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Abstract—
Traditionally, time-evolving topic discovery approaches have

focused on the temporal evolution of the topic itself. However,
especially in settings where content is contributed by a commu-
nity or a crowd, an orthogonal notion of time is the one that
pertains to the level of expertise of the content creator: the more
experienced the creator, the more advanced the topic will be.

In this paper, we propose a novel time-evolving topic discovery
method which, in addition to the extracted topics, is able to
identify the evolution of that topic over time, as well as the
level of difficulty of that topic, as it is inferred by the level
of expertise of its main contributors. Our method is based
on a novel formulation of Constrained Coupled Matrix-Tensor
Factorization, which adopts constraints that are well motivated
for, and, as we demonstrate, are necessary for high-quality topic
discovery.

Index Terms—Topic Discovery, Time-evolving, Tensors, Cou-
pled Matrix-Tensor Factorization, Constrained Factorization

I. INTRODUCTION

Traditionally, topic modeling and discovery methods have
focused on extracting high quality, interpretable topics that aim
to succinctly represent the inherent latent structure within a
corpus. Recently, there has been significant interest in studying
the evolution of topics over time, and this has found particular
applications in [3].

To the best of our knowledge, the state-of-the-art in time-
evolving topic extraction has focused on a notion of “time” that
pertains to the particular moment that a topic emerged and how
it evolved throughout its history within a corpus. However,
when we are dealing with topic extraction from community
and crowd-based platforms, such as Stack Exchange, an
additional notion of “time” arises. This notion of time is
related to the evolution of the user who contributes the content:
a relatively new user is more likely to contribute “entry-
level” content, whereas an experienced user who has already
contributed a significant amount of posts, is more likely to
create content that is more advanced. Previous work on topic
detection has overlooked this notion of time, which relates
to user maturity and experience, and which, as we showcase
in this paper, can provide valuable insights on how advanced
a particular topic is. In addition to being able to tease out
latent concepts of varying levels, these insights are also useful
in bootstrapping automated curriculum design approaches [1]
which require a set of concepts to be taught in a curriculum, as
well as prerequisite relations for those concepts, which can be
given via the user maturity dimension in our topic discovery.
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Fig. 1: An example of a topic discussed by advances users at a specific
time. This pattern indicates topics discussed in response to an external
event. The peak of the “time” mode corresponds to February of 2016
when detection of gravitational waves was announced by Ligo lab;
furthermore, “gravitational waves” is an advanced Physics topic, and
our method correctly infers its level of difficulty.

In this paper, we introduce a time-evolving topic discov-
ery method, based on Constrained Coupled Matrix-Tensor
Factorization, which effectively models time and user matu-
rity/experience towards extracting interpretable topics, their
temporal evolution, as well as their level of difficulty. Figure
1 shows a representative such topic detected by our algorithm.
The topic corresponds to “Gravitational Waves Detection by
Ligo Lab”; an advanced Physics topic, which is indicated by
the “level of difficulty” aspect of our results, and the topic
made its appearance in February of 2016 (as indicated by the
“time” aspect), which was the date it was announced. For the
longer version of this paper with a more thorough and more
experiments, see [2].

II. PRELIMINARY DEFINITIONS

Vectors are denoted by boldface lower case letters, e.g
a. Matrices are denoted by boldface Capital letters, e.g A.
Tensors are denoted by Calligraphic letters, e.g A. An entry
of a vector a, a matrix A, or a tensor A is denoted by
ai, aij , aijk. Let TA be the matricization of T in the first mode.
The Kronecker product of two matrices is denoted by A⊗B.
The n mode product is denoted by ×n. The outer product of
two vectors is denoted by ◦. ‖ A ‖F denotes the Frobenius
norm of matrix A. Moore-Penrose Pseudoinverse of A is
denoted by A†.

III. PROPOSED MODEL

In a wide variety of applications, we have data that form a
tensor and have side information or metadata that may form
matrices or other tensors. For instance, suppose we have a
(word, time, post number) tensor that indicates how many
times a word was used in a specific time and specific post
numbers. Usually, question answering platforms also have
some metadata on the questions/answers, for instance, tags



of the questions, that can form a (words, tags) matrix. Thus
we have a third-order tensor, T ∈ RI×J×K, and a matrix
Y ∈ RI×F, coupled in the first mode of each and there is
a one-to-one correspondence of elements in the first mode of
the tensor and the matrix (“word” mode in our case). The
coupled-matrix and tensor factorization (CMTF) algorithms
jointly factorize multiple data sets in the form of higher-order
tensors and matrices by extracting a common latent structure
from the shared mode. The existing work on coupled-matrix
tensor factorization only considers non-negativity constraints,
e.g. A ≥ 0. Non-negativity is an important feature of latent
factors since many real-world tensors have non-negative values
and hidden components have a physical meaning only when
non-negative.

