
Noname manuscript No.
(will be inserted by the editor)

SHARKFIN: Spatio-temporal Mining of Software Adoption &
Penetration

Evangelos E. Papalexakis · Tudor Dumitras ·
Duen Horng Chau · B. Aditya Prakash · Christos
Faloutsos

Abstract How does malware propagate? Does it form spikes over time? Does it resemble
the propagation pattern of benign files, such as software patches? Does it spread uniformly
over countries? How long does it take for a URL that distributes malware to be detected and
shut down?

In this work, we answer these questions by analyzing patterns from 22 million malicious
(and benign) files, found on 1.6 million hosts worldwide during the month of June 2011. We
conduct this study using the WINE database available at Symantec Research Labs. Addi-
tionally, we explore the research questions raised by sampling on such large databases of
executables; the importance of studying the implications of sampling is twofold: First, sam-
pling is a means of reducing the size of the database hence making it more accessible to
researchers; second, because every such data collection can be perceived as a sample of the
real world.

We discover the SHARKFIN temporal propagation pattern of executable files, the GEOSPLIT

pattern in the geographical spread of machines that report executables to Symantec’s servers,
the Periodic Power Law (PPL) distribution of the life-time of URLs, and we show how to
efficiently extrapolate crucial properties of the data from a small sample. We further investi-
gate the propagation pattern of benign and malicious executables, unveiling latent structures

E. E. Papalexakis & C. Faloutsos
Carnegie Mellon University
School of Computer Science
E-mail: {epapalex,christos}@cs.cmu.edu

T. Dumitras
University of Maryland
Dept. of ECE E-mail: tdumitra@umiacs.umd.edu

D. H. Chau
Georgia Tech
School of Computational Science & Engineering
E-mail: polo@gatech.edu

B. A. Prakash
Virginia Tech
Computer Science Department
E-mail: badityap@cs.vt.edu



2 Evangelos E. Papalexakis et al.

in the way these files spread. To the best of our knowledge, our work represents the largest
study of propagation patterns of executables.

Keywords Malware Propagation, Internet Security, Data Analysis

1 Introduction

What are the main properties of malware propagation? How does it go about infecting new
machines on the Internet? Does its temporal propagation pattern resemble that of legitimate
files, such as software patches? How long does it take for a malicious URL that distributes
malware to be spotted and shut down?

On a similar pace, for the hosts where we can collect telemetry on software adoption
and propagation, how are they distributed in a global scale? Are they distributed uniformly
across all countries or do they adhere to a different geographical spreading pattern?

To answer such questions, security researchers and analysts need comprehensive, field-
gathered data that highlights the current trends in the cyber threat landscape. Understanding
whether a data set used for research is representative of real-world problems is critical,
because the security community is engaged in an arms race with the cyber criminals, who
adapt quickly to the defenses introduced, creating increasingly specialized cyber attacks [5]
[30]. For example, in 2011, security analysts have identified 403 million new variants of
malware and 55,294 new malicious web domains [30].

One resource available to the research community for studying security problems at
scale is the Worldwide Intelligence Network Environment (WINE), developed at Symantec
Research Labs [25]. WINE includes field data collected by Symantec on millions of hosts
worldwide, and it provides a platform for data intensive experiments in cyber security. The
WINE data sets are updated continuously with data collected on real hosts that are targeted
by cyber attacks, rather than honeypots or machines in artificial lab environments. For exam-
ple, the binary reputation data set includes information on binary executables downloaded
by users who opt in for Symantec’s reputation-based security program (which assigns a
reputation score to binaries that are not known to be either benign or malicious).

However, the researchers who use WINE must understand the properties of the data, to
assess the selection bias for their experiment and to draw meaningful conclusions. For ex-
ample, when analyzing the patterns of malware propagation around the world, researchers
would want to know that the distribution of executable files over machines follows a power
law (see Figure 2); many files are reported by few machines, and few files by many ma-
chines. Additionally, the WINE data covers a sampled subset of hosts running Symantec
products; we must understand the effects that this sampling technique may have on the ex-
perimental results. This challenge is not limited to WINE: every corpus of field data is likely
to cover only a subset of the hosts connected to the Internet, and we must understand how
to extrapolate the results, given the characteristics of the data sets analyzed.

The first contribution of this paper is a list of 3 of the many questions that are of interest
to security researchers:

– Q1: What is the temporal propagation pattern of executable files?
– Q2: Where are files downloaded on the Internet?
– Q3: What is the typical URL lifetime?

The remaining contributions form two thrusts: the first is modeling of the data, so that we
can answer the above questions, and the second is how to extrapolate from samples (since,
inevitably, nobody has the full picture - only a sample of activities).



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 3

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time (hours)

F
ile

 O
c
c
u
rr

e
n
c
e
s

 

 

Model after sampling
Model before sampling
Original data

(a)

0

1

2

3

4

5

N
u
m

b
e
r 

o
f 
c
o
u
n
tr

ie
s
 m

is
s
e
d

Footprint estimation error 
(out of 229 countries)

Original Error Estimation Error

(b)

Fig. 1 Successful spatio-temporal modeling: In a) we recover (in red) the temporal propagation pattern of
an executable, given only its sample (in black) - number of infections vs time. In b) we recover the size of
geographical footprint of machines that use Symantec’s software, again starting from a ≈10% sample of the
data: (blue: error of our estimation; red: actual error/footprint loss due to sampling. In all cases, sampling has
been carried out on a per-host basis (more details in Section 2).

– Modeling: We propose three new models, one for each of the motivating questions
– SHARKFIN: It describes the temporal propagation pattern of high volume executa-

bles: exponential growth, followed by power-law tail, with periodicities.
– GEOSPLIT: It captures the geographical (spatial) spread of machines that submit

executables to the WINE database.
– PPL: The distribution of the lifetime of software disseminating URLs, follows our

“Periodic Power Law” (PPL), with slope -1.
– Extrapolations: Given a sample, we show how to exploit our above models, to guess

measures of interest (like life-time, geographical footprint etc) of the full, unknown,
dataset. Our specific contributions are:

– Extrapolation of the propagation pattern of a file, given its sample.
– Estimation of the footprint loss due to sampling, on the geographical distribution of

machines that report executable files (malware and legitimate) to Symantec.

In Figure 1, we show a glimpse of our upcoming results (from Section 3): Successful
extrapolation of the temporal propagation pattern of an executable, and accurate recovery of
the geographical footprint of the machines that use Symantec’s software, both based on a
sample of the full WINE database.

The rest of the paper is organized in the typical way: Description of the data, proposed
models, extrapolations from a sample, discussion, related work, and conclusions.

2 Data description

We conduct our study using the Worldwide Intelligence Network Environment (WINE),
a platform for data intensive experiments in cyber security [25]. WINE was developed at
Symantec Research Labs for sharing comprehensive field data with the research community.
WINE samples and aggregates multiple terabyte-size data sets, which Symantec uses in its
day-to-day operations, with the aim of supporting open-ended experiments at scale.



