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Coclustering—a useful tool for chemometrics

Rasmus Bro®*, Evangelos E. Papalexakis®, Evrim Acar®
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Nowadays, chemometric applications in biology can readily deal with tens of thousands of variables, for instance, in
omics and environmental analysis. Other areas of chemometrics also deal with distilling relevant information in
highly information-rich data sets. Traditional tools such as the principal component analysis or hierarchical cluster-
ing are often not optimal for providing succinct and accurate information from high rank data sets. A relatively little
known approach that has shown significant potential in other areas of research is coclustering, where a data matrix is

simultaneously clustered in its rows and columns (objects and variables usually).
Coclustering is the tool of choice when only a subset of variables is related to a specific grouping among objects.
Hence, coclustering allows a select number of objects to share a particular behavior on a select number of variables.
In this paper, we describe the basics of coclustering and use three different example data sets to show the advantages
and shortcomings of coclustering. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The chemometric field is dealing with increasingly complex data,
for instance, in omics, quantitative structure-activity relationships,
and environmental analysis. It is not uncommon to use hyphen-
ated methods for measuring thousands of chemical compounds.
This is quite different from traditional chemometric applications,
for instance, in spectroscopy where the number of variables (wave-
lengths) may be high but the actual number of chemicals reflected
in the data—the chemical rank—is typically low. Approaches such
as principal component analysis (PCA) are very well suited for
analyzing fairly low rank data, especially when the gathered data
are known to be relevant to the problem being investigated.

Traditional clustering techniques are more useful for exploratory
analyses of “classical” data. However, with the increasing number
of variables being measured nowadays, there is an interesting
opposite trend toward not being interested in modeling the full
data. Instead, the focus is often on finding few, so-called, biomar-
kers. A biomarker can be a specific chemical compound indicative
of a pathological condition or indicative of intake of certain food
stuff. Thus, even though the actual amount of data and “informa-
tion” increases, at the same time, the need for simplifying the
visualization, interpretation, and understanding increases.

In coclustering, a data matrix is simultaneously clustered in its
rows and columns (objects and variables usually). Coclustering is
by no means new [11], but it has attracted considerable interest
in recent years because of some algorithmic developments and
its promising performance in various applications—particularly
in bioinformatics [15].

One of the main advantages of coclustering is that it clusters
both objects (samples) and variables simultaneously. Suppose
we have a data set that shows the food intake of various items
for a group of people from Belgium and Korea. In order to find
the clusters in this data set, we may use a simple approach
where the samples are clustered first, and subsequently, the
variables are clustered. It is conceivable that the main clusters
could be exactly Asian and European because, overall, the main

difference in intake relates to cultural differences. Hence, clustering
among samples would split the samples into these two groups. It is
also conceivable that there could be another grouping because of,
for example, some people preferring fish. However, because
fish-related items are only a small part of the variables and fish
lovers appear in both populations, such a cluster cannot be real-
ized. On the other hand, coclustering could capture both a country
and a fish cluster because it considers which samples are related
with which variables at the same time rather than one modality
at a time.

Hence, coclustering is the tool of choice when subsets of
subjects are related with respect to corresponding subsets of
variables. For some coclustering methods it also holds that an
individual subject (or variable) can belong to several (or no) clus-
ters. This is so-called overlapping coclustering as opposed to
non-overlapping coclustering where each variable is assigned
to at most one cluster.

In the following, we describe the theory behind coclustering
and subsequently exemplify coclustering on a toy data set
reflecting different kinds of animals, on a data set of chromato-
graphic measurements of olive oils, as well as on cancer gene
expression data.
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2. THEORY

We assume that our data forms a matrix X of dimensions / x J.

2.1. Coclustering with sparse matrix regression

Coclustering can be formulated as a constrained outer product
decomposition of the data matrix, with sparsity on the latent
factors of the bilinear model [17]. Each cocluster is represented
by a rank-1 component of the decomposition. Instead of using
a plain bilinear model, sparsity on the latent factors is imposed.
Intuitively, latent sparsity selects the appropriate rows and
columns that belong to each cocluster, rendering all other coef-
ficients that do not belong to a certain cocluster exactly zero.
Hence, each bilinear component represents a cocluster.

Mathematically, this coclustering scheme may be stated as the
minimization of the following loss function:

X — ABT|[ + 25" [Aul + 4 [By]
ik Tk

where A and B are matrices of size | x K and J x K, respectively; K
corresponds to the number of extracted coclusters. The sum of
absolute values is used as a sparsity-inducing surrogate for the
number of nonzero elements, for example, see Ref. [19], and /
is a sparsity-controlling parameter.

