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ABSTRACT

Multilinear analysis is pervasive in a wide variety of fields,
ranging from Signal Processing to Chemometrics, and from
Machine Vision to Data Mining. Determining the quality of
a given tensor decomposition is a task of utmost importance
that spans all fields of application of tensors. This task by it-
self is hard in its nature, since even determining the rank of a
tensor is an NP-hard problem. Fortunately, there exist heuris-
tics in the literature that can be effectively used for this task;
one of these heuristics is the so-called Core Consistency Di-
agnostic (CORCONDIA) which is very intuitive and simple.
However simple, computation of this diagnostic proves to be
a very daunting task even for data of medium scale, let alone
big tensor data. With the increase of the size of the tensor
data that need to be analyzed, there grows the need for effi-
cient and scalable algorithms to compute diagnostics such as
CORCONDIA, in order to assess the modelling quality. In
this work we derive a fast and exact algorithm for CORCON-
DIA which exploits data sparsity and scales very well as the
tensor size increases.

Index Terms— Tensors, Tensor Decompositions, Scala-
bility, Big Data

1. INTRODUCTION

Multilinear analysis and tensor decompositions have been in-
creasingly popular in a very wide variety of fields, ranging
from signal processing to data mining.

The majority of existing applications of tensor decompo-
sitions in fields such as Chemometrics, focus on dense data,
where most of the values of a tensor are observed and non-
zero [1]. However, recently, there has emerged an increas-
ing interest in applying tensor decompositions on sparse data,
where most of the coefficients of the tensor are unobserved;
examples of such data can be links between web-pages [2, 3],
computer networks [3, 4, 5], Knowledge Base data [6, 5], ci-
tation networks [3] and social networks [7, 3, 5].

As a running motivating example we choose that of social
networks. Consider an online social network platform such as
Facebook, which records relations and interactions between

its users. Throughout the vast amount of Facebook users (es-
timated to be around 1.3 Billion), it is physically impossible
to observe interactions between all users; i.e. a certain user in-
teracts with a very small fraction of the total number of users.
Thus, suppose that we observe a tensor of user interactions
over time (i.e. the modes are (user, user, time) ), the number
of observed, non-zero values of this tensor will be very small,
resulting in a highly sparse tensor with very high dimensions.

There are many challenges posed by the aforementioned
type of tensors. In particular, traditional dense methods that
assume that all data can (and should) be stored in main mem-
ory fall short. Computation of tensor decompositions in such
scenarios was pioneered by Kolda and Bader in [2] and [8],
where they introduce efficient in-memory computations for
sparse tensors, taking advantage of the sparse structure and
avoiding storing the entire data into memory. Subsequently,
in [6], the authors apply this principle in a distributed cloud
setting, where a tensor can span terabytes of storage.

Coming back to the example of the large sparse tensor
that represents the time-evolving social network, the rank of
its PARAFAC decomposition [9], i.e. the number of rank-one
factors that we extract from the data, reflects the near cliques
or communities in that network [10]. Thus, it is important to
be able to determine the decomposition rank efficiently. Un-
fortunately, even determining the true rank of a tensor, con-
trary to the matrix case (where the solution is given to us by
the Singular Value Decomposition, in polynomial time), is
an NP-hard problem [11]. Fortunately, however, there exist
heuristic methods which, given an F rank decomposition, are
able to provide a diagnostic that captures how well this de-
composition models the tensor data. The first such heuristic,
CORCONDIA, appeared in [12] and subsequently described
in detail in [13]; there exist more recent approaches which
further extend the main idea of CORCONDIA [14].

The state of the art algorithms for CORCONDIA, so far
have focused on dense and relatively small datasets; however,
when we shift our attention to data of much larger scale (such
as the running example of the time-evolving social network),
state of the art approaches suffer, understandably so, from
scalability issues. In this work, we make such diagnostics
available for the analysis of very large tensors. In particular,
our contributions are



• We derive an equivalent formula for computing COR-
CONDIA, and propose an efficient algorithm, able to
scale on very high dimensional sparse tensors.