4 Evangelos E. Papalexakis et al.

Starting from the raw data available in WINE, we define a reference data set with the
following pieces of information:

– File occurrence counts spanning a whole month (June 2011), both for legitimate files
and malware. This piece of the dataset essentially consists of time series that capture
the propagation patterns of both types of files. This dataset consists of the following
attributes:
(File SHA2 ID, Occurrences, Timestamp)

– Counts of personal computers where telemetry is collected, for each country, spanning
June 2011. This piece of data is both in aggregate form and in a daily basis. The attributes
of this dataset are:
(Country ID, count, Timestamp)

– The lifetime of malicious URLs as crawled by humans using these personal computers
during June 2011. This dataset consists of records of the form:
(URL, First-seen Timestamp, Last-seen Timestamp)

For each one of the aforementioned datasets, we possess both before and after sampling
versions. As noted before, however, even the before sampling parts of the dataset may be
viewed as a sample of the real world, since the hosts that use Symantec software are a subset
(or a sample) of all the machines that exist in the Internet.
Details on the WINE database and how sampling is done

The data included in WINE is collected on a representative subset of the hosts running
Symantec products, such as the Norton Antivirus. These hosts do not represent honeypots or
machines in an artificial lab environment; they are real computers, in active use around the
world, that are targeted by cyber attacks. WINE also enables the reproduction of prior ex-
perimental results, by archiving the reference data sets that researchers use and by recording
information on the data collection process and on the experimental procedures employed.

The WINE database is updated continuously with data feeds used in production by
Symantec, and the data is sampled on-the-fly as the files are loaded on the database. Each
record includes an anonymous identifier for the host where the data was collected. The
WINE sampling scheme selects all the records that include a pre-determined sequence of
bits at a pre-determined position in the host identifier, and discards all the other records. In
consequence, WINE includes either all the events recorded on a host or no data from that
host at all. Because the host identifier is computed using a cryptographic hash, the distri-
bution of its bits is uniform, regardless of the distribution of the input data. This sampling
strategy was chosen because it accommodates an intuitive interpretation of the sampled sub-
set: the WINE data represents a slice of the Internet, just like the original data set is a (bigger)
slice of the Internet.

In this paper, we focus on the binary reputation data set in WINE. This data set records
all the binary executables—whether benign or malicious—that have been downloaded on
end-hosts around the world. This information is submitted by the users who opt in for
Symantec’s reputation-based security program (which assigns a reputation score to bina-
ries that are not known to be either benign or malicious). The binary reputation data has
been collected since February 2008. In addition to the host identifier, each report includes
geolocation information for the host, the download time, the hash (MD5 and SHA2) of the
binary, and the URL from which it was downloaded. These files may include malicious bi-
naries that were not detected at the time of their download because the threat was unknown.
To study the effects of sampling, we compare the sampled data in WINE with the original
data set for the month of June 2011.



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 5

3 Patterns, observations and analysis

In this section, we pose three different questions that are of particular interest to companies
involved in Internet security, such as Symantec. The spirit of the questions posed is ex-
ploratory and mainly pertains to the spatio-temporal properties of legitimate and malicious
pieces of software.

Even though we mentioned that due to the overwhelming volume of the original data,
the goal of the WINE project is to provide researchers with a representative sample of the
data, in this section, we do not delve deep into issues such as extrapolation from the sample.
Instead, we follow a qualitative approach in order to describe these spatio-temporal attributes
of such files, and in the process of accomplishing that, surprising patterns and observations
present themselves, all of which are described in detail in the next few lines.

A note on notation

N is the number of machines that submit executables to Symantec. T is the number of time-
ticks in file occurrence time-series. X(n) is the file occurrence time-series (n = 1 · · ·T ).
∆I(n) is the number of "Infected" hosts at time n. U(n) is the number of Un-infected
hosts at time n. S(n) is the external shock/first appearance of an executable (see Appendix).
SHARKFIN is the model that fits the temporal propagation of high volume executables (see
Appendix). GEOSPLIT is the distribution that describes the geographic spread of hosts that
submit executables. PPL stands for Periodic Power Law distribution.

3.1 Q1: What is the temporal propagation pattern of executable files?

A worm that propagates through buffer-overflow exploits (e.g., the Blaster worm from 2003)
will exhibit a propagation rate different from another malware that spread through drive-by-
downloads. Additional patterns of the time series that describes the evolution of the number
of infections provide further clues regarding the behavior of the malware; for example, a
surge of infections hours after Microsoft’s Patch Tuesday1 may point to the use of automated
techniques for reverse-engineering security patches into working exploits.

Our proposed analysis and modelling, with respect to the temporal propagation pattern,
works for high volume files, i.e. files that have enough samples of occurrences such that
any form of (meaningful) modelling is feasible. As "high volume" files we consider all files
with more than 1000 occurrences in distinct machines. In Figure 2 we show that the file
popularity (and hence its volume) follows a power law.

In Figure 3, we illustrate the propagation pattern of six high volume files coming from
several, major software vendors. For instance, these files can be either patches of already
existing software, or new software binaries; such files (e.g. security patches) tend to become
highly popular very early in their lifetime. In fact, in Figure 3 we observe, for all those
popular files, a steep exponential rise which follows shortly after they initially appear on the
Internet.

This exponential rise is followed by, what appears to be a power-law drop. Intuitively,
this observation makes sense: A new security patch or new piece of software gets released,
acting as the external shock of our model (and resembling an external shock in epidemic-
like studies). After the release of the executable, the way that it spreads resembles that of

1 Each month’s second Tuesday, on which Microsoft releases security patches.



6 Evangelos E. Papalexakis et al.

●

●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●
●●●●
●
●
●●●●●●●●
●●
●●●●
●
●●●●●●●●●
●
●●●
●●
●
●
●●
●
●●●●
●●
●
●
●●
●●●
●●
●
●
●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●
●●●
●
●●●●●●
●●
●●●
●
●●
●●●●●●●
●●●
●
●
●
●●●●

