FLEXIFACT: Scalable Flexible Factorization of

Coupled Tensors on Hadoop

Alex Beutel
Department of Computer Science
Carnegie Mellon University
abeutellcs.cmu.edu

Evangelos Papalexakis
Department of Computer Science
Carnegie Mellon University
epapalex@cs.cmu.edu

Christos Faloutsos
Department of Computer Science
Carnegie Mellon University
christos@cs.cmu.edu

Abhimanu Kumar
Language Technology Institute
Carnegie Mellon University
abhimank@cs.cmu.edu

Partha Pratim Talukdar
Machine Learning Department
Carnegie Mellon University
ppt@cs.cmu.edu

Eric P. Xing
Machine Learning Department
Carnegie Mellon University
epxingl@cs.cmu.edu

Abstract

Given multiple data sets of relational data that share a number of dimensions,
how can we efficiently decompose our data into the latent factors? Factorization
of a single matrix or tensor has attracted much attention, as, e.g., in the Netflix
challenge, with users rating movies. However, we often have additional, side,
information, like, e.g., demographic data about the users, in the Netflix example
above. Incorporating the additional information leads to the coupled factorization
problem. So far, it has been solved for relatively small datasets.

We provide a distributed, scalable method for decomposing matrices, tensors, and
coupled data sets through stochastic gradient descent on a variety of objective
functions. We offer the following contributions: (1) Versatility: Our algorithm can
perform matrix, tensor, and coupled factorization, with flexible objective functions
including the Frobenius norm, Frobenius norm with an ¢; induced sparsity, and
non-negative factorization. (2) Scalability: FLEXIFACT scales to unprecedented
sizes in both the data and model, with up to billions of parameters. FLEXIFACT
runs on standard Hadoop. (3) Convergence proofs showing that FLEXIFACT con-
verges on the variety of objective functions, even with projections.

Note: This work is currently under review at other, non-machine learning confer-
ences.

1 Introduction

How can we efficiently mine data that capture relations between different entities? Suppose, for
instance, that we are given a time-evolving social network, such as Facebook, and we have informa-
tion about who messages whom, or who becomes friends with whom, and when. This data may be
formulated as a three mode tensor. Suppose now that we also have some side information pertaining
to the users, e.g. demographic information. This problem can be formulated as an instance of a
so-called coupled factorization, where the two pieces of data, a three-mode (user, user, time) ten-
sor and a (user, demographic) matrix share a common dimension. Even without the presence of the

FLEXIFACT DSGD [6] PSGD [9] Matlab GigaTensor [7]]
Data/Model
Matrix
Tensor
Coupled Tensor/Matrix
Obj. Function
Frobenius norm
Frobenius norm + ¢; penalty
Non-negativity constraints
Handles missing data
Scalability
in number of non-zeros
in data dimensions
in decomposition rank
Proof of convergence
Matrix Factorization
Tensor/Coupled Factorization
Projections (¢1 & non-negativity)

v v
V(4] v

V(2]

2

2
SENENEN

22
RN

ANEENEE NN

i
2

v
~ v

SN N N N N N LN NN
\

~

Table 1: Feature Comparison of proposed FLEXIFACT vs state of the art. (~ represents unknown
or not directly applicable.) FLEXIFACT contains existing state of the art as special cases.

(user, demographic) matrix, efficient tensor decomposition of truly large datasets can be challenging,
attracting increasing interest.

Most prior work has either focused on a specific type of factorization or a specific loss function (e.g.
Frobenius norm), thus having a limited range of potential applications. Here we propose FLEXI-
FACT, a flexible and highly scalable distributed factorization algorithm which attacks a very broad
spectrum of problems: FLEXIFACT can handle matrices, tensors, coupled tensor-matrix settings,
cross product a variety of loss functions, including Frobenius norm, KL divergence, ¢; regulariza-
tion, and non-negativity constraints.

