the number of nonzero elements?

Q3 How does GIGATENSOR scale with regard to the number of
machines?

Q4 What are the discoveries on real world tensors?

The tensor data in our experiments are summarized in Table 7,
with the following details.

• NELL: real world knowledge base data containing (noun
phrase 1, context, noun phrase 2) triples (e.g. ‘George Har-
rison’ ‘plays’ ‘guitars’) from the ‘Read the Web’ project [9].
NELL-1 data is the full data, and NELL-2 data is the filtered
data from NELL-1 by removing entries whose values are be-
low a threshold.
• Random: synthetic random tensor of size I×I×I . The size

I varies from 104 to 109, and the number of nonzeros varies
from 102 to 2 · 107.

Data I J K Nonzeros

NELL-1 26 M 26 M 48 M 144 M
NELL-2 15 K 15 K 29 K 77 M
Random 10 K∼1 B 10 K∼1 B 10 K∼1 B 100∼20 M

Table 7: Summary of the tensor data used. B: billion, M: million,
K: thousand.

4.1 Scalability
We compare the scalability of GIGATENSOR and the Tensor

Toolbox for Matlab [6] which is the current state of the art in terms
of handling fast and effectively sparse tensors. The Tensor Toolbox
is executed in a machine with a quad-core AMD 2.8 GHz CPU,
32 GB RAM, and 2.3 Terabytes disk. To run GIGATENSOR, we
use CMU’s OpenCloud HADOOP cluster where each machine has
2 quad-core Intel 2.83 GHz CPU, 16 GB RAM, and 4 Terabytes
disk.

Scalability on the Size of Tensors. Figure 4 (a) shows the scal-
ability of GIGATENSOR with regard to the sizes of tensors. We fix
the number of nonzero elements to 104 on the synthetic data while
increasing the tensor sizes I = J = K. We use 35 machines, and
report the running time for 1 iteration of the algorithm. Notice that
for smaller data the Tensor Toolbox runs faster than GIGATENSOR

due to the overhead of running an algorithm on distributed systems,
including reading/writing the data from/to disks, JVM loading type,
and synchronization time. However as the data size grows beyond
107, the Tensor Toolbox runs out of memory while GIGATENSOR

continues to run, eventually solving at least 100× larger problem

than the competitor. We performed the same experiment while fix-
ing the nonzero elements to 107, and we get similar results. We
note that the Tensor Toolbox at its current implementation cannot
run in distributed systems, thus we were unable to compare GI-
GATENSOR with a distributed Tensor Toolbox. We note that ex-
tending the Tensor Toolbox to run in a distributed setting is highly
non-trivial; and even more complicated to make it handle data that
don’t fit in memory. On the contrary, our GIGATENSOR can handle
such tensors.

Scalability on the Number of Nonzero Elements. Figure 4
(b) shows the scalability of GIGATENSOR compared to the Tensor
Toolbox with regard to the number of nonzeros and tensor sizes on
the synthetic data. We set the tensor size to be I × I × I , and the
number of nonzero elements to be I/50. As in the previous experi-
ment, we use 35 machines, and report the running time required for
1 iteration of the algorithm. Notice that GIGATENSOR decomposes
tensors of sizes at least 109, while the Tensor Toolbox implemen-
tation runs out of memory on tensors of sizes beyond 107.

Scalability on the Number of Machines. Figure 5 shows the
scalability of GIGATENSOR with regard to the number of machines.
The Y-axis shows T25/TM where TM is the running time for 1
iteration with M machines. Notice that the running time scales up
near linearly.
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Figure 5: The scalability of GIGATENSOR with regard to the num-
ber of machines on the NELL-1 data. Notice that the running time
scales up near linearly.

4.2 Discovery
In this section, we present discoveries on the NELL dataset that

was previously introduced; we are mostly interested in demonstrat-
ing the power of our approach, as opposed to the current state of
the art which was unable to handle a dataset of this magnitude. We
perform two tasks: concept discovery, and (contextual) synonym
detection.

Concept Discovery. With GIGATENSOR, we decompose the
NELL-2 dataset in R = 10 components, and obtained λi,A,B,C
(see Figure 1). Each one of the R columns of A,B,C represents
a grouping of similar (noun-phrase np1, noun-phrase np2, context
words) triplets. The r-th column ofA encodes with high values the
noun-phrases in position np1, for the r-th group of triplets, the r-th
column of B does so for the noun-phrases in position np2 and the
r-th column of C contains the corresponding context words. In or-
der to select the most representative noun-phrases and contexts for
each group, we choose the k highest valued coefficients for each
column. Table 8 shows 4 notable groups out of 10, and within each
group the 3 most outstanding noun-phrases and contexts. Notice
that each concept group contains relevant noun phrases and con-
texts.



(a) Number of nonzeros = 104. (b) Number of nonzeros = I/50.

Figure 4: The scalability of GIGATENSOR compared to the Tensor Toolbox. (a) The number of nonzero elements is set to 104. (b) For a
tensor of size I × I × I , the number of nonzero elements is set to I/50. In both cases, GIGATENSOR solves at least 100× larger problem
than the Tensor Toolbox which runs out of memory on tensors of sizes beyond 107.