●
●●●●●
●
●
●
●

●

●
●●
●
●●●●●
●
●
●
●●
●●
●
●
●●
●
●
●

●
●●
●
●●●
●
●
●

●
●●
●●
●
●●●●●●
●●●●

●
●●
●
●●●●●

●●●●●●●●
●●●
●●●●
●●●●●●
●
●●
●●●●
●●
●●●●
●●
●●
●●
●●
●
●●
●
●
●●●

●
●●
●
●
●●
●●●●●●

●●
●●●
●●
●●
●
●

●

●●
●
●●
●

●

●
●
●
●
●
●
●

●●

●●
●●●●●
●

●
●●●●●
●

●

●

●

●●
●●
●●●●

●

●

●

●●
●

●●
●

●●●●●

●

●●●●●

●
●
●
●●
●●
●
●●●●
●
●
●

●

●
●●
●●

●
●●●

●

●
●
●
●●
●

●
●●

●●●

●

●
●
●●

●

●

●●

●
●

●

●

●●

●●

●
●
●

●

●

●●●
●

●

●
●●
●●
●●
●●

●●

●
●

●
●
●●

●

●
●
●
●

●

●

●
●●●
●●
●

●

●

●

●
●●●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●

●●●●●

●
●

●

●

●●●

●

●

●

●

●●

●

●
●●

●●●

●

●●

●
●

●●

●

●●●

●

●

●

●●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●●●
●
●

●

●●

●

●●●●
●
●

●

●

●
●
●
●
●●
●

●●●●●

●

●
●

●●●●

●

●

●

●

●●
●
●

●

●●●

●●●

●

●

●
●

●●●

●●

●●●

●

●●

●
●

●●

●
●
●●●●
●
●

●●

●

●●

●

●●●●

●●

●

●

●●

●●●

●●

●

●

●
●●

●●

●
●

●●●

●
●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●●

●

●●●●●●●

●

●

●●

●●●●●●●●●●●

●

●●●●●

●●

●

●

●

●

●●●

●

●●●●●●●●●●

●

●●

●

●●
●
●

●●●●●●●●●

●
●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●●

●●

●

●

●
●

●

●

●●●

●

●

●●●

●

●●●●●

●

●

●
●

●●●●●●

●

●●●●●●●●●●●●

●●●

●●●●●

●

●

●

●●●●

●●●●

●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●
●

●●●●●●●●●●

●●

●●●

●●

●●●●●●

●

●●●●●●

●

●●

●

●●●●●●

●

●●

●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●

●

●●●

●
●

●●●●●

●

●

●

●●●●●

●

●

●

●
●●●●

●

●

●●

●●

●●●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●

1e+02 1e+03 1e+04 1e+05 1e+06

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Number of hosts containing the file

C
ou

nt

Fig. 2 Distribution of file popularity among machines. We observe that the popularity of a file, which also
reflects its volume on the database, follows a power law.

a virus or a meme, since there exist underlying social dynamics that drive the popularity
of a given file (e.g. people learn about the new executable from their peers). A few days
after a new security patch by a major software vendor appears, nearly all users download it
right away and only a few people tend to download it a couple of days after its release date;
moreover, nearly nobody downloads the file one or two weeks after it has been released.
We henceforth refer to this pattern as the SHARKFIN pattern, due to the resemblance of the
spike to an actual shark fin.

Moreover, Figure 3 also captures a daily periodicity in the files’ propagation pattern. An
intuitive explanation for this periodic behaviour may be that a large number of these files
are security patches, which are very often downloaded automatically; this would explain the
relative increase of occurrences in a periodic manner, since the auto-update software usually
runs the update at a standard time.

In order to model the propagation of high volume files, such as the ones shown in Figure
3, we take into account 1) the exponential rise and, 2) the power-law drop.

Recently, a model was proposed in [19] that is able to capture both the exponential rise
and the power law drop, as well as periodicity in the data. This work was focused on meme
propagation; however, it turns out that the SHARKFIN pattern bears a striking resemblance
to the propagation pattern of memes that go viral on the Internet. Based on that observation,
we leverage the work that focuses on meme propagation [19], and redirect its modelling
power for the purposes of the task at hand.

A simplified version of our model is the following

∆I(n+ 1) =

U(n) n∑
t=nb

(∆I(t) + S(t)) f(n+ 1− t)


where ∆I(n) is the file occurrences in time-tick n (i.e. the number of Infected hosts), U(n)
is the number of machines that have not downloaded the file yet, at time-tick n, S(t) is an



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 7

Date (time tick = 1 hour)

F
ile

 O
cc

ur
re

nc
es

 (
af

te
r 

sa
m

pl
in

g)

0

3125

6250

9375

12500

15625

18750

Jun 06 Jun 13 Jun 20 Jun 27

●●
●

●
●
●

●

●
●●
●
●●●●●●●

●●●
●●●●●●
●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●●●●

●

●
●●●●
●

●
●

●
●
●
●●
●
●
●
●
●●
●
●●●
●

●●
●●●●●●●

●●
●
●
●

●●
●●
●
●●
●

●

●
●
●●●●●●●●

●
●●●
●
●●
●●
●●●●
●●
●●●●●●●●●

●
●●●●
●
●●●
●●●●
●
●
●●●●●●●●●●

●●●●
●
●●●●
●●●
●●●
●
●●●●●●●●●●●●●

●●●●

●●
●
●●●
●●●●●●●●●●●●●●

●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●●●●●●
●
●

●

●

●

●●●●
●●
●
●●●
●
●
●
●
●
●
●
●●●
●●●
●
●
●●●●●●●●●

●●●
●●
●●
●●●●●●
●●
●●●●●●●●●●

●●
●●
●●
●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Vendor 1, file 1
Vendor 1, file 2
Vendor 1, file 3

Vendor 2, file 4
Vendor 2, file 5
Vendor 2, file 6

●

●

(a)

Date (time tick = 1 hour)

F
ile

 o
cc

ur
re

nc
es

 (
af

te
r 

sa
m

pl
in

g)

0

1250

2500

3750

5000

Jun 06 Jun 13 Jun 20 Jun 27

●●●●●●
●
●
●●
●●●●
●
●●
●
●●
●
●
●●●
●●●●●●●●

●
●●
●●●

●

●●

●●
●

●●
●●●●●●
●●
●●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●●
●●

●
●●
●●

●
●●
●
●●●
●
●

●
●

●●
●
●●●

●
●

●●

●●
●

●●
●
●
●
●●●
●
●

●
●
●
●●●
●
●

●●●●
●●●

●

●

●
●●
●

●
●●
●●

●●
●●●

●●

●●
●

●
●●
●
●

●●
●●

●
●

●●●●●●●●●●
●
●
●●
●
●
●
●●
●●●
●●

●●●●
●
●●●
●●
●
●●
●
●●
●●
●
●
●●

●●
●●
●●●●●●●
●●●●●
●●
●●
●
●
●●
●
●
●●
●●●
●●●●
●●
●●●
●●
●●●
●●●
●●●
●●●●●●●●

●●●●●
●●
●●●

●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●
●
●●
●●●
●

●●
●
●●●●●●●
●●●
●●●●●
●
●●●
●●●●●●
●●●●●●
●●●●
●
●●
●●●
●●●●●
●●●●●●●●●

●●●●

●
●●
●●

●
●
●●
●
●●●●●●●

●●●●●
●●●
●●
●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●
●●
●●●
●●●●
●
●●●●●●●●

●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●
●●●●●●●
●●●●●●●●

●●
●●●●●
●●●●●
●●●●●●●●●●●●

●●
●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●
●●●●●●●●●●

●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●
●●●●●●●

Vendor 3, file 7
Vendor 3, file 8
Vendor 3, file 9

Vendor 4, file 10
Vendor 4, file 12
Vendor 5, file 11

●

●

(b)

Fig. 3 Propagation of high volume files, before and after sampling (the symbol markers correspond to the
sampled data, while the lines correspond to the original data scaled down by the sampling rate). These files all
follow the SHARKFIN pattern that we describe on the main body of the text: A spike that grows exponentially
and drops as a power law.