• We apply our algorithm to a big real-world time-
evolving social network dataset, demonstrating its
practicality in the analysis of big tensor/graph data.

• We make our code publicly available at http://

www.cs.cmu.edu/˜epapalex/src/efficient_

corcondia.zip

2. BACKGROUND & PROBLEM FORMULATION

2.1. A Note on Notation

A tensor is denoted by X. A matrix is denoted by X. A vector
is denoted by x. The symbol ◦ denotes the outer product.
The symbol ⊗ denotes the Kronecker product. The symbol †
denotes the Moore-Penrose pseudoinverse. The symbol vec ()
denotes the vectorization operation.

2.2. Brief Introduction to Tensor Decompositions

Given a tensor X, we can decompose it according to the
PARAFAC decomposition [9] as a sum of rank-one tensors:

X ≈
R∑

r=1

ar ◦ br ◦ cr

where the (i, j, k) entry of ar ◦ br ◦ cr is ar(i)br(j)cr(k).
Usually, PARAFAC is represented in its matrix form [A,B,C],
where the columns of matrix A are the ar vectors (and ac-
cordingly for B,C). The PARAFAC decomposition is es-
pecially useful when we are interested in extracting the true
latent factors that generate the tensor.

Another very popular Tensor decomposition is the Tucker
3 model [15], where a tensor is decomposed into rank-one
factors times a core tensor:

X ≈
P∑

p=1

Q∑
q=1

R∑
r=1

G(p, q, r)up ◦ vq ◦wr

where U,V,W are orthogonal. The Tucker 3 model is espe-
cially used for compression. Furthermore, PARAFAC can be
seen as a restricted Tucker 3 model, where the core tensor G
is super-diagonal, i.e. non-zero values are only in the entries
where i = j = k. This observation will be useful in order to
motivate the CORCONDIA diagnostic.

2.3. Brief Introduction to CORCONDIA

As outlined in the Introduction, there exist a few diagnos-
tics/heuristics for assessing the modelling quality of the
PARAFAC decomposition. In this work, we will focus on
CORCONDIA [12, 13], which is the simplest and most

intuitive to describe. However, [14] which builds upon COR-
CONDIA can also benefit from our proposed algorithm.

In a nutshell, the idea behind CORCONDIA is the fol-
lowing: Given a tensor X and its PARAFAC decomposition
A,B,C, one could imagine fitting a Tucker model where
matrices A,B,C are the loading matrices of the Tucker 3
model and G is the core tensor (which we need to solve for).
Since, as we already mentioned, PARAFAC can be seen as a
restricted Tucker 3 model with super-diagonal core tensor, if
our PARAFAC modelling of X using A,B,C is good, core
tensor G should be as close to super-diagonal as possible.
If there are deviations from the super-diagonal, then this is a
good indication that our PARAFAC model is somehow flawed
(either the decomposition rank is not appropriate, or the data
do not have the appropriate structure).

As it is highlighted in [12], since matrices A,B,C are not
orthogonal, we may not use typical algorithms that are used
to fit the Tucker model (e.g page 72 of [12]). Instead, we can
pose the problem as the following least squares problem:

min
G
‖vec (X)− (A⊗B⊗C) vec (G) ‖2F

with solution: vec (G) = (A⊗B⊗C)
†
vec (X)

3. PROBLEM DEFINITION & PROPOSED METHOD

Albeit simple and elegant, the solution of the Least Squares
problem that lies in the heart of CORCONDIA suffers
in the case of high dimensional data. In particular, this
straightforward solution requires to first compute and store
(A⊗B⊗C) and then pseudoinvert it. Consider a 104 ×
104 × 104 tensor; even for a very low rank decomposition of
R = 10, the aforementioned Kronecker product will be of
size 1012 × 103, a fact which renders computing and storing
such a matrix highly impractical (if not outright impossible),
and subsequently, computing its pseudoinverse largely in-
tractable. Even if the factor matrices A,B,C are sparse [16]
(resulting in a sparse Kronecker product), pseudoinverting
a matrix of such large dimensions is very computationally
challenging.