Moreover, FLEXIFACT is very fast and scalable; we show how to implement it on Hadoop, and
we show how to achieve high speeds, by distributing both the data as well as the parameters. In
Tableﬂ], we provide a comprehensive overview of the state of the art. In short, FLEXIFACT reigns,
combining both scalability, as well as versatility.

In summary, our main contributions are:

1. Versatility: FLEXIFACT can operate under a wide spectrum of settings, including plain
matrix factorization, tensor factorization, as well as coupled decompositions. Thus, FLEX-
TIFACT includes several recent methods [6], [7]], as special cases.

2. Scalability: FLEXIFACT scales very well both with the input size, as well as with the
number of model parameters.

3. Proof of convergence: We prove that FLEXIFACT converges, even with constraints like
non-negativity. Moreover, we demonstrate this empirically.

4. Usability and Reproducibility: Our implementation runs on stock Hadoop, as opposed to
other recent methods [[6]. We also open-source our code.

2 FLEXIFACT Approach

As mentioned previously, we take on the problem of matrix, tensor and coupled factorization. For
brevity, we do not include here the mathematical details of the loss functions and SGD updates.
The complete documentation can be found in Appendix [A] Building off of recent work in stochastic
learning theory [?] and matrix factorization [6], we develop a block scheme for the model and data
to parallelize the computation across a cluster. The details of our blocking scheme can be found
in Appendex [B] As a quick summary, we see an example of blocking scheme in Figure [I] and the
general algorithm we follow in Algorithm T}

Additionally, in order to support non-negative factorizations as well as sparsity constraints, we prove
using stochastic learning theory that our process is regenerative, even under projections, and thus
our algorithm converges. The proof can be found in Appendix

Algorithm 1: FLEXIFACT for tensors
Input : X, Uy, Vg, W,sub-epoch size d
U+ Uy, V<V, W—W,
Block X, U, V, W into corresponding d
blocks
while not converged do
Pick step size n
fors=0,...,d> —1do
Pick d blocks(Z*), ..., Z{")) to form
stratum Z ()
forb=0,...,d — 1in parallel do
Run SGD on the training points

A

Figure 1: Dividing a paired matrix and tensor into
blocks such that no two of them share any row, end
column, or third dimension. end

end

3 Experiments

3.1 Performance Evaluation

In order to assess how scalable and fast FLEXIFACT is, we conducted a series of experiments in or-
der to measure the running time of FLEXIFACT with respect to 1) increasing number of data points,
2) increasing dimensions of the data and thus model, and 3) increasing rank of the factorization. The
first aspect has to do with scalability in terms of data size, whereas the two latter aspects refer to
scalability with respect to parameter space size; FLEXIFACT is able, as we demonstrate in the fol-
lowing experiments, to scale easily in all three aspects. As a baseline for tensor decomposition, we
use GigaTensor [7]]. We also compared against PSGD [9], however, the solutions obtained achieved
much worse RMSE, and the algorithm was not able to scale for very large number of parameters
(either rank or dimensions).

FLEXIFACT was implemented in Java, with Hadoop 0.20.1 [5, [1]. We ran the experiments on the
OCC-Y cluste For the sake of experimentation, we created a series of synthetic datasets wherein
we were able to control the three aspects we were testing: data size, data dimensions, and rank. In
all cases, number of reducers was constant and equal to 24.

Synthetic Data Generation To generate data we first generate randomly matrix factors U, V, W
of the specified dimension D (where I = J = K = D) and rank R = 30. We then randomly select
data points (i, j, k) and add their value Uj , o V.« o Wy, to the dataset. We do this until we have
the desired number of data points for each dataset. Unless otherwise stated, we set D = 1 million
and the number of data points to 10 million.

3.2 Scalability

We now test FLEXTFACT on all three types of scalability to demonstrate that it scales in all dimen-
sions and to unprecedented sizes.