"external shock" function that is zero for all n except for the first time that the file appears
(which is denoted by nb), and f emulates the power-law drop. If we denote as X(n), n =

1 · · ·T the original data, then we essentially need to minimize: minθ

T∑
n=1

(X(n)−∆I(n))2



8 Evangelos E. Papalexakis et al.

where θ is the vector of the model’s parameters. For a more detailed description of the
SHARKFIN model, we refer the reader to the Appendix.

Figure 4 shows the result of our modelling; the proposed model almost perfectly captures
both rise and fall patterns in the temporal evolution of a high volume file’s propagation. Both
the exponential rise and the power law drop have been expressed through the SHARKFIN

model, as well as the daily periodicity which we observed in the propagation pattern. There
are a few outliers which do not follow the SHARKFIN spike, however, the vast majority of
the file occurrences are aligned with the model.

In addition to visual evaluation, we measured the relative squared error (RSE) between
the original file time series X and the one produced by SHARKFIN, which we call X̂; RSE

is defined as ‖X−X̂‖
2
2

‖X‖22
. The median RSE for all the files that we tested was 0.071; the mean

RSE was 0.244 ± 0.3617 and it is considerably higher due to a few files having very small
number of occurrences, and thus being modelled poorly (which, in turn, causes the high
deviation). However, for the majority of files, SHARKFIN performs very well, as it captures
vital characteristics of the data.

3.2 Q2: Where are files downloaded on the Internet?

Understanding the geographical distribution of cyber attacks allows analysts to determine
whether the malware tries to spread indiscriminately or it targets specific organizations. Sim-
ilarly, understanding the geographical reach of update-dissemination infrastructures (e.g.,
Microsoft Update, Google Software Update) allows software vendors to optimize the deliv-
ery of critical security patches to their users. To answer both these questions using WINE,
we must be able to reconstruct the histogram of host counts for different countries and ISPs
from the sampled data.

We leverage data that record the number of hosts, covered in our WINE data set, where
legitimate or malicious executables have been downloaded in June 2011, per country. Due
to the sensitive nature of the data, we anonymize each country and we present only its id,
which is merely determined by its ranking with respect to the host count. The total number
of countries in the database is 229.
How are the WINE hosts distributed geographically? In Figure 5, we demonstrate the
machine count per country as a function of a country’s rank; we merely sort the counts in
descending order and we assign a rank to each country according to that order. The figure
shows the distribution both before and after sampling; there is an obvious displacement of
the "sampled" line, which is to be expected.

In terms of the actual distribution that the hosts follow, we claim that the GEOSPLIT

distribution fits the real data very well. In short, the GEOSPLIT distribution can be seen as a
generalization of the 80-20 distribution, where additional freedom is given for the choice of
the probabilities, i.e. p (which in the case of the 80-20 distribution is equal to 0.8) is now a
parameter.

The model is closely related to the so-called “multifractals” [10]: Let N be the total
count of machines that carry the executable, and assume that the count of countries is 2k

(using zero-padding, if necessary). Thus, we can do k levels of bisections of the set of
countries; at each bisection, we give p fraction of the machines to the “rich” half, and the
rest 1-p to the “poor” half. After k levels of bisections, we have 2k pieces/countries; the
“richest’ has pk fraction of the machines; the next k richest all have pk−1(1− p), and so on.
Thus we construct a GEOSPLIT distribution, which fits very well the geographical spread of



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 9

100 200 300 400 500 600 700
0

2

4

6

8

10

12

14
x 10

4

Time (hours)

F
ile

 O
c
c
u
rr

e
n
c
e
s

 

 

Model
Original

(a)

100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5
x 10

5

Time (hours)

F
ile

 O
c
c
u
rr

e
n
c
e
s

 

 

Model
Original

(b)

Fig. 4 This Figure illustrates our modeling of the propagation pattern, compared to the actual file occurrence
data, before sampling, for two high volume executables. Our SHARKFIN model seems to fit the data quite
accurately. The median relative squared error (cf. Sec. 3.1) for all the files that we tested was 0.071

machines that submit files to the WINE database. In Fig. 3.2 we show how well GEOSPLIT

fits the real geographical distribution (shown in Fig. 5).
As we sample the dataset in a per machine basis, it is often the case that a few countries

with very low volume will eventually disappear from the sample. In other words, if one



10 Evangelos E. Papalexakis et al.

is observing the sampled distribution, there is a part of the geographical footprint that is
effectively lost. In the next section, we shall elaborate further on this footprint loss and will
provide an efficient way to obtain an estimate of how many countries are ignored in the
sample.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Countries (sorted by rank)

C
o
u
n
ts

Machine Geographical Distribution

 

 

Before Sampling

After Sampling

Fig. 5 Distribution of machines per country, in log-log scale from the real data. We have anonymized the
countries, for privacy purposes, with the total number of countries in WINE being 229. The distribution
follows the GEOSPLIT model, as we describe it in Section 3 of the text. We observe that both the sampled
and the original data follow the same distribution, with obvious displacements due to sampling.

How does the distribution change per day? Apart from the aggregate examination of the
geographical distribution of hosts, it is very interesting to investigate how the distribution
changes over time. As it turns out, the shape of the distribution is similar for each day.
However, for the first few countries (i.e. the countries with the highest counts of active
machines), we observe an interesting fluctuation when looking at the distribution on a daily
granularity, even thought the ordering of the countries is preserved; this holds true for the
distribution both before and after sampling, although, for space efficiency, we just show the
before sampling one in Figure 7.

3.3 Q3: What is the typical URL lifetime?

Malware-spreading sites often move, to conceal their presence, in ways that are not fully un-
derstood [6]. Therefore, estimating the time elapsed between the first and last file downloads
from a malicious URL, as well as the next URL employed to spread the malware, allows an-
alysts to characterize the attack. The WINE data set provides a large body of information
on URL activity, collected using a distributed, but non-automated, crawler: the human users
who download executable files around the world. However, the sampling strategy might dis-



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 11

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
8

Fitting of the GeoSplit distribution

 

 

Before Sampling, p=0.8593, k=8

After Sampling, p=0.8726, k=8

Fig. 6 Fitting of the GEOSPLIT model to the real data. We calculate the parameters p and k of the model and
we show them in the legend of the Figure.

100000	
  

1000000	
  

10000000	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  11	
  12	
  13	
  14	
  15	
  16	
  17	
  18	
  19	
  20	
  21	
  22	
  23	
  24	
  25	
  26	
  27	
  28	
  29	
  30	
  

#Machines	
  

Day	
  of	
  month	
  

#Infected	
  Machines	
  of	
  7	
  Countries	
  with	
  Most	
  File	
  Submissions	
  
(Before	
  sampling)	
  	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

Fig. 7 Geographical distribution per day: For the high ranking countries, we observe a fluctuation on the
number of machines. However, the ordering among countries is preserved from day to day.

tort these measurements by shortening the observed lifetimes and by omitting some URLs
from the chain.