In this section, we describe our proposed algorithm. Our
“wish-list” of properties for our algorithm is the following:

• Avoid materializing any Kronecker product.

• Avoid directly pseudo-inverting the (potentially huge)
aforementioned Kronecker product.

• Exploit any sparse structure in the factor matrices
A,B,C and/or the tensor X.

In order to achieve the above, we need to reformulate the
computation of CORCONDIA.

Claim 1. The pseudoinverse (A⊗B⊗C)
† can be rewritten

as

(Va ⊗ Vb ⊗ Vc)
(
Σa

−1 ⊗ Σb
−1 ⊗ Σc

−1) (Ua
T ⊗ Ub

T ⊗ Uc
T
)



where A = UaΣaVa
T, B = UbΣbVb

T, and C =
UcΣcVc

T (i.e. the respective Singular Value Decomposi-
tions).

Proof. For compactness, we show the two matrix case, but
the extension to three matrices is straightforward. Using basic
properties of the Kronecker product from [17], and rewriting
A,B using their SVD, we may write

(A⊗B) =
[(

UaΣaVa
T
)
⊗
(
UbΣbVb

T
)]

=
[
(UaΣa)⊗ (UbΣb) (Va ⊗Vb)

T
]

=
[
(Ua ⊗Ub) (Σa ⊗Σb) (Va ⊗Vb)

T
]

By invoking properties shown in [18], we can show that
show that (Ua ⊗Ub) is orthonormal and (Σa ⊗Σb) is di-
agonal with non-negative entries.

Then,because the SVD is unique, then

A⊗B =
[
(Ua ⊗Ub) (Σa ⊗Σb) (Va ⊗Vb)

T
]

is the SVD of A⊗B .
Since the above is the SVD, then the Moore-Penrose pseu-

doinverse will be (Va ⊗Vb)
(
Σa
−1 ⊗Σb

−1) (Ua
T ⊗Ub

T
)

In [19] the authors first show an equivalent formulation of
the Kronecker product pseudoinverse, which is however not
expressed via the SVD, and thus suffers from numerical in-
stabilities. Subsequently, they introduce a more complicated
reformulation of the pseudoinverse of Kronecker products,
where SVD is applied after computing the QR decomposition
of the matrices involved. In this work we prefer the reformu-
lation of Claim 1 since it is usually more efficient to compute
in our case. In order to substantiate this claim we conducted
the following experiment: Using Matlab (which to the best of
our knowledge is the state of the art when it comes to efficient
dense and sparse matrix computations in main memory), we
computed the QR decomposition and the economy version of
the SVD for a series of random matrices with increasing num-
ber of rows and fixed number of columns (a scenario which
resembles the case where we have a tensor of increasing di-
mensions but we have a fixed rank). Figure 1 indicates the
efficiency of SVD.

It is important to note here that in the case that the fac-
tors A,B,C are sparse, we can exploit that fact using SVD
for sparse matrices, to further speed up the computation. The
straightforward algorithm that computes (A⊗B⊗C) can-
not take advantage of factor sparsity. Now, we can solve
CORCONDIA without materializing any of the Kronecker
products. Instead we observe that the equation we need to
solve is

vec (G) = (Va ⊗ Vb ⊗ Vc)
(
Σa

−1 ⊗ Σb
−1 ⊗ Σc

−1)(
Ua

T ⊗ Ub
T ⊗ Uc

T
)
vec (X)

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Row dimension I

T
im

e
 (

s
e
c
)

QR vs SVD for Ix50 matrix

 

 

QR

SVD

Fig. 1. QR vs. SVD

which is simply a series of Kronecker products times a
vector computations.

In [20], the author provides an efficient algorithm that
does not materialize the (potentially very large) Kronecker
product, and is able to efficiently compute products of the
the form. (A1 ⊗A2 ⊗ · · · ⊗Ak)x. We use the algorithm of
[20] in our proposed Algorithm. When the tensor is sparse,
the above computations can be carried out very efficiently,
again, using sparse matrix multiplication. In Algorithm 1, we
show a listing of our efficient CORCONDIA algorithm.