Rank Scalability In testing the scalability with respect to rank, we ran FLEXIFACT, GigaTensor,
and PSGD on a tensor and varied the rank from 25 up to 1000. Figure[2(a) shows the running time
for FLEXIFACT, both for tensor and coupled factorizations, as the rank (i.e. one of the parameter
dimensions) increases. We can see that FLEXIFACT scales linearly as the rank of the factorization
increases, having similar timing behaviour both for plain tensor and coupled factorizations. Note
that with R = 1000 and D = 1 million, the coupled FLEXIFACT factorization scales to a total
parameter space of 4 billion parameters.

Data Dimensions Scalability To test more directly the scalability as the dimension D of the data
tensor grows, we created a variety of tensors with varying dimension from 10,000 to 10 million. We

'http://opencloudconsortium.org/tag/occ—y/

http://opencloudconsortium.org/tag/occ-y/

12000 FlexiFaCT 2500

10000 x Gigatensor - —; = 2000
7 i FlexiFaCT Coupled o . 7
8 8000 il 8 £ o0
E 2 1500 FlexiFaCT E FlexiFaCT
£ 6000 £ x Gigatensor - 3 800 Gigatensor -
° i @ 1000 | 4 FlexiFaCT Coupled ° 600 FlexiFaCT Coupled
E 4000 | PSGD runs out of memory £ £
= for R >= 100 = ¥ = 00
2000 500
* 200
0 St 0 0
200 400 600 800 1000 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 25M 50M 75M 100M
Rank of Factorization Dimension of Tensor (in millions) Number of Observations (size of data)
(a) Time vs. rank (b) Time vs. dimensions (c) Time vs. # observations

Figure 2: Scalability of FLEXIFACT in terms of: a) rank, b) data dimensions, and c) number of
observations. We observe that FLEXIFACT scales very well with respect to all aspects. PSGD can
be seen in sub-figure (a) before it runs out of memory. FLEXIFACT was applied to both a tensor,
and a matrix-tensor couple, whereas GigaTensor was only applied to a tensor.

decompose each tensor with R = 50. When testing the coupled FLEXIFACT decomposition, we
add an additional coupled matrix with 100,000 data points and the same dimensionality as the main
tensor.

In Figure 2[b) we show how coupled factorization using FLEXIFACT scales, as the dimensions of
the data increase. We observe that FLEXIFACT runs much faster than the baseline, GigaTensor. A
likely explanation for the degree to which FLEXIFACT is faster than GigaTensor is that FLEXIFACT
only focuses on the observed data points, where GigaTensor has to convert unobserved data points to
zeros, thus slowing down the computation. Again, for the coupled case, note that our total parameter
space reaches 2 billion parameters.

Data Size Scalability Last, for data scalability, we vary the number of observed data points from 1
million to 10 million. Figure c) shows FLEXTFACT’s running time as a function of the data size,
i.e. the number of observations. We can see that FLEXIFACT has, again, very smooth behaviour,
and scales linearly with the number of observed elements. Again, we are significantly faster than
GigaTensor, though the degree of difference is likely because it is must make unobserved points
zeros for it to run.

3.3 Correctness & Monotone Convergence

Besides speedup, we experimentally validate
that FLEXIFACT indeed decreases monotoni-

0.45 ¢ Floxi cally the objective function that it is minimiz-
exiFaCT . R R

04 | PSGD - ing. To test this we run on a small synthetic
data set with D = 10,000 and 10 million data
" 0.35 points, making the dataset very dense. We run
0 03| Mwedg, a factorization with & = 50 using our im-
@ AR I OV plementation of PSGD and FLEXIFACT with
0.25 1 both ¢; sparsity and non-negativity constraints.
02 | We then monitor the root mean squared error

045 (RMSE).

0 400 800 1200 1600 2000

. Figure [3] shows that FLEXIFACT decreases the
Time (seconds)

Figure 3: Convergence: RMSE vs. time, for RMSE as expe.ct§d, and at a much quicker pace
tensor factorization comparing FLEXIFACT and than PSGD. It 1fs umportant to note that the slow
PSGD [9]]. Note, Zinkevich et al. [9] do not claim Onvergence o PSGD is because the problem

to work on this problem because it is not convex. (tensor factorization) is not convex, and thus
Zinkevich et al. do not claim that their method

works on such problems. However, we use
PSGD as a comparison because it is not possible to track the RMSE with GigaTensor and thus
PSGD is the closest competitor.

