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ABSTRACT

Tensor decomposition on big data has attracted significant at-
tention recently. Among the most popular methods is a class
of algorithms that leverages compression in order to reduce
the size of the tensor and potentially parallelize computations.
A fundamental requirement for such methods to work prop-
erly is that the low-rank tensor structure is retained upon com-
pression. In lieu of efficient and realistic means of computing
and studying the effects of compression on the low rank of a
tensor, we study the effects of compression on the core con-
sistency; a widely used heuristic that has been used as a proxy
for estimating that low rank. We provide theoretical analysis,
where we identify sufficient conditions for the compression
such that the core consistency is preserved, and we conduct
extensive experiments that validate our analysis. Further, we
explore popular compression schemes and how they affect the
core consistency.

Index Terms— Tensor decomposition, tensor rank, core
consistency, CORCONDIA, compression

1. INTRODUCTION

In recent years, there has been a tremendous increase in the
amount of data being available in many application areas of
interest [1]. These data are many times multi-aspect and,
therefore, they are very elegantly described by multidimen-
sional arrays where each index of the array corresponds to a
specific aspect of the data.

Tensors, which are very closely tied to multidimensional
arrays, have proved to be a very useful framework for analyz-
ing and extracting structure from these data, which is usually
achieved by employing tensor decompositions. A plethora of
such decompositions has been suggested [2, 3, 4], many of
which have also seen significant algorithmic advances espe-
cially when dealing with big data [5, 6, 7].

A particular scheme of interest, though, is the one where
the tensor data are randomly compressed before being de-
composed [8, 9, 10]. However, even though the analysis in
those papers is sound, all results are predicated on the fact
that the rank is preserved during this compression/sketching
step. In practical cases, we have observed this to be true, but,
to the best of our knowledge, there is no analysis of this phe-

nomenon. Thus, in this paper we set out to investigate the
effects of such compression on the rank of a tensor, assuming
that it has low-rank trilinear structure.

To this end, and realizing that tensor rank calculation is an
NP-hard problem [11], we will focus on the impact of com-
pression on the Core Consistency Diagnostic [12, 13], which
is the most widely used heuristic for judging the trilinearity
of a tensor and identifying the rank [14, 15, 16]. Specifically,
our contributions are:
• Theoretical analysis: We provide a sufficient con-

dition for the compression matrices, under which the
compressed tensor preserves the Core Consistency.
• Extensive experimental evaluation: We thoroughly

evaluate our theoretical results using real sugar data
that have been chemically verified for their trilinearity
[13]. To achieve this, various experiments with differ-
ent schemes of compression were carried out, and their
efficiency in retaining the Core Consistency of a tensor
with low-rank trilinear structure is discussed.

2. PROBLEM FORMULATION

2.1. Notation & Definitions

An N -mode tensor X can be defined as an element of the
tensor product of N vector spaces, and by choosing bases for
these spaces, it can be described as a multidimensional array
of numbers. Specifically, for the tensor product of N vector
spaces of dimensions I1, I2, · · · , IN , by choosing bases in
RI1 , RI2 , · · · , RIN , respectively, X can be expressed as an
element of RI1×I2×···×IN .

Mode-n Fiber: A mode-n fiber of X is the column vector
X (· · · , in−1, :, · · · ), whose elements are the elements of X
for in = 1, · · · , In while the rest of the indices are fixed.

n-Mode Product: The n-mode product of X with a ma-
trix Z ∈ RK×In , is denoted by X×nZ, and results in a tensor
whose n-mode fibers are the n-mode fibers of X multiplied
by Z. In other words,

(X ×n Z)(· · · , in−1, :, · · · ) = Z ·X (· · · , in−1, :, · · · )

Note that (X ×n Z) ∈ RI1×···×In−1×K×···×IN .



Frobenius Norm: The Frobenius Norm || · || of a tensor
X is defined as

||X || =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

X (i1, i2, · · · , iN )2

2.2. Tensor Decompositions

Many times we are interested in expressing X in a decom-
posed form, since this can be instrumental in different data
analytics scenarios [1, 4].

Particularly, we can decompose X as the sum of rank-one
tensors. In this paper, we will only consider 3-mode tensors,
and, therefore, these rank-one tensors will be the outer prod-
uct of three vectors, ap ∈ RI with p = 1, . . . , P , bq ∈ RJ

with q = 1, . . . , Q, and cr ∈ RK with r = 1, . . . , R. These
vectors can be grouped as the columns of three factor matri-
ces A, B and C, respectively, so that A ∈ RI×P , B ∈ RJ×Q

and C ∈ RK×R.
One such decomposition is PARAFAC [2, 17], which al-

lows us to express X as

X =

R∑
r=1

ar ◦ br ◦ cr (1)

or equivalently

X = I ×1 A×2 B×3 C (2)

where R is the number of components, and I(i, j, k) is 1 for
i = j = k and zero everywhere else.

