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Abstract—With the rise of online social networks and smartphones
that record the user’s location, a new type of online social network
has gained popularity during the last few years, the so called Location-
based Social Networks (LBSNs). In such networks, users voluntarily share
their location with their friends via a “check-in”. In exchange they get
recommendations tailored to their particular location as well as special
deals that businesses offer when users check-in frequently. LBSNs started
as specialized platforms such as Gowalla and Foursquare, however their
immense popularity has led online social networking giants like Facebook
to adopt this functionality. The spatial aspect of LBSNs directly ties the
physical with the online world, creating a very rich ecosystem where users
interact with their friends both online as well as declare their physical
(co-)presence in various locations. Such a rich environment calls for novel
analytic tools that can model the aforementioned types of interactions.
In this work, we propose to model and analyze LBSNs using Tensors
and Tensor Decompositions, powerful analytical tools that have enjoyed
great growth and success in fields like Machine Learning, Data Mining,
and Signal Processing alike. By doing so, we identify tightly knit, hidden
communities of users and locations which they frequent. In addition to
Tensor Decompositions, we use Signal Processing tools that have been
previously used in Direction of Arrival (DOA) estimations, in order to
study the temporal dynamics of hidden communities in LBSNs.
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I. INTRODUCTION

With the proliferation of the online social networks and the
widespread of smartphones, capable of recording the user’s location, a
new class of online social networks has emerged; one that is centered
around spatial information about the users. Such social networks go
by the name of Location-based Social Networks (LBSN for short)
and their primary purpose is to enable users to share their location
(through “checking-in” at a location), explore locations near them, as
well as view the location of their friends.

LBSNs started out as special purpose social network platforms,
such as Gowalla or Foursquare, however, location sharing has become
extremely pervasive to the point that networks like Facebook and
Instagram have embedded LBSN functionality on their platforms.
Such LBSNs tie the virtual and physical space through location
information. Navigation in the urban space involves now a new
dimension, the social. People can instantly get information about their
environment and make decisions based on what exists nearby and
what their friends or other users of the system believe. Some systems
can also offer Groupon-like deals, providing monetary incentives for
users and corporations to adopt their usage. The digital trails that
people leave in such systems capture in detail the human urban
mobility around a city. Check-ins, the action of voluntarily declaring
ones location in LBSNS, further provides the context in which this
mobility emerges (e.g., why do people exhibit this mobility pattern).

The availability of rich datasets from location-based social net-
works has lead to a surge in related research, a large volume of which

focusing on the identification of spatio-temporal patterns crucial
for a target application. For example, neighborhood detection and
characterization is one of the most prevalent applications studied
[51, [6], [11], [15], [8], [16]. Other studies have focused on the
applicability of LBSN data on identifying user activity patterns [10]
or on the business applications of these platforms [17].

Analyzing LBSNs and extracting useful patterns can help venues
improve their business and attract more customers, as well as im-
prove the users’ experience by high quality venue recommendation,
offers by venues that the users are really interested in, and friend
recommendation based on shared location interests. The composite
network structure and complex nature of LBSN data (where besides
user check-in information, user to user interaction as well as temporal
information are observed) calls for novel modeling and analytic tools.
In this work, our main aim is exploratory analysis. In particular:

e  We apply tensor analysis to model and extract meaningful
spatio-temporal patterns from very large LBSN data.

e  We further use signal processing tools, used in DOA esti-
mation, in order to gain insights on the temporal profile of
user check-in behavior.

To the best of our knowledge, this work is the first to apply the
above techniques in LBSN analysis and mining. Preliminary work
has appeared as a short two-page paper [13].

II. DATA ANALYSIS
A. Data description:

In our experiments we use a dataset obtained from Foursquare
[4]. The original dataset, includes geo-tagged user generated content
from a variety of social media that was pushed to Twitter’s public
feed between September 2010 and January 2011. Each tweet includes
location information in the following format: <userID, tweetID,
text, location, time, venuelID>.