4 Conclusion

In this work we have introduced FLEXIFACT, a highly flexible, efficient, and scalable factoriza-
tion tool. Our main contributions are: 1) Versatility: since FLEXIFACT can operate under numer-
ous factorization scenarios and constraints, 2) Scalability, both with respect to the input size, and
the number of parameters, 3) Proof of convergence: FLEXIFACT is provably correct, even in the
presence of constraints, and 4) Reproducibility and usability: we use stock Hadoop, and make our
implementation publicly available.

References

[1] Apache Hadoop. http://hadoop.apache.org/, 2012.

[2] The matlab cmtf toolbox. http://www.models.life.ku.dk/joda/CMTF_Toolbox,
2013.

[3] S. Asmussen. Applied Probability and Queues. Wiley, 1987.

[4] B.W. Bader and T.G. Kolda. Matlab tensor toolbox version 2.2. Albuguerque, NM, USA: Sandia
National Laboratories, 2007.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
OSDI, December 2004.

[6] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In ACM SIGKDD, pages 69-77, New York,
NY, USA, 2011. ACM.

[7]1 U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up
by 100 times-algorithms and discoveries. In ACM SIGKDD, pages 316-324. ACM, 2012.

[8] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Springer, 2003.

[9] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradi-
ent descent. In NIPS, pages 2595-2603, 2010.

A Objectives and Updates

In this section we will explain the variety of loss functions used in these tasks, the Stochastic Gradi-
ent Descent (SGD) update rules, and our partitioning scheme allowing for distribution of the SGD
work. Although much of our description of the matrix factorizaiton work is similar to [6]], we will
explain it here for completeness and clarity.

Before we begin, it is important to clarify our notiation. We will use capital boldface script characters
like X to denote a tensor, capital boldface non-script characters e.g. Y to denote a matrix, and
lowercase boldface character, e.g. y, to denote a vector. X, ;j denotes the scalar in the (i, 7, k)
position of the tensor X, Y; ; denotes the scalar in the (¢, j) position of matrix Y, and y; denotes
the scalar in the ith position of vector y. We use Y , to denote the vector of scalars Y; ; for all
j. Additionally, with a slight overloading of notation for simplicity and because our matrices and
tensors may only have a small percentage of observed values, we say that (4, j, k) € X if X; ; 1, is
observed.

A.1 Optimization Objectives

We begin by explaining how stochastic gradient descent works for our variety of objective functions.
We will briefly go over the objective functions for simpler cases like the Frobenius norm of matrices
before expanding to more complex objectives.

Matrix Factorization For matrix factorization we would like to approximate our I x J data matrix
X by UVT, where Uis of size I x R and V is of size J x R. Therefore, we can have a loss function

http://hadoop.apache.org/
http://www.models.life.ku.dk/joda/CMTF_Toolbox

Objective (£) Formulation

Frobenius igmyex Lo, (U, VW) 300 0oy Ly, (U, A)
Frobenius + £1 Pigmex Lo (U VW) 370 0oy Ly, (U A)

+ AUl + (VI + W]+ [|A]]1)

Z(iyj,k)efx Exi,j,k (Uv \Z W) + Z(i,j)EY EYm‘ (U, A)

+ AUl + VI + [[W]a + [|A][1) s.t. ©ir >0

Table 2: Table of Objective Functions. ® denotes any of the factors U, V, W or A.

Frobenius + £1 + NN

using the Frobenius norm as follows:

LU, V)= |X-UV 5=) Lx,,(U,V) (D

i,jEX

where Lx, (U, V) = (X; ; — Zil U, 'V,)% As seen above, we divide our loss function into
its component pieces Lx, ; based on each observed point X; ;. This is necessary to use stochastic
gradient descent.