The loss function can be interpreted as a constrained version
of a bilinear model such as PCA. Rotations such as varimax [12]
also aim at simplicity and sparsity, but they do so in a lossless
manner, where the actual bilinear approximation of the data is
left unchanged. It is merely rotated toward a simpler view that
will not usually lead to real sparsity.

Doubly sparse matrix factorization as shown has been proposed
earlier [13,20]. Witten et al. [20] proposed adding sparsity-inducing
hard one-norm constraints on both left and right latent vectors, as
a variation of sparse singular value decomposition and sparse
canonical correlation analysis. Although their model was not devel-
oped with coclustering in mind, it is similar to sparse matrix
regression (SMR), which uses soft one-norm penalties instead of
hard constraints (and possibly non-negativity when appropriate).
Algorithmically, Witten et al. [20] use a deflation algorithm that
extracts one rank-1 component at a time, instead of alternating
optimization across rank-1 components as in SMR.

Lee et al. [13] proposed a similar approach specifically for coclus-
tering. However, their algorithm is not guaranteed to converge
because the penalties are not kept fixed during iterations. As a
result, the algorithm in Lee et al. [13] does not monotonically re-
duce a tangible cost function, and instabilities are not uncommon.

In Papalexakis et al. [18], a coordinate descent algorithm is
proposed in order to solve the given optimization problem. More
specifically, one may solve this problem in an alternating fashion,
where each subproblem is basically a least absolute shrinkage
and selection operator problem [16,19]. We have to note that a
global minimum for the bilinear problem may not be attained;
the existing algorithms guarantee a local minimum or saddle
point solution only.

The SMR coclustering algorithm [18] may be characterized as a
soft or fuzzy coclustering algorithm, in the sense that cocluster
membership is not merely a zero or one, but can be any value
in between. Some rows and columns may not be assigned to
any cocluster, and overlapping coclusters are allowed and can
be extracted.

It follows that when sparsity is imposed to such an extent that
rows and columns are completely left out, the concept of assessing
residual sums of squares or fit values is not meaningful or at least
not meaningful in the same sense as for ordinary least squares
fitting. Therefore, other means for evaluating the usefulness of a
model are needed. Such are described in the following section
on metaparameters. Also, interpreting why certain samples or
variables are left “orphan” may be useful for understanding the
coclustering. This is usually an application-specific problem.

One may add non-negativity constraints to the given loss
function formulation, which can be readily applied within the
existing coordinate descent algorithm with minor modifications.

Although our focus here will be on SMR coclustering because of
its appropriateness for chemometric applications, there are several
types of coclustering models and algorithms that are popular in
other areas and worth mentioning. Banerjee et al. [1,3,8] have
introduced a class of coclustering algorithms that use Bregman
divergences, unified in an abstract framework. Bregman cocluster-
ing is a hard coclustering technique, in the sense that it seeks to
locate a non-overlapping “checkerboard” structure in the data. This
type of coclustering is typically not of interest in chemometrics,
where one often deals with data that contain large numbers of
potentially irrelevant variables. Dhillon [7] has formulated coclus-
tering as a bipartite graph partitioning problem originally in the
context of coclustering of documents and words from a document
corpus. This algorithm can also be classified as hard coclustering. In
addition, this algorithm works for non-negative data only. Initial
testing of various algorithms has shown that appearance of local
minima is a common problem. In fact, most hard coclustering
algorithms seem to have much more pronounced problems with
local minima than soft coclustering ones. Furthermore, the possi-
ble local minima in soft coclustering are often distinct (e.g., rank
deficient) and hence easier to spot. Other approaches that
are more distantly related are methods presented by Damian
et al. [4] and Friedman and Meulman [9], which do not account
for sparsity, and the hard coclustering method of Hageman
et al. [10], which uses a genetic algorithm that is sensitive
to local minima.

2.2, Metaparameters

For SMR, there are certain meta-parameters, that is, the penalty 4
and number of coclusters that need to be chosen. The number of
coclusters must be selected in most coclustering methods, but
for SMR, which is not based on hard clustering, it is found that
in many cases, the clusters are exactly or approximately nested
as we increase the number of clusters. Hence, for example, for
a solution with five coclusters, it is often found that the first three
coclusters is approximately equal the solution found using only
three coclusters. The reason for this approximate nestedness is
currently being investigated further. In any case, it greatly simpli-
fies the use of the method. For hard coclustering methods, a
similar behavior is naturally not observed.