There are 22,506,721 tweets in total. From those we initially
filter out tweets that have not originated from Foursquare and this
provides us with a dataset of 11,726,632 Foursquare check-ins pushed
to Twitter. We further remove check-ins in locations - i.e., (lat, lon)
pairs that can possibly correspond to more than one venues - that have
less than 10 check-ins in total and we eventually get our final dataset
of 6,699,516 check-ins, in 461,690 venues from 186,083 users. In
order to form T, we discretize time in bins of one day, and hence,
the entry T(¢, j, k) of the tensor is the number of check-ins user 4
made at venue j on day k. Tensor T can be seen as a time-evolving
bipartite Graph between users and venues.



B. Exploratory Analysis Using Tensors

An n-mode tensor, is a generalization of a matrix (2-mode tensor)
in n dimensions. In our case we propose to initially model the
spatio-temporal information as a 3-mode (user, venue, time) tensor T'.
Hence, T(i, j, k) = 1, iff user ¢ was at venue j at time k. Otherwise,
T(3,4,k) =0.

A typical technique for identifying latent patterns in data repre-
sented as a matrix is the Singular Value Decomposition (SVD) [7]. A
generalization of SVD in n-mode tensors is the Canonical Polyadic
(CP) or PARAFAC decomposition [9]. In particular, CP/PARAFAC
decomposes T to a sum of F' components, such that:
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where ay o by o cs(4,5,k) = ay(i)bs(j)cs(k). In other words,
each component (or triplet of vectors) of the decomposition is a rank
one tensor. Each vector in the triplet corresponds to one of the three
modes of the tensor: a corresponds to the users, b corresponds to the
venues, and c corresponds to the days. Each of these ' components
can be considered as a cluster, and the corresponding vector elements
as soft clustering coefficients. For notational simplicity, we denote as
matrix A (and matrices B and C accordingly) the factor matrix that
contains the ay vectors as columns. Note that for the purposes of this
work, we use the, highly optimized, Tensor Toolbox for Matlab [1].

1) Intuition behind the use of tensors: : Tensor decompositions
attempt to summarize the given data tensor into a reduced rank
representation. On the way of accomplishing that, PARAFAC tends to
favor dense groups that associate all three aspects involved in our data
(users, check-ins, and time). These groups need not be immediately
visible via inspection of the three mode tensor, since PARAFAC is
not affected by permutations of the mode indices. As an immediate
outcome of this process, we expect near-bipartite cores of people who
check-in at certain venues for a certain period of time, to appear as a
result of the decomposition, starting from the most dense of them, all
the way to the sparsest (if we assume that the rank-one components
of the decomposition are sorted by some indicator of density, such
as the norm of the three vectors).

2) Assessing the model quality & selecting number of compo-
nents: As we briefly mentioned earlier, the PARAFAC decomposition
tends to perform very well in discovering relatively dense, “rectan-
gular” blocks of data within the dataset. Consequently, depending
on the structure of the given data, the PARAFAC decomposition can
range from (almost) perfectly capturing the data, to performing rather
poorly. The main question at hand, with respect to the quality of
our modelling, is whether LSBN data are amenable to PARAFAC
analysis, and to what extent. Since we can not make a general
statement for every LBSN, we focus on the Foursquare dataset that
we have available. Our hope is that since Foursquare is one of
the most popular and highly used LBSNs, signals obtained through
examination of the particular snapshot of the network are good
indicators of the general behaviour.

In order to answer the question of how well does PARAFAC
model our data, we turn our attention to a metric introduced and used
in Chemometrics. In particular, the authors in [2] introduce a very
elegant diagnostic tool, CORCONDIA, that serves as an indicator that
the PARAFAC model describes the data well, or whether there is some
problem with the model. The diagnostic provides a number between

100

80

60r

40r

CORCONDIA

20r

% 20 40 . 60 80 100
Fig. 1: CORCONDIA values for the Foursquare tensor T as a function

of the number of components.