TUCKER3 is another useful decomposition [3], which
generalizes PARAFAC, and allows us to express X as

X =

P∑
p=1

Q∑
q=1

R∑
r=1

G(p, q, r) · ap ◦ bq ◦ cr (3)

or equivalently

X = G ×1 A×2 B×3 C (4)

where G is called the TUCKER3 core.
Additionally, since in our work we assume low-rank struc-

ture, we will only consider tall PARAFAC and tall orthonor-
mal TUCKER3 factor matrices. The orthonormality assump-
tion might seem restrictive at first glance, but observe that for
non-orthonormal tall TUCKER3 factor matrices we can em-
ploy their reduced QR factorization to get

X = G ×1 QARA ×2 QBRB ×3 QCRC

= (G ×1 RA ×2 RB ×3 RC)×1 QA ×2 QB ×3 QC

= G̃ ×1 QA ×2 QB ×3 QC

Finally, it should be mentioned that for different values
of R in (1) we get different decompositions, and the same is
true for different values of P , Q and R in (3). Keep in mind,
however, that for some values an exact decomposition may
not exist at all.

2.3. Core Consistency Diagnostic

The Core Consistency Diagnostic (CORCONDIA) [12, 13] is
defined as (

1− ||I − G||2

||I||2

)
· 100

where
G = X ×1 A

+ ×2 B
+ ×3 C

+ (5)

and A+, B+ and C+ are the Moore-Penrose inverses of the
PARAFAC factor matrices of X .

Expression (5) is obtained as the minimum norm solution
of the least squares problem

argmin
G

||X − G ×1 A×2 B×3 C||

Note that PARAFAC can be expressed as the solution of the
least squares problem

argmin
A,B,C

||X − I ×1 A×2 B×3 C||

Hence, we can see that CORCONDIA essentially attempts to
quantify how well a PARAFAC decomposition describes X ,
by comparing to how well X can be described when interac-
tions between all the columns of A, B and C are allowed.

Specifically, when these interactions do not improve the
model significantly, then we can interpret it as a sign that
the PARAFAC model is appropriate. Further, G will have
its dominant elements on the diagonal, and, thus, CORCON-
DIA will have a value close to 100. On the other hand, when
the interactions produce a substantially better model, then the
PARAFAC model is probably not appropriate. In fact, G will
have many off-diagonal elements, which will result in a close
to zero, or even negative CORCONDIA.

This means that we can evaluate CORCONDIA on a
range of PARAFAC decompositions with different number of
components, R, and select the one with the largest number
of components that also retains a reasonably high CORCON-
DIA value. By using this method, we hope to discover a
PARAFAC model that best describes potential trilinear varia-
tion in our data.

3. PROPOSED ANALYSIS

Although CORCONDIA is a very useful diagnostic for dis-
covering trilinear variation in data, there can be times where it
becomes very computationally and memory intensive in prac-
tice. Specifically, if we consider very large tensors, not only
the PARAFAC factor matrices and their pseudoinverses can
take prohibitive amounts of time to calculate, but in cases
where the whole tensor cannot fit into the main memory, per-
formance can deteriorate substantially.

For this reason, it would be useful to have in our disposal
a tool that allows us to extract and study a much smaller ver-
sion of the tensor that, despite its small size, retains most



of the systematic variation. However, since finding such a
compressed tensor can also be computationally expensive, we
need to settle for a trade-off between how fast and how accu-
rately it can be generated.

To this end, we propose to study the statistics of multi-
ple randomly compressed tensors, X ′, by employing n-mode
products of the uncompressed tensor, X , with matrices U ∈
RL×I , V ∈ RM×J and W ∈ RN×K having orthonormal
rows, so that X ′ can be expressed as

X ′ = X ×1 U×2 V ×3 W

where X ′ ∈ RL×M×N with L < I , M < J and N < K.
The main reason for selecting this kind of compression is

on one hand because of its simplicity, but at the same time
because it allows us to derive elegant and useful theoretical
results, as shown in the following claims.

Claim 1. When X has an exact PARAFAC decomposition and
its mode-1, mode-2 and mode-3 fibers belong in the rows-
pace of U, V and W, respectively, then CORCONDIA is
preserved.