Tensor Factorization For tensor factorization we would like to approximate our / x J x K tensor
X by a Khatri-Rao product Zf‘:l U, oV, oW, . where U is of size I x R, V is of size J x R and
W is of size K x R and we are performing an Khatri Rao product between these three matrices. We
can analyze the loss in a few different ways. Following the standard Frobenius norm, as is common
in PARAFAC, the loss is:
R
LU V,W)=[X=) U0V, oWt = > ILx, (UV,W)
r=1 (2,5,k)eX

where n
szxj,k (Ua Va W) = (xi,j,k - Z Ui,rvj,rwk,r)2~
r=1

Similarly we can induce sparsity in our parameter space with an /; penalty:

(i,5,k)eX
or add a constraint that U, V, W > 0 as is common in non-negative matrix factorization (NNMF).
These terms are not as clearly separable in the loss function, but as we will see the update rules are

still separable as is necessary for SGD. We make a distinction here between £ and L: the objective
L is obtained by adding ¢1 or non-negativity constraints to the loss L.

Coupled Matrix-Tensor Factorization In this case our data tensor X is approximated by

Zle U,y oV, oW, and our data matrix Y is simultaneously approximated by UA”. Note
here we use the same component U in both approximations. As such, our objective function is
merely a sum of the losses on each data set:

LUV,W,A) = > Lx ,(UV,W)+ > Ly, (UA)
(i,5,k)EX (1,7)€Y

Table 2] denotes the loss objectives for different coupled cases. For each of these we use SGD to
minimize our loss and thus approximate our data.

A.2 SGD Updates

For SGD we perform updates to our parameters U, V, W A, which we will collectively refer to as
© matrix whereas 6 are the individual components of the matrix. This definition of ® and 6 will
come in handy for parameter updates based on the gradient at individual data points. E.g. the update
for tensor X are:

9(t+1) = H(t) — ntvﬁxi,j,k (Q(t)) (3)

For these update rules, we list below the differentials for each component o of 6 where
dLx, .
(VLXi,j,k(e))U = %:

—2(Xi 56—, Ui,V Wy WV, W ifo=U;,
(V00 ={ o 2ty 2o Vi Vi W it =the

similarly for o = V;; or 0 = W}, ;. From this we observe that SGD update for U; ; at a particular
entry X; ;5 (for a tensor X) depends only on previous U; ,., A; ., By » wherer € 1,..., Rand R is
the rank we chose. The updates for each component are similar for the paired cases.

In the case of additional components such as an ¢; penalty or a non-negativity constraint on our
parameters, we add a projection to our update rule. For example, for an ¢; penalty, the update rule is

00+ = 53 (01 — VL, (00)) (4)
S/\(l’):{ r+ XA ifz<—A >
0 if =A<z

Here we see that S is the soft thresholding operator. We can similarly use the following projection
for the non-negativity constraint:

x ifx>0
NN(“”):{O ifz <0 ©)

B Blocking for Parallelization

Given this understanding of our optimization objective and SGD update rules, we would like to
segment our data in such a way that certain blocks Z; can be run in parallel, where we define
Zy C X. Figure [I]is a pictorial representation of the way we segment our simple matrix or a
coupled tensor/matrix to enable parallelization. In order to run SGD on our blocks in parallel, we
divide them such that no two blocks share common rows or columns. To be more precise, we say
that a point ¢ € Zj, is the coordinates in the data, such as z = (x;, 2, 2;) € X. Two blocks Z; and
Zy are non-overlapping if for all z € Z, and 2’ € Zy, z; # x and x; # 2, and x3, # x),. (We
will prove later that this allows us to run the blocks in parallel.) We see that in the division shown in
Figure [T]no two blocks share common rows or columns. More interestingly, we note that in Figure
c) blocks in the tensor X and the matrix Y share coordinates in the ¢ dimension, and as a result,
data points in the same 7 range must be in the same block across both data sets.