0 and 100; the closer to 100 the number is, the better the modeling. If
the diagnostic gives a low score, this could be caused either because
the chosen rank F' is not appropriate, or because the data do not
have appropriate trilinear structure, regardless of the rank. In order to
better clarify whether a variation in the CORCONDIA score is due
to bad rank choice or due to data structure, in our experiment we
gently increase the rank and observe the behavior. The details behind
this diagnostic tool are beyond the scope of this work, however we
refer the reader to the original paper [2] for a detailed treatment.

Computing CORCONDIA, however, is very challenging even
for moderately large size data as our Foursquare dataset. The main
computational bottleneck of CORCONDIA is solving the follow-
ing linear system: g = (C®B® A) vec(T) where t is the
Moore-Penrose pseudoinverse, @ is the Kronecker product, and the
size of (C®@B® A) is IJK x F3. Even computing and storing
(C® B ® A) proves very hard when the dimensions of the tensor
modes are growing, let alone pseudoinvert that matrix.

In order to tackle the above inefficiency, very recently a subset
of the authors introduced an algorithm for CORCONDIA to the case
where our data are large but sparse [12]. Key behind [12] is avoiding
to pseudoinvert (A ® B ® C). In order to achieve the above, we
reformulate the computation of CORCONDIA. The pseudoinverse
(A®@B ®C)" can be rewritten as

(Va®Vp@Ve) (Za '@ ' @) (Ua" 0 Up" @ UT)

where A = UaZaVa", B = UpZp V", and C = U E VT
(i.e. the respective Singular Value Decompositions).

After rewriting the least squares problem as above, we can effi-
ciently compute a series of Kronecker products times a vector, without
the need to materialize the (potentially big) Kronecker product, as
described in [12].

Here, we use the fast and efficient CORCONDIA algorithm
[12] in order to estimate the number of components with good
trilinear quality within our dataset. Figure 1 shows the CORCONDIA
value for various ranks (we have truncated negative values to zero).
By inspecting the figure, we can conclude that a 13 component
model is a good trade-off between quality and number of extracted
components, since it has reasonable trilinear structure as reflected by
its CORCONDIA value, while capturing a high number of low rank
components.

3) Spatial Results & Observations: As per the modeling quality
results of Figure 1, we computed a 13 component PARAFAC de-
composition of the data, which gave us 13 co-clusters of users and
venues across time. Due to the fact that PARAFAC decomposition



algorithms can only guarantee a locally optimal solution, we ran the
decomposition with multiple random initial seeds and kept the most
frequent solution. Since our data do not include social information,
i.e., friendships between users, we focus on the spatial information.
Each venue has a unique identifier that Foursquare assigns to each
location. We thus focus on the top-5 venues (based on the elements
of by) for each rank-one component, f, of the decomposition.
Due to space restrictions, we turn our attention to a subset of five
components, shown on Table L.

As we observe from Table I the spatial spread of the top
venues of the same component is fairly limited. In other words,
the components as extracted by PARAFAC tend to favor venues
that are near in the physical space and thus, are tightly knit in
the spatial dimension Furthermore, for some of the components
(e.g. 3, 4, and 5) the type of the venue is another commonality
that we can observe. Interestingly, in most of the cases where the
venue type was common across the venues of a component, that
type was related to public transportation (e.g. train and bus stations,
airports and airport terminals, as well as highways). During the course
of running multiple decompositions with different seeds, we also
stumbled upon some less frequent solutions that included a particular
latent component whose top venues were the Central Park Zoo in
New York City, the city of Venice, the Eiffel Tower in Paris, and
the Beverly Hills Sign in Los Angeles; the common factor behind
these venues is the fact that they are all major tourist attractions.
Furthermore, the fact that they appeared in the same component
potentially reveals their closeness in the low-rank subspace. Hence,
PARAFAC decomposition is not restricted to uncover components
that only have geographic location in common. This should have
been expected since our tensor construction does not consider the
actual geographic position of the venues/users. Nevertheless, as one
might have anticipated, the underlying geographic form leads to latent
factors that are geographically constrained.