In practice, the metaparameters are mostly determined in the
following way: The penalty for a given number of components is
chosen so that it is active. Choosing / that is too small would
give an inactive penalty, and choosing 4 that is too big would
lead to some components/coclusters with all zero values. A
simple line search can be implemented to find a value of 1 that
is active without leading to all zeros. It is generally seen that the
specific setting of 1 is not critical, but of course, any automatically
determined value of 4 can be further refined. This has not been
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Table 1. Animal data set used to illustrate coclustering
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Figure 1. Preprocessed chromatographic data.

pursued here. In order to determine the number of coclusters, a
fairly ad hoc approach has been used. Because coclustering is used
for exploratory analysis and the solution is nested, we simply
extract sufficiently many components to explain the main clus-
ters. More rigorous approaches such as cross-validation could
be implemented, but we do not see the predictive ability of
coclustering as a very meaningful criterion to optimize. Rather,
we find that interpretability of clusters is what is often sought
and what we focus on here.

3. MATERIALS AND METHODS

A toy data set is constructed for illustrating the behavior of coclus-
tering in general. This data set shows attributes of different
animals, and the data were not made particularly meticulously.
Several variables are not well defined, but this is of moderate
consequence in this context. Also, the data were made from the
authors’ point of view, for example, in terms of which animals are
domesticized. In Table |, the data set is tabulated. Note that the
data also includes an outlying sample (house) and an outlying
variable (random).

As another example, data from Refs [5,6] are analyzed. One
hundred twenty-six oil samples are analyzed by HPLC coupled to
a charged aerosol detector. Of the oil samples, 68 were various
types, and grades of olive oils and the remaining were either
non-olive vegetable oils or non-olive vegetable oils mixed with
olive oil. The HPLC method is aimed at providing a triacylglyceride
profile of the oils. The triacylglycerides are known to have a distinct
pattern for olive oils. The data were baseline corrected and aligned
as described in the original work, and the resulting data after
removal of a few outliers is shown in Figure 1.

As a final data set, we looked at a typical gene expression data
set. A total of 56 samples were selected from a cohort of lung
cancer patients assayed by using the Affymetrix 95av2 GeneChip
brand oligonucleotide array. The 56 patients represent four
distinct histological types: normal lung, pulmonary carcinoid
tumors, colon metastases, and small cell carcinoma. The data
have been described in several publications [2,14] and also using
coclustering [13]. The original data set contains 12625 genes.
Unlike most publications, no pre-selection to reduce the number
of genes is performed here. Rather, coclustering is applied directly
on the data. The data set holds information on 56 patients of which
20 are pulmonary carcinoid samples, 13 colon cancer metastasis
samples, 17 normal lung samples, and 6 small cell carcinoma
samples. The data set is fairly easy to cluster into these four groups.

The data and the algorithm can be found at www.models.life.
ku.dk (January 2012).

4. RESULTS

4.1. Looking at the animal data set

It is interesting to investigate the outcome of a simple PCA
model on the auto-scaled animal data. In Figure 2, a score plot
of the first two components of a PCA model is shown. Compo-
nent 1 seems to reflect birds, which is verified from the loading
vector that has high values for the variables: feather, wings, has
a beak, and walk on two legs. Component 2, though, is difficult
to interpret and seems to reflect a mix of different properties.
This is also apparent from the loading plot.

Looking at components 3 and 4 (Figure 3), similar complications
arise in interpreting the meaning of different components. All but
the first component reflect several phenomena in a contrast
fashion, and often, it is difficult to extract and distinguish the im-
portant variation.

Turning to SMR, a model is fitted using six coclusters. Similar
results are obtained with different numbers of coclusters, but
we chose six here to exemplify the results. The data are scaled,
not centered, and non-negativity is imposed. It is possible to plot
the resulting components/clusters as ordinary PCA components
in scatter or line plots. However, the semi-discrete nature of
the clusters sometimes makes such visualizations less efficient.
Instead, we have developed a plot where each cluster is shown
by labels of all samples and variables larger than a threshold.
This threshold was set to 20% of maximum but was inactive here
because all elements smaller than 20% of maximum were exactly
zero. Furthermore, the size of the label indicates the size of the
element. This provides an intuitive visualization as shown in
Figure 4 for the six-cocluster SMR model.

It is striking how easy it is to assess the meaning of this model
compared with the PCA model. Looking at the coclusters one at
a time, it is observed that cocluster 1 is a bird cocluster. Cocluster
2 is given by one variable (extinct) and is evident. Cocluster 3
comprises big animals. Note how several samples in coclusters
2 and 3 coincide. Animals in cocluster 4 are “grown” and eaten
by people, and cocluster 5 captures animals living in water.
Finally, cocluster 6 is too dense to allow an easy interpretation.
It is apparently a cocluster relating to the overall variation
and is in this sense taking care of the offsets induced by the lack
of centering.
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Figure 2. Top: score plot of PCA model. Bottom: corresponding load-
ing plot.