In Figure 8, we show the empirical distribution of the WINE URL lifetimes, as recorded
for an entire month. We observe that sampling does not significantly alter the shape of the
distribution; in fact, both before and after sampling distributions, for their most part seem
to be aligned. The only part in which they deviate is the tail of the distribution, where the



12 Evangelos E. Papalexakis et al.

distribution obtained after sampling has generally fewer URLs for a given duration, which
is not surprising, since sampling by default should cause this phenomenon.

However, both before and after sampling distributions (excluding outlying data points
due to horizon effect, which is explained in the next few lines) follow a power-law with
slope -1.

Additionally, we observe two rather interesting phenomena:

1. Periodicity: In both distributions, a periodic behavior is pronounced. This daily peri-
odicity, however, is not an inherent property of the data, but rather a by-product of the
data collection process. As we mentioned earlier, the URLs first and last appearances
are crawled by human users, who manually download executable files around the world.
Therefore, the periodic fluctuations of the URL lifetimes in Figure 8 are caused by the
periodic pattern that the human crawlers operate on.

2. Horizon Effect: Since we are operating on a fixed time window of one month, it is very
likely that we don’t see the actual last appearance of some URLs which continue being
on-line even after the end of the window we focus on. Because of that fact, the tail of
both distributions (before and after sampling) contains many outliers; more specifically,
it contains URLs that, in reality, have longer durations than the ones we observe. Fur-
thermore, the horizon effect is even more pronounced on the distribution after sampling.

Putting everything together, we may characterize the distribution of the lifetime of URLs
as a Periodic Power Law or PPL for short, with slope -1. It is important to note that both the
periodicity and the slope is retained after sampling, excluding of course the horizon effect
outliers.

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

duration (sec)

c
o

u
n

ts

URL lifetime

 

 

Data Before Sampling
Data After sampling
Line Before Sampling. slope = −0.9
Line After Sampling, slope = −1.08

1 Day

End of month/
Horizon Effect

Fig. 8 Distribution of URL lifetimes, before and after sampling, in log-log scale. The lifetime of URLs
follows the PPL model, which is a periodic power law distribution with slope -1 and daily periodicity. We
also show the end of June 2011, which signifies the end of our measurement period and thus the start of the
horizon effect.



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 13

3.4 Latent Representation of the Propagation Pattern Before Sampling

As we mentioned in subsection 3.1, we consider only high volume files in order to study and
model their propagation pattern. However, we have at our disposal a set of labelled benign
and malicious files, some of which are of adequate volume (and are able to be analyzed
using the SHARKFIN model), and some of which are not. In this subsection, we will attempt
to analyze this set of executables, using a technique which is agnostic of volume of the
propagation pattern.

In particular, we propose to analyze the propagation patterns of these executables into
a profile of latent patterns. In order to do that, we use a technique called co-clustering [23]
[24]. In the following lines, we provide a brief overview of the technique and our formula-
tion, as well as the results obtained through this analysis.

Let’s consider a T × 1 vector that contains the propagation pattern for a particular ex-
ecutable. We may organize those different vectors for all the available executables as the
columns of a matrix E. In co-clustering, as described in [23] [24], we are seeking a simul-
taneous clustering of subsets of the rows and columns of E into a small number of groups
(called co-clusters).

In our specific scenario, a co-cluster of E would be a set of time-ticks and a set of
executables, for which their collective propagation pattern is most similar. In other words,
by co-clustering E, we obtain groups of latent propagation patterns, as well as an assignment
of those latent propagation patterns to specific executables.

Figure 9 shows an exemplary co-clustering of 30 executables, before sampling. The first
15 files are malicious, and the rest are benign. We extracted 6 co-clusters. Sub-figure 9(a)
shows the latent propagation patterns of those files; more specifically, the x-axis corresponds
to time and the y-axis corresponds to the degree of participation of each data point to the
particular co-cluster. Sub-figure 9(b) shows the assignment of each of the 30 executables to
each of the 6 latent groups of propagation (where the x-axis now refers to the file ID). We
observe that most of the latent groups that we extract have a clear separation of malicious
and benign files: Groups 1-2 are almost exclusively highly weighted for benign files, while
Groups 5-6 are almost exclusively referring to malicious executables.

However, there exist groups which contain latent propagation information that pertains
to both types of executables. More specifically, if we look at the latent propagation patterns
of Groups 3 & 4 (both of which have high values for both malicious and benign files), we can
clearly see a SHARKFIN pattern. By careful inspection on the original files of Groups 3 &
4, we see that these are high volume files, which obey the SHARKFIN pattern, regardless of
being malicious or not, a fact that is reassuring about the validity of our SHARKFIN model.

4 Seeing through the sample

In the previous section we were concerned with both the original WINE database and a
small sample thereof, but merely from an observatory perspective. In this section, however,
we attempt to dive deeper into the implications of using a (representative) sample of the
WINE database in lieu of the original, enormous dataset. In particular, we provide means to
estimate/extrapolate crucial (from the security industry and research point of view) attributes
of the data, based only on a sample. For instance, it is important for someone who works
on a sample to be able to reconstruct the original propagation pattern of a file, given that
sample. In the following lines, we pose such questions pertaining to the extrapolation from
the sample and provide effective algorithms in order to "see through the sample".



14 Evangelos E. Papalexakis et al.

0 200 400 600 800
0

0.05

0.1

0 200 400 600 800
0

0.1

0.2

0 200 400 600 800
0

0.1

0.2

0 200 400 600 800
0

1

2

0 200 400 600 800
0

0.2

0.4

0 200 400 600 800
0

0.5

Latent Propagation Patterns

Time

Group 1

Time

Group 4

Group 2

Time

Group 5

Time

Group 3

Time

Group 6

Time

(a)

1 15 30
0

1

2

1 15 30
0

1

2

1 15 30
0

1

2

1 15 30
0

0.5

1

1 15 30
0

1

2

1 15 30
0

1

2

Benign Files

Clustering of files to latent propagation patterns

File

File

Malicious Files
Group 1 Group 4

File

Group 2

File

Group 5

Group 3

File

Group 6

File

(b)

Fig. 9 Latent representation of the propagation pattern, and clustering of the time series, before sampling.
In both subfigures, the vertical axis represents the degree of participation of each data point to the particular
Group/Co-cluster. In subfigure (a) the horizontal axis is time and in subfigure (b) the horizontal axis is the
file ID.

4.1 SQ1: Given a sample, can we extrapolate the propagation pattern of a file?

Suppose we are given a sampled subset of the occurrences of a file, each accompanied with a
time-stamp, as in Q1 in the previous section. The sampling procedure is the same as before.
How can we reconstruct the original, before sampling, propagation pattern of that particular
file? Does the reconstruction resemble the original pattern? What are the inherent limitations
imposed by sampling?

As we investigated in Q1 of the previous section, we can successfully model the propa-
gation pattern of legitimate files before sampling, as in Figure 4. In Figure 3 we observe that



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 15

sampling does not severely alter the SHARKFIN shape of the time-series, at least for such
popular, high volume files; the sampled time series seems to have consistently lower values
than the before sampling ones, which is to be expected due to sampling (even though our
sampling is per machine and not per file occurrence).