4) Temporal Analysis: Table I tells only a part of the story, since
user-venue groups are by no means static and evolve over time.
For instance, a component that shows high user check-in activity
at an airport and its nearby locations is very likely going to exhibit
seasonal patterns, where the number of people visiting the venue
might increase during holidays or during high tourist seasons.

Fortunately, the PARAFAC decomposition extracts the temporal
profile for each one of those components as the columns of matrix C.
Each such temporal profile is a noisy time-series signal, which can be
further analyzed for obtaining interesting patterns. As aforementioned,
one pattern of particular interest is the existence of seasonal/periodic
behavior in the check-in activity. To that end, we employ spectral
MUSIC [14], a well established technique for DOA estimation, which
is also shown to work particularly well in frequency estimation of
noisy signals, i.e., when there are more than one harmonics involved.
For example, in our setting, it is natural to expect that a train station or
transportation hub has multiple periodicities, e.g. a weekly periodicity
where more traffic peaks during the weekdays, as well as yearly
periodicities for major holidays.

Much like the Fourier transform periodogram of a signal, spectral
MUSIC produces a spectrum whose peaks correspond to harmonics
of the signal. In Figure 2 we show the temporal profile of each latent
component, as well as its MUSIC spectrum. Indeed, for components
that correspond to transportation hubs (like component #3), there
are multiple seasonal effects. Insights from this temporal analysis,
combined with user-venue groups can lead to targeted offers from

venues to specific users during periods that, according to our temporal
analysis, they would be inclined to visit that particular venue.

III. FUTURE EXTENSION: FINER GRANULARITY ANALYSIS

In the future we plan on exploring the space of the locally optimal
solutions which have good trilinear structure and offer a diverse set of
user-venue communities. As we saw earlier, each component of the
PARAFAC decomposition usually tends to cluster venues of similar
location or functionality together, as well as users who like those
venues. Thus, within this tightly knit community of users and venues,
one interesting direction is to further analyze their behavior, in order
to potentially perform high quality venue or friend recommendation,
in a finer level of detail and personalization.

In particular, for a component f, we take the top /N users, indexed
by Us and top M venues indexed by Vy; we then form a tensor
If that contains the subset of those users and venues, i.e. If =
T(Uy,Vy,:). The challenge here is that, because T, is constructed
based on a rank-one tensor, it is very likely that it will be very sparse
and its structure may be non-trilinear, thus choosing the appropriate
tensor model is a promising future direction. As an example of such
preliminary finer level analysis, we analyzed the fifth component of
Table I by taking the top 100 users and top 100 venues, and the
resulting components included more locations within Seattle (such as
Starbucks coffee shops), as well as “hub” airports that that are near
Seattle and people in that community were visiting often (particularly,
LAX, PDX, SFO, and LAS).

IV. CONCLUSIONS

In this work, to the best of our knowledge, we are the first
to model LBSNs from a tensor analytic perspective. Our analysis
produces spatially and functionally coherent latent groups of users
and venues. We further analyze the temporal profiles of those coherent
groups using specialized signal processing tools, with our results
agreeing with the intuition that venues such as transportation hubs,
usually exhibit multiple seasonal patterns, which can be extracted
and exploited by the venue owners/managers. Finally, our work has
immediate implications on venue and friend recommendation, as well
as designing targeted advertising campaigns for businesses, based on
aggregate user check-in activity and its temporal patterns.

V. ACKNOWLEDGEMENTS

Research was supported by the National Science Foundation Grant No. I1S-1247489
and by the ARO YIP award #WO911INF-15-1-0599 (67192-NS-YIP). Any opinions,
findings, and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the funding parties.
REFERENCES

[11 B. Bader and T. Kolda. Matlab tensor toolbox version 2.2. Albuguerque,
NM, USA: Sandia National Laboratories, 2007.