There is a dramatic difference in how easy it is to visualize the
results of PCA and SMR, but the data set is simple in the sense
that there are no significant amounts of irrelevant variation. In

order to see how SMR can deal with irrelevant variation, 30
random variables (uniformly distributed) were added to the
original 17 variables. The data were scaled such that each vari-
able had unit variance and SMR was performed.

In Figure 5, it is seen that the method very nicely distinguishes
between the animal-related information and the random variables.
All coclusters but cocluster 7 are easy to interpret. Cocluster 7 is not
sparse at all—it comprises almost all variables and all samples.
Also, note that the remaining coclusters are not identical to the
coclusters found before, but they are indeed fairly similar.

4.2. Olive oils

For the olive oil data set, a nice separation is achieved with three
coclusters. Adding more does not seem to change the coclusters
obtained in the three cocluster model, and the added coclusters
are not immediately meaningful. In Figure 6, it is seen that
cocluster 1 reflects olive oils, whereas cocluster 2 reflects non-
olive oils. The mixed samples containing some olive oils are
placed in between. The third cocluster seems to reflect only a
fraction of the olive oils. This is likely related to the olive oils
being a very diverse class of samples spanning from pomace to
extra virgin oil. The corresponding elution profiles of each cluster
are meaningful. The first (olive oil) cocluster has peaks around
300 and 400 (arbitrary units), and those peaks represent the
main olive oil triacylglycerides (triolein, 1,2-olein-3-palmitin, and
1,2-olein-3-linolein). Likewise, the non-olive oil cocluster repre-
sents trilinolein, 1,2-linolein-3-olein, and 1,2-linolein-3-palmitin,
which are frequent in non-olive oils. It is satisfying to see that
the olive oil samples are clustered together, as desired, even
though SMR is an unsupervised approach that does not use
any prior or side information.

The results obtained with coclustering are not too different from
what would be obtained with PCA. In fact, it is somewhat disturb-
ing that there is a distinct lack of sparsity. Although the model
makes sense from a chemical point of view, little sparsity is seen,
for example, in loading 1 and 2 (on the other hand, loading 3 is
sparse, and so are scores 2 and 3 to a certain extent). As described
in the theory section, the magnitude of the L1 penalty is automat-
ically chosen, but it turns out that it is not possible to obtain more
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Figure 5. Sparse matrix regression coclusters with 30 random variables added to the data.

sparsity than shown here. Manually increasing 4 leads to a model
where one component/cocluster turns all zero and hence rank
deficient. This points to a problem with the current coclustering
approach. Because 1 is the same for both the row and the
column mode, problems or lack of sparsity may occur when
the modes are quite different in dimension. The lack of sparsity
is likely caused by the strong collinearity as well as by the lack
of intrinsic sparsity in this type of data. It is questionable if

coclustering as defined here is a suitable model for spectral-like
data such as these. A more suitable approach could be an elastic
net-type coclustering [21], which would allow the natural colli-
nearities to be represented in the clusters. This seems like an
interesting research direction.

Note that for this particular data set, it would be possible to
integrate the chromatographic peaks and thereby obtain
discrete data that would be more suitable for coclustering.
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Cluster 1

Figure 7. Sparse matrix regression coclusters of cancer data color-coded according to cancer class.

The intention though, with the given example, is to illustrate
the behavior of coclustering on continuous data.

4.3. Cancer

When analyzing the gene expression data, the four different
cancer types come out immediately when we fit a four-cocluster
model as shown in Figure 7, where the four cancer classes are
color coded. It is apparent that the four cancer classes are per-
fectly clustered, but it is also apparent that the gene mode shows
little sparsity in comparison with patients. Hence, coclustering

does not provide the sparsity desired in order to be able to talk
meaningfully of specific biomarkers.

Performing a PCA on the same data (auto-scaled) provides a
very clear grouping into the four cancer types (not shown).
The separation is not perfect as in Figure 7, but the tendency
is very clear. Lee et al. [13] also performed coclustering with an
algorithm similar to the SMR algorithm. The coclustering in the
sample space that they obtained resembles the one obtained
using PCA more than the distinct coclustering obtained in
Figure 7. This, however, can be explained by the fact that pen-
alties are chosen differently by Lee et al. using a Bayesian
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information criterion. Regardless, as also observed with the
SMR algorithm, the algorithm of Lee et al. produces solutions
that are not as sparse as expected in the gene mode.

5. CONCLUSION

The basic principles behind coclustering have been explained,
and a new model and algorithm have been favorably compared
with common methods such as PCA. It is shown that coclustering
can provide meaningful and easily interpretable results on both
fairly simple and complex data compared with more traditional
approaches. Limitations were encountered when the number of
irrelevant samples grew too high and when spectral-like data
are analyzed. More elaborate algorithms need to be developed
for handling such situations.
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