The main idea of our extrapolation technique lies exactly in the observation above. Since
sampling has displaced the sampled time-series by a, roughly, constant amount, we follow
these two simple steps:

1. Multiply every point of the sampled time series by the sampling factor, in order to dis-
place it to, roughly, the same height as the original time-series.

2. Fit the model that we introduce in Q1 on the multiplied time-series.

More formally, following the same notation as in Q1, and denoting the sampling rate by

s, we need to minimize the following function: minθ

T∑
n=1

(sX(n)−∆I(n))2

In Figures 10(b& c), we show the result of the proposed approach, for two popular,
high volume files, by major software vendors. We can see that our extrapolation is perfectly
aligned with the model of the data before sampling, which renders our simple scheme suc-
cessful. On top of that, both models, as we also demonstrated on Figure 4 fit the original
data very well.

As in modelling, here we employ RSE in order to further assess the quality of our extrap-
olation (by measuring the RSE between the original sampled vector of observations, and the
extrapolated one). The median RSE was 0.0741; the mean RSE was 0.2377 ± 0.3648 (for
the same reasons we mentioned in Sec. 3). We see that for the majority of files, the extrap-
olation quality is very high, demonstrating that our extrapolation scheme, usingSHARKFIN,
is successful for high density files.

4.2 SQ2: Given a sample of the geographical distribution of the cyber attacks, can we
estimate the footprint of the original distribution?

The empirical geographical distribution of machines around the world is shown in Figure 5.
As we saw, before sampling, the footprint of the distribution spans 229 countries. Because
of sampling, it is often the case that some countries in the tail of the distribution, that have
low counts, will inevitable disappear from the sample. In this particular case, the countries
that are left in the sample are 224. We refer to this problem as the footprint loss, due to
sampling, and here we propose a way to accurately recover the number of countries that are
indeed missing from the sample, i.e. the lost footprint.
Zero-th frequency moment of the GEOSPLIT distribution: In order to come up with a
reliable means of estimating the footprint prior to sampling, we have to make a few as-
sumptions with respect to the type of the distribution. As we showed earlier, in Figure 5, the
geographical distribution of machines follows GEOSPLIT model. Under this assumption, we
may leverage the work of [10] in order to perform our extrapolation.

More specifically, there is an immediate correspondence of the zero-th frequency mo-
ment of the GEOSPLIT distribution, to the number of countries that it spans. If we denote
by mi the count of machines for each country, then the q-th frequency moment is defined as
Fq =

∑
i

mi
q. If q = 0, then F0 is simply the number of countries in our distribution. Thus,

if we are able to accurately estimate the F0 given the sample, then we have an estimate of
the lost footprint.



16 Evangelos E. Papalexakis et al.

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time (hours)

F
ile

 O
c
c
u

rr
e

n
c
e

s

 

 

Model after sampling
Model before sampling
Original data

(a)

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (hours)

F
ile

 O
c
c
u

rr
e

n
c
e

s

 

 

Model after sampling
Model before sampling
Original data

(b)

0

1

2

3

4

5

N
u
m

b
e
r 

o
f 
c
o
u
n
tr

ie
s
 m

is
s
e
d

Footprint estimation error 
(out of 229 countries)

Original Error Estimation Error

(c)

Fig. 10 (a) & (b): In these Figures we show i) our extrapolation after sampling, ii) our modelling before
sampling, and iii) the original data before sampling, for two different, popular, legitimate files. We see that
the extrapolation and the model before sampling are almost perfectly aligned, justifying our approach. Addi-
tionally, we see that they both fit very well the original data. The median RSE in this case was 0.0741. (c):
Estimation of lost footprint due to sampling. We recover the size of geographical footprint of machines that
use Symantec’s software, again starting from a ≈10% sample of the data: (blue: error of our estimation; red:
actual error/footprint loss due to sampling



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 17

Given the distribution of machines across countries (C1, ..., Cm, for m countries), we
have thatN = C1+. . .+Cm, and we can estimate k and p: k = dlog2(m)e, andC1 = Npk.

Then, we estimate F0 (see [10] for more details). Specifically, if the j-th country has
estimated count Ĉj < 1, we round down to zero, and consider that country as having no
machines that submit executables.

In Figure 10(c) we provide a comprehensive look at the performance of our approach.
In particular (in red) we show the actual footprint loss, in other words the error incurred
by sampling, which is 5 countries. With our proposed approach of estimating the zero-th
frequency moment of the distribution, we are able to accurately argue that 228 countries
originally exist in the footprint, resulting in an error of just 1 country.

4.3 Latent Representation of the Propagation Pattern After Sampling

In Section 3.4 we examined the latent propagation pattern of executables before sampling.
Here, we apply the same technique, to the same set of files, only now we use the measure-
ments of their propagation after we sample. Figure 11 shows the corresponding 6 groups of
our analysis, after sampling. The axes in this figure are the same as in Fig. 9

We observe that, even though the order and the specific values of each co-cluster has
changed (a fact that is rather expected, since the actual values of the matrix that we analyze
have changed, due to sampling), the co-clusters exhibit the same pattern: There are a few
co-clusters that refer solely to benign files, a few that refer to malicious ones, and a few co-
clusters which pertain to both malicious and benign files, and identify a latent SHARKFIN

pattern in their propagation.

5 Discussion - Sampling is unavoidable

5.1 Lessons learned

Should we bother with sampling and extrapolations, given that major security companies,
like Symantec, have huge amounts of data? The answer is “yes”, for several reasons:

– Nobody sees the full picture: Since only a subset of all the machines in the Internet
are using any security software at all (and are, thus, monitored for malware infections),
and a subset of this subset uses software by a particular security software vendor, e.g.
Symantec, the following natural issue arises: The data that each security vendor monitors
is but a sample of the real world. Thus, if Symantec to estimate what is happening in the
whole world, it still needs to use our models and the extrapolations formulas based on
them.

– Big Data is difficult to transfer and analyze: When data sets reach petabyte scales and
they are collected on hundreds of millions of hosts worldwide, keeping them up-to-date
can require a prohibitive amount of storage and bandwidth. Moreover, analysis tasks
can execute for several hours or even days on large data sets, which makes it difficult to
experiment with new, unoptimized, data intensive techniques.