Although non-negativity improves interpretability, in many
applications it is not enough to make sense of the data. When
the goal of factorization is to find the latent topics within
the tensor and the matrix, we would like to find as many
non-overlapping structures as possible. Non-overlapping latent
components directly imply that the latent topics are concise
and hence interpretable. We can control the amount of overlap
in latent components by imposing orthogonality constraint on
each latent component. This means for the first mode, we
would like the columns of the latent component A to be
orthogonal, ∀i, j AT

i Aj ≤ εA i 6= j. If εA is set to 0, this
implies latent components should be completely orthogonal,
while values greater than 0 means some overlap is allowed.
Furthermore, in practice we desire the factors to be sparse
as well. Sparsity constraints improve parsimony and offer
a simpler and hence more interpretable model. We enforce
the sparsity constraint by imposing constraint on `1 norm
of each column in factor matrices and on the core tensor.
Enforcing sparsity on each column of the factor matrices
means sparsity is imposed uniformly on each latent component
for each mode. Sparsity becomes specially favorable when
it is imposed on the core tensor; meaning only a few latent
components interact with each other. This removes redundancy
and achieves compact sparse representations of the core and
hence the core tensor will be easily interpretable.

To the best of our knowledge, we are the first to introduce
the constraint coupled-matrix tensor factorization problem
with non-negativity, sparsity, and orthogonality constraints.
Our intuition and constraints are captured in a formal definition
as follows.

Problem 1 (): Given a tensor T ∈ RI×J×K, auxiliary matrix
Y ∈ RI×F, and number of factors for each component R1,
R2, R3, find the components A, B, C, D, and tensor G such
that

min ‖ T − G×3
C×3

B×2
A×1

‖2F + ‖ Y −ADT ‖2F ,

Subject to: For each factor F ∈ {A,B,C,D}

F ≥ 0 and ∀i ‖ Fi ‖1≤ εF1, and ∀i, j FT
i Fj ≤ εF2 i 6= j

For core tensor G,G ≥ 0, ‖ G ‖1≤ εG ,

For the sake of interpretation, it is enough for the core to be
sparse, having a few non-zero elements. Lifting orthogonality
constraint from the core tensor means we allow interaction
between the same factors, but we only allow a few factors to
interact with each other.

IV. PROPOSED ALGORITHM

We propose an Alternating Least Squares (ALS) algorithm
which converges to a locally optimal solution [7]. Using the
ALS method, we solve for each factor at a time while fixing
all other factors. If we seek to estimate A, it turns out that
we need to concatenate the two pieces of the data T and Y,
whose rows refer to matrix A, that is the matricized tensor
TA and matrix Y, and we can then solve for A as

A =

[
TA
Y

]T ([GA(B⊗C)
D

]†)T

(1)

Algorithm 1 shows our ALS algorithm to solve
the constrained coupled-matrix tensor factorization,
ConCMTF–ALS. These constraints include non-
negativity, sparsity and orthogonality imposed by A ≥ 0,
∀i ‖ Ai ‖1≤ εA and ∀i, j AT

i Aj ≤ εA i 6= j respectively.
Rather than alternating to solve each factor completely, we
solve for each column of each factor independently. This is
possible since the columns of each factor are independent and
the constraints we consider can be specified for each column
as well. A column in the factor of the first mode, A, indicates
a group of words and a column in Bindicates specific weeks
in the lifetime of the forum. It is important to note the
effect of specifying sparsity constraints on the columns rather
than the whole matrix. This means sparsity will be spread
uniformly across the whole matrix. It is worth mentioning
that our algorithm can allow any convex constraints to be
placed for each factor.