Algorithm 1: Efficient CORCONDIA
Input: Tensor X and PARAFAC factor matrices A,B,C.
Output: CORCONDIA diagnostic c.

1: Compute A = UaΣaVa
T

2: Compute B = UbΣbVb
T

3: Compute C = UcΣcVc
T

4: Calculate y =
(
Ua

T ⊗ Ub
T ⊗ Uc

T
)
vec (X) using

Algorithm of [20].
5: Calculate z =

(
Σa

−1 ⊗ Σb
−1 ⊗ Σc

−1
)
y using Algorithm

of [20].
6: Calculate vec (G) = (Va ⊗ Vb ⊗ Vc) z using Algorithm of

[20].
7: c = FORMULA FOR CORCONDIA

4. EXPERIMENTS

We implemented Algorithm 1 in Matlab, using the Tensor
Toolbox [21] (available at: http://www.sandia.gov/
˜tgkolda/TensorToolbox/index-2.5.html ),
which provides efficient manipulation and storage of sparse
tensors. We make our code publicly available1. For com-
parisons, we used two baselines: the implementation of the

1Download our code at http://www.cs.cmu.edu/˜epapalex/
src/efficient_corcondia.zip
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Fig. 2. Time vs I = J = K

N-way Toolbox for Matlab[22] (available at: http://www.
models.life.ku.dk/nwaytoolbox), and the imple-
mentation of the PLS Toolbox (available at: http://www.
eigenvector.com/software/pls_toolbox.htm).
The PLS Toolbox is commercial, and is considered the state
of the art for computing CORCONDIA, however, we in-
clude comparisons with the N-way Toolbox since it is freely
available. All experiments were run on a workstation with 4
Intel(R) Xeon(R) E7- 8837 and 1TB of RAM.

Figure 2 shows the execution time as a function of the ten-
sor mode dimension I for I×I×I tensors for three cases: (a)
very sparse tensors (with I non-zero values), (b) moderately
sparse (with I2 non-zero values), and (c) fully dense (with
I3 non-zero values). In Fig. 2(a), we see that our proposed
algorithm is generally much faster than both baselines (note
that the figures are in log-scales), while it keeps working for
I = 104 where the baselines run out of memory. However,
our proposed algorithm is able to scale up to 105× 105× 105

tensors. In Fig. 2(b) we observe similar behavior, where
the overall performance (for all three algorithms) is slightly
lower, due to the existence of more non-zero values. Finally,
in Fig. 2(c), as expected, we see that our proposed algorithm
has the same performance as the state of the art PLS Toolbox
implementation, since there is no sparsity to take advantage
of.

5. CASE STUDY

In this section, we use our proposed algorithm in order to
determine the appropriate number of components for the
PARAFAC decomposition of a big real-world dataset. In par-
ticular, we chose a time-evolving social network dataset, more
specifically a snapshot of Facebook (available at: http://
socialnetworks.mpi-sws.org/data-wosn2009.
html). This dataset records which user posted on another
user’s Wall and what date, forming a three-mode (User, User,
Date) tensor, with dimensions: 63891 × 63890 × 1847 and
737778 non-zero values. Despite the very large dimensions

of the tensor, our algorithm is able to compute the CORCON-
DIA diagnostic for different values of the rank, as shown
in Fig. 3(a). For each rank, we compute CORCONDIA
100 times and we show the maximum value attained, which
reflects the best possible decomposition among those 100
iterations. In Fig. 3(b) we show the average time it took to
compute the diagnostic for each rank.
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Fig. 3. Analyzing the Facebook tensor

6. CONCLUSIONS

In this work we propose an efficient algorithm for computing
the CORCONDIA diagnostic, especially for large sparse ten-
sors. The important take-home point is that in cases where
either the tensor or the factors or both are sparse, our pro-
posed algorithm significantly outperforms the state of the art
baselines and scales very well as the data size grows. In the
fully dense scenario, our proposed algorithm is as good as the
state of the art.
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