[2] R. Bro and H. A. Kiers. A new efficient method for determining the
number of components in parafac models. Journal of Chemometrics,
17(5):274-286, 2003.

[3] P E.Buis and W. R. Dyksen. Efficient vector and parallel manipulation
of tensor products. ACM Transactions on Mathematical Software
(TOMS), 22(1):18-23, 1996.

[4] Z. Cheng, J. Caverlee, K. Lee, and D. Sui. Exploring millions of
footprints in location sharing services. In AAAI ICWSM, 2011.

[5] J. Cranshaw, R. Schwartz, J. Hong, and N. Sadeh. The livehoods project:
Utilizing social media to understand the dynamics of a city. In AAAI
ICWSM, 2012.



Component #

Venues

Commonalities

4adf593¢c£964a520b17921e3, Theo, Nelly & Joyce’s place, Helvoirt, The Netherlands (Home)
4bd45£d841b9%ef3b£f4d001e6, Honden uitlaat plaats, Helvoirt, Netherlands (Dog Run)

#1 4b5c8d44£964a520253629e3, Helvoirt, The Netherlands (City) Location
4b7c2£62£964a520d5822fe3, Opa & Oma, The Netherlands (Home)
4bd44748a8b3a59360796b5¢f, Elan Tankstation, Helvoirt, Netherlands (Gas Station, Garage)
4c0430939a7920a19££2d079, Fallowfield Asylum, Manchester, UK (Home)
#2 4b5f1£9cf964a5206aa729e3, The Manchester College: Northernden Campus, Manchester, UK (Community College) Location

4adelOedcf964a520de6£21e3, Piccadilly Gardens Bus Station, Manchester, UK (Bus Station and Bus Line)
4clbc093eac020al1226245c2, Nisa Local, Manchester, UK (Grocery Store)
4afecdcff964a520853022e3, Manchester Piccadilly Railway Station (MAN), Manchester, UK (Train Station)

4p958727£964a520a0a734e3, Exit 67 - Irwin, Irwin, PA (Road and General Travel)

#3 4ad8£68cf964a5207e1621e3, Squirrel Hill Tunnel, Pittsburgh, PA (Tunnel)

4b958277£964a5209da634e3, Exit 57 - Pittsburgh, Monroeville, PA (Road)
4b79£d52£964a520£91d2fe3, Old House, Greensburg, PA (Home)
4b2686faf964a520ec7c24e3, TeleTracking, Pittsburgh, PA (Office)

Location, Type

4b093eeff964a520e51423e3, Shibuya Sta., Shibuya, Japan (Train Station)

#4 4p22504c£964a520704524e3, Osaki Sta., Shinagawa, Tokyo, Japan (Train Station)

4b5eb5c0£964a5209c9629e3, Motomachi-Chukagai Sta., Kanagawa, Japan (Train Station)
4b563claf964a520af0628e3, Subway, Shinagawa, Tokyo, Japan (Sandwich Place)

Location, Type

4c2aB8d2cB8ef52d7fadl530ba, Virgin America, SeaTac, Seattle, WA (Airport Terminal)

#5 45f555cef964a5200e441fe3, Seattle-Tacoma International Airport (SEA), Seattle, WA (Airport)
4bb0ccdcf964a5201d5e3ce3, Gate A6, SeaTac, Seattle, WA (Airport Gate)
4b875bf4£964a520£2bc31e3, SEA Airport Employee Parking Area, SeaTac, Seattle, WA, (Parking)
43431780£964a5206a281fe3, Highline College, Seattle, WA (Community College)

Location, Type

TABLE I: Five components of the PARAFAC decomposition of the Foursquare tensor T. For each component we show the unique venue ID, the
name, the location and in parentheses we show the type of the venue. The last column of the Table summarizes the commonalities across the top
venues for each component.
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Fig. 2: Temporal profiles and MUSIC spectra for the latent groups of Table I.
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