– Security telemetry is collected at high rate: In 2011, 403 million new malware variants
were created (more than 1 million each day) [30], and data sets that grow by several
gigabytes per day are common in the security industry. This problem, also known as
“data velocity,” is present in other industries; for example, Akamai collects log data at a
rate of 10 GB/s [17]. When faced with such high data collection rates, practitioners either



18 Evangelos E. Papalexakis et al.

0 200 400 600 800
0

0.2

0.4

0 200 400 600 800
0

0.5

1

0 200 400 600 800
0

0.05

0.1

0 200 400 600 800
0

0.2

0.4

0 200 400 600 800
0

0.05

0.1

0 200 400 600 800
0

1

2

Latent Propagation Patterns

Time Time

Time Time

Time Time

Group 4

Group 5

Group 1

Group 2

Group 3 Group 6

(a)

1 15 30
0

0.5

1

1 15 30
0

1

2

1 15 30
0

1

2

1 15 30
0

1

2

1 15 30
0

1

2

1 15 30
0

0.5

1

Malicious Files

Benign Files

Clustering of files to latent propagation patterns

File

Group 1

File

Group 4

Group 2

File

Group 5

File

File

Group 3 Group 6

File

(b)

Fig. 11 Latent representation of the propagation pattern, and clustering of the time series, after sampling.
In both subfigures, the vertical axis represents the degree of participation of each data point to the particular
Group/Co-cluster. In subfigure (a) the horizontal axis is time and in subfigure (b) the horizontal axis is the
file ID.

apply aggressive compression techniques, which can render data processing difficult, or
they store only part of the data set (i.e., a sample). Representative sampling techniques
that can be applied on-the-fly, as the data is collected (as the sampling strategy adopted
in WINE), can enable open-ended analyses and experiments on such data sets.

– Restrictions in data access: Because large data sets are often critical to a company’s
operations, the entire corpus of data collected by the company is kept confidential and
the systems used to analyze the data in production are not opened up to research projects.
Under these circumstances, prototypes and models are developed using sampled data,
which further emphasizes the need for model fitting and extrapolations.



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 19

In short, sampling and extrapolations are necessary, for everybody in this field, including
the largest computer security companies.

5.2 Deployment & Impact

WINE is an operational system, used for experimenting with new Big Data ideas and for
building data analysis prototypes. In 2012, several engineering teams within Symantec and
five academic researchers have used WINE in their projects. The sampling techniques de-
scribed and validated in this paper enable open-ended experiments at scale that often corre-
late several data sets, collected and sampled independently.

For example, WINE has provided unique insights into the prevalence and duration of
zero-day attacks. A zero-day attack exploits one or more vulnerabilities that have not been
disclosed publicly. Knowledge of such vulnerabilities gives cyber criminals a free pass to
attack any target, from Fortune 500 companies to millions of consumer PCs around the
world, while remaining undetected. WINE has enabled a systematic study of zero-day at-
tacks that has shown, among other findings, that these attacks are more common than previ-
ously thought and that they go on undiscovered for 10 months on average [3]. Quantifying
these properties had been a long-standing open question, because zero-day attacks are rare
events that are unlikely to be observed in honeypots or in lab experiments; for instance, ex-
ploits for most of the zero-day vulnerabilities identified in the study were detected on fewer
that 150 hosts out of the 11 million analyzed. This result was achieved by correlating the
binary reputation data set, analyzed in this paper, with additional types of security teleme-
try (anti-virus detections, dynamic analysis traces, vulnerability databases) and was made
possible by the fact that the WINE sampling algorithm makes consistent decisions: if the
data collected in one data set about a certain host is included in one data set, then it will be
included in all the other data sets as well.

In addition to the technical implications of these results, they also illustrate the oppor-
tunities for employing machine-learning techniques in cyber security (e.g., assessing the
reputation of unknown binaries [7], which singles out rare events such as zero-day attacks).
The SHARKFIN, GEOSPLIT and PPL models, introduced in this paper, represent another
step in this direction. Understanding the basic properties of security telemetry opens up
promising research avenues into preventing cyber attacks, by distinguishing malicious and
benign software using their propagation patterns and by estimating the number of hosts and
geographies reached by worms and by security updates.

6 Related Work

Propagation of Executables In July 2001, the Code Red worm infected 359,000 hosts
on the Internet in less than 14 hours [21]. Code Red achieved this by probing random IP
addresses (using different seeds for its pseudo-random number generator) and infecting all
hosts vulnerable to an IIS exploit. This incident triggered a wave of research into the prop-
agation of Internet worms. In 2002, Staniford et al. analyzed Code Red traces and proposed
an analytical model for its propagation [29]. Based on this model, the researchers also sug-
gested that a worm can infect one million vulnerable hosts on the Internet within 30 seconds
by replacing random probing with a combination of hit-list scanning, permutation scanning,
and use of Internet-sized hit-lists [29]. In follow-on work, they showed that additional opti-
mizations may allow a worm to saturate 95% of one million vulnerable hosts on the Internet



20 Evangelos E. Papalexakis et al.

in less than 2 seconds [28]. Such techniques were subsequently employed by worms released
in the wild, such as the the Slammer worm [20] (infected 90% of all vulnerable hosts within
10 minutes) and the Witty worm [33].

Gkantsidis et al. study the dissemination of software patches through the Windows Up-
date service and find that approximately 80% of hosts request a patch within a day after it is
released; the number of hosts drops by an order of magnitude during the second day, and is
further reduced by factor of 2 in day three [12].

Influence Propagation Studies on virus and influence propagation are numerous, with
popular books [1] and surveys [13], blog analysis [15], response times in linked-in in-
vitations [14], spike analysis in youtube video [8] and the recent SpikeM model [19],
which our SHARKFIN model generalizes. Recent research in malware detection [7] lever-
ages propagation-based machine learning method (Belief Propagation) to infer files’ repu-
tations (e.g., malicious or benign).

Power Law Distributions Power laws appear in countless settings [34], [22], including
network topology [11], web topology [2], [4] and are closely related to fractals and self-
similarity (see [18] and [27] for long lists of settings with power-law distributions). Multi-
fractals [27] and the multifractal wavelet model [26] are closely related to our GEOSPLIT

model, and have been used to model local area network traffic, web traffic [9], disk accesses
[32] [31].

7 Conclusions

In this paper we analyzed one of the largest available security databases, comprised by both
malware and benign executables. We provide intuitive insights on the data and we identify
surprising patterns therein. Moreover we provide efficient techniques in order to extrapolate
key attributes and properties of the full data, based on a small, uniform, random sample.

Our key contributions are:

– Spatio temporal models for malware/software propagation. Specifically:
– Spatial: The GEOSPLIT model for the geographical spread of infected machines.
– Temporal: The SHARKFIN model for the temporal evolution of executables.
– Lifetime: The PPL (periodic power law), with slope -1, for the life-time of software-

disseminating URLs.
Revisiting the original question on whether malware propagation resembles the prop-
agation of benign executables, whenever the volume of a given malicious executable
was high enough, our SHARKFIN model was able to successfully capture its dynam-
ics, hence indicating that there are similarities between the propagation of both types of
executables.

– Extrapolations from Sample: Thanks to our spatio-temporal models above, we showed
how to extrapolate the spatio-temporal properties, given a sample of malware propaga-
tion.

8 Acknowledgments

We thank Vern Paxson and Marc Dacier, for their early feedback on the the design and effects
of the WINE sampling strategy. The data analyzed in this paper is available for follow-on



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 21

research as the reference data set WINE-2012-006. Research was also sponsored by the
Army Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053.