Algorithm 1 The Alternating Least Squares for Constrained
Coupled Matrix-Tensor Factorization ConCMTF–ALS

Input: The tensor T ∈ RI×J×K and auxiliary matrix Y ∈ RI×F

Output: Coupled Decompositions A ∈ RI×R1 ,B ∈ RJ×R2 ,C ∈
RK×R3 ,D ∈ RF×R1

1: Initialize A,B,C,D,G to non-negative random values
2: while convergence criterion is not met do
3: A← argmin

A
||[TA Y]−A[GA(C⊗B)T DT ]||Fro

4: Subject to: A ≥ 0 and ∀i ‖ Ai ‖1≤ εA
5: and ∀i, j AT

i Aj ≤ εA i 6= j
6: Normalize the columns of A
7: Similar updates for B and C (omitted for brevity).
8: D← argmin

D
||Y −ADT ||Fro

9: Subject to: D ≥ 0 and ∀i ‖ Di ‖1≤ εC
10: and ∀i, j DT

i Dj ≤ εC i 6= j
11: Normalize the columns of D
12: G ← argmin

G
||vec(T )− (C⊗B⊗A)vec(G)||Fro

13: Subject to: G ≥ 0 and ‖ G ‖1≤ εG
14: return A, B, C, D, G

Another advantage of our algorithm is that it can be easily
used for PARAFAC decompositions instead of Tucker3 with
minimal changes. To achieve this, instead of initializing core



to random values in Line 1, we set the core tensor to a super
diagonal tensor. In addition, there is no need to estimate core
tensor in each iteration and hence Line 12 and 13 can be
removed from the algorithm.

V. RESULTS

For our experiment, we focus on question and answers
related to the field of physics and python programming in
Stack Exchange.
Data
Stack Exchange is a question answering website cre-

ated in 2008. answers on a wide range of topics. Stack
Exchange allows each question to be annotated with one
or more terms (tags) indicating the subject matter of the
question. We used the latest Physics and programming Data
Dump 1 in Stack Exchange. We only consider the ques-
tions which have at least one tag (almost 30 000 questions).
From the physics forum data, we created a tensor (multi-way
array) T with three modes (word, time, post number) of size
1351× 304× 9. When a user u uses word w at week t in his
pth post, we will increase T (w, t, log(p)). Thus, the (i, j, k)
value of Tensor T indicates how many times word i was used
at week j in log(kth) posts of all users. Note that post number
is relative to each users’ sign up date. Hence, if a user signs
up and writes a question/answer, her post number is 1.

In our application, beside the words, post numbers and time
stamps, we also have the tags associated with each question
by the users. We can use question tags as a word-tag matrix
indicating how many times each word has been used for a
specific tag. We denote this matrix by Y(words and tags) of
size 1351× 527. with tag j.

We used the questions in the programming Stack Exchange
forum which had the ”python” tag and we created a tensor
with three modes of size 432× 411× 50. Similar to Physics
data, we created an auxiliary word-tag matrix of size 432×30.
Experimental Evaluation In this part, we evaluate our al-
gorithms under CP/PARAFAC and Tucker3 decomposition
models for CMTF. Our dataset and our code are freely
available for download2 . We compare our results to
non-negative PARAFAC decomposition [4] and sparse non-
negative Tucker3 [6]. We refer to them as PARAFAC–NS
and TUCKER3–NS respectively. To decide the right
number of latent factors (F ) to be extracted in each algorithm,
we used AutoTen [5] which allows us to find more structured
latent embeddings in the data.

PARAFAC–NS vs. ConCMTF–ALS with
PARAFAC:
Figure 2 shows two components selected from obtained
components using PARAFAC–NS algorithm on Physics
dataset. We observe that in these two decompositions, there
are overlaps in the set of words found by PARAFAC–NS
as well as overlap in time and post number modes. In fact,
post numbers have identical trends and the words gravity,

1//archive.org/details/stackexchange
2https://github.com/sanazb/Constrained CMTF

time, light, speed, wave, particle, and energy are among
frequent words in both components. Moreover, the set of
words in both components include a (relatively) large number
of words and the word factors are very dense. If the goal
of factorization is to find latent structure and patterns in the
data, these two components are very similar and hence give
us the same structure and little information about the data.

We also used our algorithm, ConCMTF–ALS, assuming
a CP/PARAFAC decomposition. For this decomposition, we
only imposed non-negativity and orthogonality constraint on
components A, B, C, and D with εA = 0.05, εB = 0.6, εC =
0.2, and εD = 0.2. The intuition behind this is that we would
like to find components which are distinct in their set of words
and the level of maturity (post number values). However, we
allow decompositions to have overlap in the time mode as we
seek patterns in any period of forums lifetime.