Noun Noun

Phrase 1 Phrase 2 Context

Concept 1: “Web Protocol"

internet protocol ‘np1’ ‘stream’ ‘np2’
file software ‘np1’ ‘marketing’ ‘np2’
data suite ‘np1’ ‘dating’ ‘np2’

Concept 2: “Credit Cards"

credit information ‘np1’ ‘card’ ‘np2’
Credit debt ‘np1’ ‘report’ ‘np2’
library number ‘np1’ ‘cards’ ‘np2’

Concept 3: “Health System"

health provider ‘np1’ ‘care’ ‘np2’
child providers ‘np’ ‘insurance’ ‘np2’
home system ‘np1’ ‘service’ ‘np2’

Concept 4: “Family Life"

life rest ‘np2’ ‘of’ ‘my’ ‘np1’
family part ‘np2’ ‘of’ ‘his’ ‘np1’
body years ‘np2’ ‘of’ ‘her’ ‘np1’

Table 8: Four notable groups that emerge from analyzing the
NELL dataset.

Contextual Synonym Detection. The lower dimensional em-
bedding of the noun phrases also permits a scalable and robust strat-
egy for synonym detection. We are interested in discovering noun-
phrases that occur in similar contexts, i.e. contextual synonyms.
Using a similarity metric, such as Cosine Similarity, between the
lower dimensional embeddings of the Noun-phrases (such as in
the factor matrix A), we can identify similar noun-phrases that
can be used alternatively in sentence templates such as np1 context

np2. Using the embeddings in the factor matrix A (appropriately
column-weighted by λ), we get the synonyms that might be used in
position np1, using B leads to synonyms for position np2, and us-
ing C leads to contexts that accept similar np1 and np2 arguments.
In Table 2, which is located in Section 1, we show some exemplary
synonyms for position np1 that were discovered by this approach
on NELL-1 dataset. Note that these are not synonyms in the tra-
ditional definition, but they are phrases that may occur in similar
semantic roles in a sentence.

5. RELATED WORK
In this section, we review related works on tensor analy-

sis (emphasizing on data mining applications), and MAPRE-
DUCE/HADOOP.

Tensor Analysis. Tensors have a very long list of applications,
pertaining to many fields additionally to data mining. For instance,
tensors have been used extensively in Chemometrics [8] and Sig-
nal Processing [29]. Not very long ago, the data mining commu-
nity has turned its attention to tensors and tensor decompositions.
Some of the data mining applications that employ tensors are the
following: in [20], Kolda et al. extend the famous HITS algorithm
[19] by Kleinberg et al. in order to incorporate topical informa-
tion in the links between the Web pages. In [2], Acar et al. an-
alyze epilepsy data using tensor decompositions. In [5], Bader et
al. employ tensors in order perform social network analysis, us-
ing the Enron dataset for evaluation. In [31], Sun et al. formulate
click data on the Web pages as a tensor, in order to improve the
Web search by incorporating user interests in the results. In [10],
Chew et al. extend the Latent Semantic Indexing [12] paradigm
for cross-language information retrieval, using tensors. In [33],
Tao et al. employ tensors for 3D face modelling and in [32], a
supervised learning framework, based on tensors is proposed. In
[25], Maruhashi et al. present a framework for discovering bipar-
tite graph like patterns in heterogeneous networks using tensors.

MAPREDUCE and HADOOP. MAPREDUCE is a dis-
tributed computing framework [11] for processing Web-scale data.
MAPREDUCE has two advantages: (a) the data distribution, repli-
cation, fault-tolerance, and load balancing is handled automati-
cally; and furthermore (b) it uses the familiar concept of functional
programming. The programmer needs to define only two functions,
a map and a reduce. The general framework is as follows [23]: (a)
the map stage reads the input file and outputs (key, value) pairs; (b)
the shuffling stage sorts the output and distributes them to reduc-
ers; (c) the reduce stage processes the values with the same key and
outputs another (key, value) pairs which become the final result.

HADOOP [1] is the open source version of MAPREDUCE.
HADOOP uses its own distributed file system HDFS, and provides
a high-level language called PIG [26]. Due to its excellent scalabil-
ity, ease of use, cost advantage, HADOOP has been used for many
graph mining tasks (see [18, 15, 16, 17]).

6. CONCLUSION
In this paper, we propose GIGATENSOR, a tensor decomposition

algorithm which scales to billion size tensors, and present interest-
ing discoveries from real world tensors. Our major contributions
include:



• Algorithm. We propose GIGATENSOR, a carefully designed
large scale tensor decomposition algorithm on MAPRE-
DUCE.

• Scalability. GIGATENSOR decomposes 100× larger tensors
compared to previous methods, and GIGATENSOR scales
near linearly to the number of machines.
• Discovery. We discover patterns of synonyms and concept

groups in a very large knowledge base tensor which could
not be analyzed before.

Future work could focus on related tensor decompositions,
such as PARAFAC with sparse latent factors [27], as well as the
TUCKER3 [34] decomposition.
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