Given this intuition, we provide a detailed description of our partition function. We call one set
of independent blocks a stratum, and we denote the number of blocks in each stratum by d. In
order to cover all regions of X, we need multiple strata. For a matrix we require d strata, and for
tensors we require d* strata. For a stratum s we have blocks Zi(s) fori = 0...d — 1. Each block
Z = (b;,b;,b,) where b;,b;, by, are ranges in I, J, and K: b, = (¢[I/d], (¢ + 1)[I/d]),b; =
GlrJ/d], G+ [J/d]), by = (k[K/d], (k+1)[K/d]). With this we define the blocks for stratum
s as

ZZ(S) = (bz> bjs,i’ bks,i) ™
Js,i = (j+s) mod d o
ksi= 10 +s)/d| mod d ®

fort =0...d—1.

In our algorithm, we run the strata sequentially, but for each stratum we run SGD on the blocks in
parallel. We consider running SGD on one stratum to be a subepoch in our algorithm, and running
it on all strata an epoch. (Note, the order in which you run the strata does not matter, as long as they
are each run once per epoch.) We can do this repeatedly, iteratively updating our parameters 6, until
the algorithm converges. A more formal write up of the distributed stochastic gradient algorithm
for a tensor (which can easily be generalized to matrices and coupled factorizations) is shown in
Algorithm [T} We next offer a proof that this converges appropriately.

C Proof of convergence with projections

The FLEXIFACT approach is described in Algorithm[I] We first prove that two blocks in a stratum
are interchangeable. We use this to prove that sequence of strata are a regenerative process, defined
later in this section. We use this to prove that our FLEXIFACT approach for Tensor and coupled
case converges.

Our generic constrained loss function for a tensor case is

L=LUV,W)+X[Ullx + A[[VI][1 4+ Aw|[W][2
st. Ui, Vi, Wi 2 0, (10)

In the above projected loss equation[I0|the parameter is always in a set, P, constrained by the ¢1 and
non-negativity constraints. The set P is a hyperrectangle defined as 3 a; < b;,2 = 1...r, such that
P ={0:a; <6; <b;} where a;,b; € (—00,00). Here 0 is a parameter to be updated as defined in
previous section (equation [3). The gradient based on equation [I0]is:

VoLl = VoL +p0), p(0) € C(0) (11)

where 6 is defined in Table ?? and £ and L are defined in equation Function p() is the projection
or constraint term of the gradient. The set C'(f) is the union of the subgradients at . When 6 €
interior of P, C'(6) contains only the zero elements and contains the convex cone generated by the
subgradients at # when 6 € 9P, boundary of P.

Definition 1 Two blocks Z; and Z, in a given stratum are independent if for each x € Z; and
z € Z; we have
VL;(0) = VLy(0 — VL (0)) (12)
and VL, (0) = VL, (0 —nVL,(0))

where V L. (0) is the partial differential of L, w.r.t. 0 and 0 is the parameter we are updating.

Theorem 1 If blocks Z; and Z; in a given stratum S,, are non-overlapping then they are indepen-
dent (as defined previously in Definition|[I)).

Proof. For any two points z € Z; and 2’ € Z;, their rows or columns or any other coordinate do not
overlap. From equation (@) we see that = does not modify 6 in positions for which ¢ # x;, j # z;
and k # xy. Therefore, because x and z’ are not equal in any dimension, an update from V L,/ will
update different values than V L, where V L, is the gradeint at point

Additionally from equation () we see that any updates on VL, only use values from Uy, «, Az «
and B, ., and thus do not use any values that would be updated by V L,,. Because updates from
x only effect parameters in x’s coordinates, updates from = are only based on parameters in z’s
coordinates, and x and x’ have no overlapping coordinates, we know that

VL,(0) = VL, (0 — VL, (6))
and VL, (0) = VL, (0 — 1V L4 (0))

Therefore, Z; and Z;, are independent. By a similar argument

VL. (0) = L,(0 — nV Ly, (0))
and VL, (0) = VL., (0 —nVL,(0))

O

Definition 2 a process P(t),t > 0 is regenerative if there exist time points 0 < Top < Ty < Ty < ...
such that the the remainder of the process after Ty, P(T, +1t):t >0, for k > 1 : (a) has the
same distribution as the remainder of the process after Ty, and (b) process P(Ty +1t) :t > 0 is
independent of the process prior to Ty, P(t) : 0 <t < T.