Figure 3 illustrates the components produced by
ConCMTF–ALS on Physics dataset. As shown in
the figure, the set of words in each component are sparse
and they do not share many words as it was in the case
of PARAFAC–NS components. The post numbers of
each component are non-overlapping as well. The first word
component depicts the words “mass”, “wave”, “equation”,
“velocity”, “particle” which were used in very low post
number (i.e. by new users). These are in fact basic topics
in physics. The second component covers topics related to
harmonic motion and waves topics. Compared to the first
component these words appear in larger post numbers, i.e.
they are posted by more advanced users. The last component
included the words related to ”Toroidal inductors and
transformers” which appeared in large post number and by
very advanced users.

Figure 1 is an example of a component which only appeared
in a specific time period and moreover in specific post num-
bers. This pattern indicates words discussed in response to an
external event and the peak in time mode corresponds to Feb,
2016. This is the time that the detection of gravitational waves
was announced by Ligo lab.

Figure 4 shows two components extracted by our algorithm.
The set of words in each component are sparse and they do not
share many words and each component shows semantically
coherent topics. The first topic includes words related to
multiprocessing with a presence across various post numbers.
This reveals that such a topic is of interest regardless of the
expertise of users. The second topic includes topics related to
web crawling. The associated post number reveals that this
topic is mainly of interest to new users with lower experience.

VI. USER STUDY

To evaluate the quality of the topics found by our algorithm,
we conducted a user study with two goals: 1) evaluate the
cohesion of each learning unit, and 2) evaluate the ordering
of the units. In the following sub-sections, we present the
details of our conducted user-study and the results of our study.
We asked the following question to our volunteers: Count the
number of odd words in each topic.
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Fig. 2: An example of two components extracted by PARAFAC–NS algorithm on Physics dataset. The two components are similar in
word, time and post number modes. The words gravity, time, light, speed, wave, particle, and energy are frequent in both components.
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Fig. 3: An example of four components extracted by ConCMTF–ALS algorithm on physics dataset. All components have distinct set
of words and distinct post numbers.
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Fig. 4: An example of four components extracted by ConCMTF–ALS algorithm on programming dataset.

a Min Max Median Mean # Concepts
Unit 1 1 4 2 2.3 11
Unit 2 1 4 2 2.1 11
Unit 3 0 1 0 0.3 12
Unit 4 1 4 2 2.5 12
Unit 5 1 5 1.5 2 13

TABLE I: Survey results for Q1 (number of odd words in each unit)

Table I summarizes the results of our survey including the
min, max, mean, and the median of values that our participants
reported as the number of odd words in each topic (unit). For
all units, the number of odd words is very low, demonstrating
good cohesion in each set of words. It is also important to
evaluate the inter-judge agreement in a survey like ours. Due
to the nature of the ratings, an appropriate way of analyzing
the agreement is by using Krippendorffs α statistical measure,
which is applicable to the current scenario of judges assigning
a value to a specific variable. The overall agreement measured
by Krippendorffs α for our ten judges turns out to be 0.32.
This indicates that there is a fair but imperfect agreement.
Applicability to Curriculum Design Our proposed topic
discovery has implications to curriculum design since it is able
to identify topics along with their level of difficulty; those
levels of difficulty are key in determining prerequisite and
co-requisite relations between concepts in the syllabus. Here,
we demonstrate this applicability of our topic discovery to
automated curriculum design, along the lines of the recently
proposed work of [1]. In order to achieve this, we order
the topics based on their relevant difficulty. What follows is
the curriculum we obtained from the online discussion after
removing all non-physics terms.

Flow, Mass, Work, Density, Motion, Speed, Velocity, Displacement,
Acceleration, Momentum, Gravity, Force, Waves, Electromagnetic,

Radioactivity, Quantum, Particles

This curriculum is consistent with the majority of curricula
taught in basic physics courses in online/traditional class-
rooms.

VII. CONCLUSION AND FUTURE WORK

We proposed a time-evolving topic discovery method, pow-
ered by a novel constrained Coupled Matrix-Tensor Factor-
ization model. Our approach identifies the level of difficulty
of extracted topics, and through qualitative and quantitative
experimentation, we demonstrate that it produces high-quality
interpretable time-evolving topics.
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