Appendix

The SHARKFIN model
The SHARKFIN model of executable propagation is a generalization of the SpikeM

model [19] for the spreading of memes through blogs. We briefly describe the model in [19],
adapting to the task at hand

The model assumes a total number of N machines that can be infected. Let U(n) be the
number of machines that are not infected at time n; I(n) be the count of machines that got
infected up to time n− 1; and ∆I(n) be count of machines infected exactly at time n. Then
U(n+ 1) = U(n)−∆I(n+ 1) with initial conditions ∆I(0) = 0 and U(0) = N .

Additionally, we let β as the strength of that executable file. We assume that the infec-
tiveness of a file on a machine drops as a specific power law based on the elapsed time since
the file infected that machine (say τ ) i.e. f(τ) = βτ−1.5. Finally, we also have to consider
one more parameter for our model: the ”external shock”, or in other words, the first appear-
ance of a file: let nb the time that this initial burst appeared, and let S(nb) be the size of the
shock (count of infected machines).

Finally, to account for periodicity, we define a periodic function p(n) with three param-
eters: Pa, as the strength of the periodicity, Pp as the period and Ps as the phase shift.

Putting it all together, our SHARKFIN model is

∆I(n+ 1) = p(n+ 1)

U(n)

n∑
t=nb

(∆I(t) + S(t)) f(n+ 1− t) + ε


where p(n) = 1− 1

2Pa
(
sin
(

2π
Pp

(n+ Ps)
))

, and ε models external noise.

No-sampling version: If X(n), n = 1 · · ·T is the sequence of file occurrences we want to
model as a SHARKFIN spike, we want minimize the following:

min
θ

T∑
n=1

(X(n)−∆I(n))2

where θ =
[
N β Sb Pa Ps

]T is the vector of model parameters.
With sampling: If we are dealing with a sample of file occurrences, with sampling rate s,
then we solve the problem:

min
θ

T∑
n=1

(sX(n)−∆I(n))2

In both cases, we use Levenberg-Marquardt [16] to solve for the parameters of our SHARK-
FIN model.



22 Evangelos E. Papalexakis et al.

References

1. RM Anderson and RM May. Coevolution of hosts and parasites. Parasitology, 85(02):411–426, 1982.
2. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512,

October 1999.
3. Leyla Bilge and Tudor Dumitraș. Before we knew it: An empirical study of zero-day attacks in the real

world. In ACM Conference on Computer and Communications Security, Raleigh, NC, Oct 2012.
4. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.

Graph structure in the web. WWW9 / Computer Networks, 33(1–6):309–320, 2000.
5. Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-per-install: The com-

moditization of malware distribution. In USENIX Security Symposium. USENIX Association, 2011.
6. Jean Camp, Lorrie Cranor, Nick Feamster, Joan Feigenbaum, Stephanie Forrest, Dave Kotz, Wenke Lee,

Patrick Lincoln, Vern Paxson, Mike Reiter, Ron Rivest, William Sanders, Stefan Savage, Sean Smith,
Eugene Spafford, and Sal Stolfo. Data for cybersecurity research: Process and “wish list”. http:
//www.gtisc.gatech.edu/files_nsf10/data-wishlist.pdf, Jun 2009.

7. D.H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos. Polonium: Tera-scale graph mining
and inference for malware detection. SIAM International Conference on Data Mining, 2011.

8. R. Crane and D. Sornette. Robust dynamic classes revealed by measuring the response function of a
social system. Proceedings of the National Academy of Sciences, 105(41):15649–15653, 2008.

9. M. Crovella and A. Bestavros. Self-similarity in world wide web traffic, evidence and possible causes.
Sigmetrics, pages 160–169, 1996.

10. C. Faloutsos, Y. Matias, and A. Silberschatz. Modeling skewed distribution using multifractals and
the80-20’law. Computer Science Department, page 547, 1996.

11. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet
topology. SIGCOMM, pages 251–262, Aug-Sept. 1999.

12. Christos Gkantsidis, Thomas Karagiannis, and Milan Vojnovic. Planet scale software updates. In Luigi
Rizzo, Thomas E. Anderson, and Nick McKeown, editors, SIGCOMM, pages 423–434. ACM, 2006.

13. H.W. Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653, 2000.
14. J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks.

In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 462–470. ACM, 2008.

15. J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog
graphs. arXiv preprint arXiv:0704.2803, 2007.

16. K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly
Journal of Applied Mathmatics, II(2):164–168, 1944.

17. Bruce Maggs. Personal communication, 2012.
18. Benoit Mandelbrot. Fractals: Form, chance, and dimension, volume 1. W. H. Freeman, 1977.
19. Y. Matsubara, Y. Sakurai, B. Aditya Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information

diffusion: Model and implications. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 6–14. ACM, 2012.

20. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside the Slammer worm.
Security & Privacy, IEEE, 1(4):33–39, 2003.

21. David Moore, Colleen Shannon, and Kimberly C. Claffy. Code-red: a case study on the spread and
victims of an internet worm. In Internet Measurement Workshop, pages 273–284. ACM, 2002.

22. M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46, 2005.
23. E.E. Papalexakis and N.D. Sidiropoulos. Co-clustering as multilinear decomposition with sparse latent

factors. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on,
pages 2064–2067. IEEE, 2011.

24. Evangelos E Papalexakis, Nicholas D Sidiropoulos, and Rasmus Bro. From k-means to higher-way co-
clustering: multilinear decomposition with sparse latent factors. Signal Processing, IEEE Transactions
on, 2013.

25. Tudor Dumitraș and Darren Shou. Toward a standard benchmark for computer security research: The
Worldwide Intelligence Network Environment (WINE). In EuroSys BADGERS Workshop, Salzburg,
Austria, Apr 2011.

26. Ruldolf H. Riedi, Matthew S. Crouse, Vinay J. Ribeiro, and Richard G. Baraniuk. A multifractal wavelet
model with application to network traffic. In IEEE Transactions on Information Theory, number 3, April
1999.

27. Manfred Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman, New York, 6 edition, 1991.
28. Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The top speed of flash worms. In

Vern Paxson, editor, WORM, pages 33–42. ACM Press, 2004.



SHARKFIN: Spatio-temporal Mining of Software Adoption & Penetration 23

29. Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the internet in your spare time. In Pro-
ceedings of the 11th USENIX Security Symposium, pages 149–167, Berkeley, CA, USA, 2002. USENIX
Association.

30. Symantec Corporation. Symantec Internet security threat report, volume 17. http://www.
symantec.com/threatreport/, April 2012.

31. Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing the spatio-temporal behavior
of real traffic data. Perform. Eval., 49(1/4):147–163, 2002.

32. Mengzhi Wang, Tara Madhyastha, Ngai Hang Chang, Spiros Papadimitriou, and Christos Faloutsos.
Data mining meets performance evaluation: Fast algorithms for modeling bursty traffic. ICDE, February
2002.

33. Nicholas Weaver and Dan Ellis. Reflections on Witty: Analyzing the attacker. ;login: The USENIX
Magazine, 29(3):34–37, June 2004.

34. G.K. Zipf. Human Behavior and Principle of Least Effort: An Introduction to Human Ecology. Addison
Wesley, Cambridge, Massachusetts, 1949.