In other words a stochastic process with certain time points such that from a probabilistic view the
process restarts itself at these time points is called a regenerative process. Intuitively this means a
regenerative process can be split in to i.i.d. cycles [3].

Based on equation [I0] the projected sgd updates can be written as:
0"+ =TIp(0) + VL, (6)) (13)

where ITp () is the projection of the updated gradient with respect to the original loss L(U, V, W).
The projection step can be further broken up into

gt = 00 4 VL (0D) + nup(0D) (using (TT))
= 00 4 VLO(0D) + 15 M, + ey + mip(6) (14)

where L3} (6®) is the loss function at stratum s; at a point z in iteration ¢ given parameter value in
previous iteration #*) . VLO(A®)) is the exact gradient in iteration ¢ given previous parameter value
9. And

SM; = VL (0W) = VLO(0") - B, (15)
where [3; is the “error” before projection i.e. the error by which the update is outside P.

To prove the convergence of the method we define the following conditions, similar to the ones
defined in [8, 6]

Condition 1. VL°(9) is continuous.

Condition 2. VL°(0(")) is bounded in second moment: E[(VL°(0)))?] < oo for all 6.
Condition 3. The squared sum of the step sizes 7, is bounded i.e. Y, 77 < oco.

Condition 4. The noise is martinagale difference: E[0M;y1)[0M;,i < t] = 6 M;.

Condition 5. E[n;3;] < oo with probability 1. Note that this is a condition on step-size. It implicitly
says that the projection must not wander off infinitely outside the set P over the iterations.

Theorem 2 The distributed SGD algorithm for tensor decomposition with projections, as presented
in algorithm|l| converges.

Proof. The primary equations being updated each time in our iterations is equation[I4} Rewriting it
here we have:

gttt — () T]tVLO(H(t)) + N0 My + ne Bt + th(e(t)) (16)

From theorem |l| we can see that the individual blocks in a given stratum are independent of each
other’s updates and are interchangeable. We can also observe from Algorithm [I] that every stratum
out of d strata is picked exactly once in one cycle i.e. one epoch (outer while loop). Moreover
two different cycles of strata i.e. iterations of the while loop are identical and independent. In
other words the while loop forms an i.i.d cycle, and thus a regenerative process. The time-period of
cycles is finite and bounded consequently that of the regenerative process too. Besides given all the
conditions 1 to 5 as defined above, we have

K(t+t0)—1
ST M+ i) | =0 (17

=0

for any arbitrary . The proof is similar to [8] and is valid due to the fact that noise is a martingale
difference sequence and 7;6M; and 7, 3; are an equicontinuous sequence ([8] Theorem 2.1, part 1,
chapter 5; [6] follows a similar proof up to this point). We can now use this to analyze the updated
with a projected loss. We find that equation [T4] has the same set of stable points as

9t+1 — a(t) + T]tvLO(G(t)) + ntp(g(t)) (18)

Now we show that equation [18|converges. Through few algebraic manipulations it can be verified
that the projection functions p(-) we have, ¢1 soft threshold and non-negativity constraint project, are
lipschitz continuous. Following the arguments of [§] (theorem 2.1, part 2) and with the assumption
that updates #(*) are bounded (follow from the conditions 1 to 5 assumed earlier), equation
converges to a set of stationary points. (|

D MapReduce Implementation of FLEXIFACT

Along with our theoretical analysis, we implemented our algorithm within the MapReduce frame-
work [5]. To do this we used the open source Hadoop [1]] version of MapReduce. The challenge is
to turn the factorization problem into map () and reduce () functions, that Hadoop is designed to
handle.