Proof. Since X has a PARAFAC decomposition, we get

X ′ = I ×1 UA×2 VB×3 WC

and, therefore, the PARAFAC decomposition of X ′ is given
by A′ = UA, B′ = VB and C′ = WC. As a result, (5)
gives

G′ = X ′ ×1 (UA)+ ×2 (VB)+ ×3 (WC)+

= X ×1 (UA)+U×2 (VB)+V ×3 (WC)+W

= X ×1 A
+UTU×2 B

+VTV ×3 C
+WTW

= X pr ×1 A
+ ×2 B

+ ×3 C
+

where X pr = X×1U
TU×2V

TV×3W
TW, which can be

seen as the projection of X onto the rowspaces of U, V and
W. Finally, since the fibers of X belong in the rowspaces of
these matrices, it will hold that X pr = X , which in turn gives

G′ = X ×1 A
+ ×2 B

+ ×3 C
+ = G

Therefore, CORCONDIA is preserved.

Claim 2. When X has an exact PARAFAC decomposition and
we compress using the transpose of its TUCKER3 factor ma-
trices, then CORCONDIA is preserved.

Proof. First, notice that when an exact PARAFAC decom-
position exists, then an exact TUCKER3 decomposition will
also exist, which can be derived from the PARAFAC decom-
position by employing the reduced QR factorization of its fac-
tor matrices as shown in subsection 2.2. Now from (4) we get

X ×1 A
T ×2 B

T ×3 C
T = G =⇒

X ×1 AAT ×2 BBT ×3 CCT = G ×1 A×2 B×3 C =⇒
X pr = X

and, thus, we conclude that all mode-1, mode-2 and mode-3
fibers belong in the rowspace of AT , BT and CT , respec-
tively. At this point, all conditions in Claim 1 are satisfied,
which means that CORCONDIA is preserved.

We should mention that such a compression scheme has
also been studied in [18] in the context of speeding up the
calculation of PARAFAC decompositions. That said, even
though that work can provide further insight into why this
compression scheme is sensible, our approach differs in that
instead of looking for optimal compression matrices, it takes
the more agnostic path of multiple random compressions.

4. EXPERIMENTAL EVALUATION

In this section, we present experimental results on the behav-
ior of CORCONDIA on compressed real tensor data. Specif-
ically, we are studying sugar data of size 268×44×7 that are
known to have trilinear structure [13]. All experiments were
run on a system with an Intel(R) Core(TM) i5-7300HQ and
8GB of RAM. Matlab along with Tensor Toolbox [19] was
used throughout the whole process, except for the calculation
of all PARAFAC and TUCKER3 decompositions for which
N-way Toolbox [20] was utilized.

We have experimented with the following three types of
compression:
• Gaussian - the tensor is multiplied modewise with ma-

trices whose elements are independent identically dis-
tributed random variables following the standard nor-
mal distribution.
• Orthonormal - the tensor is multiplied modewise with

random matrices with orthonormal rows. These matri-
ces are obtained from the reduced QR decomposition
of the transpose of a Gaussian compression matrix.
• Tucker - the tensor is multiplied modewise with the

transpose of its TUCKER3 factor matrices, which in
fact results in a compressed tensor identical to the
TUCKER3 core.

In Figure 1 we present the results for all three types
of compression. Specifically, the upper left plot shows the
CORCONDIA values of the uncompressed tensor for mul-
tiple PARAFAC decompositions with different number of
components. The vertical line indicates the fixed number
of components at which the compressed tensors are tested,
while the circle shows the value of CORCONDIA that they
are expected to retain for various compression types and
ratios.

The rest of the plots show CORCONDIA for each of
the aforementioned compression types, where 1000 samples
were used for Gaussian and Orthonormal compression, and
10 samples for Tucker compression. They contain the box-
plots for each compression ratio along with the corresponding
outliers, which are denoted by ‘+’. All calculations were done
after negative CORCONDIA values were set equal to zero.
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Fig. 1: Comparison of Gaussian, Orthonormal and Tucker compressions for three PARAFAC components.

Further, the sample means for all compression ratios are rep-
resented by the thick lines, and they were calculated after
the outliers were first properly smoothed. Finally, the com-
pression ratio is the percentage by which we reduce the size
of the first and the second mode; we do not compress in the
third mode since it is already really small. For instance, for
a compression ratio of 50%, we get a compressed tensor of
size 134×22×7. We reserve more detailed compression ratio
schemes for the extended version of this work.