In our implementation we pass the data matrix or tensor as input to the mappers in the form

(,7,k,X; k). We also store our current parameters 6() which could include U, V, W, and
A on the Hadoop File System (HDFS).

Algorithm 2: FLEXIFACT Mapper (for tensor)

Input: 7, J, K,d
1: for all (i,j, k, DCZ-7J-7;€) do
20 b= L%ﬁj, b; = Lﬁ?j = 7 k 7] {Get block index}
3: subepoch = d x ((by — b; + d) mod d) + ((b; — b; + d) mod d)
4: emit ((b;, bj, by, subepoch), (i,7,k,X; j x))
5: end for

Algorithm 3: FLEXTFACT Reducer (for tensor)

Given: U,V W, I, J K,d,n
Input: Values V
Sold =Pointer to final parameters from last epoch
for(z 3ok, Xi) €V do
k

L(WJ b; L(WJ Lf%ﬂ
t:d>< ((br, — b; —|—d) mod d) + ((b; — b; + d) mod d)
if t # to1q then

Write V(S““) and W(S‘“d) to HDFS

Eold
Wait for Vlgj"ld) and Wéi“ld) to be available on HDFS
Save Uf” = U™ Save Vi*) = V{*') and W{*) = W{*"*) from HDFS b
bjora = s by = bis t = tola
end
06) = 0) —nV Ly, ., (0©)) (where 6*) is the concatenation of Ugs), Vgs ,Wbs))

iold — bi,

Jold old

end
Write U, V%) and W*@) to HDFS
iold J Fold

old

FLEXIFACT Mapper: Our Mapper function, is shown in Algorithm [2} It splits the data into the
appropriate blocks and determines the order they should be processed in within each reducer. We
also overload the default Hadoop partitioner, which typically just partitions on unique KEY values,
and now partition only on b; so that each reducer represents a unique set of 7 in I or a unique set of
rows in U. We additionally override the default Comparator, allowing us to sort our (KEY,VALUE)
pairs within each reducer by the subepoch term calculated in the Mapper. We see here while the
Mapper is quite simple, the calculation of the blocks and the order within each reducer captures our
partition function that allows us to perform SGD in this distributed fashion.

FLEXIFACT Reducer: Our Reducer function is shown in Algorithm[3] As we explained before,
each reducer gets all points for a given range of values ¢ ordered by the subepochs. (As before we
use s to denote the subepochs.) The reducer iterates over the points in V in order, each time updating
6() . Each reducer only stores the components of 6 that correspond to its current block in the current
stratum. As such, when a new subepoch is reached, it must write its updated 6 values to disk (for
another reducer to retrieve) and read the most current 6 values for its next block in the subsequent
subepoch.

We run the MapReduce jobs iteratively. Each MapReduce job is one epoch using all points in X
to update the full parameter space 6 and ultimately to save it to HDFS. We then use the updated

10

parameters 6 in the subsequent epoch (another run of the MapReduce algorithm). We do this for a
constant number of steps or until the algorithm converges.

Reproducibility and Usability: This is a high level overview of our implementation, but captures
the general method we use to both distribute our work and optimize our speed within the MapReduce
framework. While this is not the typical way Hadoop is programmed, it requires no modification of
the Hadoop framework and can be run on any standard Hadoop cluster. Our code is open-sourced,
and available athttp://alexbeutel.com/1/flexifact!l It canrun for all of the data types
and loss functions described in this paper.

11

http://alexbeutel.com/l/flexifact

	Introduction
	FlexiFaCT Approach
	Experiments
	Performance Evaluation
	Scalability
	Correctness & Monotone Convergence

	Conclusion
	Objectives and Updates
	Optimization Objectives
	SGD Updates

	Blocking for Parallelization
	Proof of convergence with projections
	MapReduce Implementation of FlexiFaCT