Note that CORCONDIA seems to not be preserved only
when it starts falling from 100 to 0. This occurs at the
PARAFAC model with 3 components, and this is why only
this case is discussed in this paper. For 1, 2, 4 and 5 com-
ponents, it is almost perfectly preserved for all compression
types and for all compression ratios up to even 4%.

Examining the plots in Figure 1, it is clear that Tucker
compression achieves the best performance by managing to
perfectly preserve CORCONDIA up to 8% compression. Or-
thonormal compression comes second by generally preserv-
ing CORCONDIA up to about 20% compression, although in
the mean it retains the value high enough up to 8% compres-
sion. In fact, we can expect very similar performance even
with very few samples since the variance is very small. On the
other hand, Gaussian compression has clearly a much worse
performance, not only because it rarely retains the original
CORCONDIA value, but also because for multiple compres-
sions the variance is too large. That said, it can retain in the
mean a high enough CORCONDIA up to 20% compression.

At this point, one might feel tempted to consider Tucker
compression as the undisputed winner. However, we should
not forget that this compression type requires the calculation

of the TUCKER3 decomposition of the uncompressed tensor
which can actually become very computationally expensive.
On the other hand, the Gaussian and Orthonormal methods
can perform the compression much faster since we can gen-
erate the compression matrices easier.

5. CONCLUSION

We study the effects of various popular and practical tensor
compression schemes in the CORCONDIA of a tensor. We
provide theoretical insights on conditions that satisfy perfect
retention of CORCONDIA upon compression, along with ex-
perimental results that verify our analysis. Further, we eval-
uate the effect of different random compression schemes to
CORCONDIA. Experimental results on real data indicate that
it is possible to perform significantly tight compressions with-
out having a serious impact on the value of CORCONDIA.
Therefore, this method can be used as a tool to mitigate the
consequences of the high time complexity of the calculations
that CORCONDIA has to perform, especially on big tensor
data.
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[11] Johan Håstad, “Tensor rank is np-complete,” Journal of
Algorithms, vol. 11, no. 4, pp. 644–654, 1990.

[12] Rasmus Bro, Multi-way analysis in the food indus-
try: models, algorithms, and applications, Ph.D. thesis,
1998.

[13] Rasmus Bro and Henk AL Kiers, “A new efficient
method for determining the number of components in
parafac models,” Journal of chemometrics, vol. 17, no.
5, pp. 274–286, 2003.

[14] Papalexakis, Evangelos E, “Automatic unsupervised
tensor mining with quality assessment,” in SIAM SDM,
2016.

[15] Maja H Kamstrup-Nielsen, Lea G Johnsen, and Rasmus
Bro, “Core consistency diagnostic in parafac2,” Journal
of Chemometrics, vol. 27, no. 5, pp. 99–105, 2013.

[16] R David Holbrook, James H Yen, and Thomas J Griz-
zard, “Characterizing natural organic material from the
occoquan watershed (northern virginia, us) using fluo-
rescence spectroscopy and parafac,” Science of the Total
Environment, vol. 361, no. 1-3, pp. 249–266, 2006.

[17] R. Bro, “Parafac. tutorial and applications,” Chemomet-
rics and intelligent laboratory systems, vol. 38, no. 2,
pp. 149–171, 1997.

[18] Rasmus Bro and Claus A Andersson, “Improving the
speed of multiway algorithms: Part ii: Compression,”
Chemometrics and intelligent laboratory systems, vol.
42, no. 1-2, pp. 105–113, 1998.

[19] B.W. Bader and T.G. Kolda, “Matlab tensor toolbox
version 2.2,” Albuquerque, NM, USA: Sandia Na-
tional Laboratories, 2007, available at: https://
www.sandia.gov/˜tgkolda/TensorToolbox/
(Oct. 2018).

[20] C.A. Andersson and R. Bro, “The n-way toolbox
for matlab,” Chemometrics and Intelligent Lab-
oratory Systems, vol. 52, no. 1, pp. 1–4, 2000,
available at: https://www.mathworks.com/
matlabcentral/fileexchange
/1088-the-n-way-toolbox (Oct. 2018).

https://www.sandia.gov/~tgkolda/TensorToolbox/
https://www.sandia.gov/~tgkolda/TensorToolbox/
https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox

	 Introduction
	 Problem Formulation
	 Notation & Definitions
	 Tensor Decompositions
	 Core Consistency Diagnostic

	 Proposed Analysis
	 Experimental Evaluation
	 Conclusion
	 Acknowledgements
	 References

