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multilinear decomposition with sparse latent factors

Evangelos E. Papalexakis, Student Member, IEEE, Nicholas D. Sidiropoulos, Fellow, IEEE, Rasmus Bro

Abstract—Co-clustering is a generalization of unsupervised
clustering that has recently drawn renewed attention, driven by
emerging data mining applications in diverse areas. Whereas
clustering groups entire columns of a data matrix, co-clustering
groups columns over select rows only, i.e., it simultaneously
groups rows and columns. The concept generalizes to data
‘boxes’ and higher-way tensors, for simultaneous grouping along
multiple modes. Various co-clustering formulations have been
proposed, but no workhorse analogous to K -means has emerged.
This paper starts from K-means and shows how co-clustering
can be formulated as a constrained multilinear decomposition
with sparse latent factors. For three- and higher-way data,
uniqueness of the multilinear decomposition implies that, unlike
matrix co-clustering, it is possible to unravel a large number of
possibly overlapping co-clusters. A basic multi-way co-clustering
algorithm is proposed that exploits multilinearity using Lasso-
type coordinate updates. Various line search schemes are then
introduced to speed up convergence, and suitable modifications
are proposed to deal with missing values. The imposition of latent
sparsity pays a collateral dividend: it turns out that sequentially
extracting one co-cluster at a time is almost optimal, hence the
approach scales well for large datasets. The resulting algorithms
are benchmarked against the state-of-art in pertinent simulations,
and applied to measured data, including the ENRON e-mail
corpus.

I. INTRODUCTION

NSUPERVISED clustering seeks to group the columns
of a data matrix so that columns belonging to the same
group are close to each other in some sense. The prominent
example is K -means, which seeks to partition the columns in
a way that columns falling in the same subset are close in
terms of Euclidean distance. Unsupervised clustering is a core
toolbox in pattern recognition and machine intelligence, where
numerous extensions and variations of K-means have been
developed over the years to account for overlapping groups,
non-Euclidean distances and non-metric clustering, to name a
few.
A limitation of clustering is that it groups whole vectors,
i.e., if two vectors differ significantly even in one element,
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they cannot be clustered together. There are nowadays more
and more applications wherein one is interested in detecting,
e.g., groups of customers buying certain products, even though
their overall buying patterns are very different, or gene co-
expression under certain experimental conditions that are a
priori unknown. These tasks cannot be accomplished with
classical clustering methods.

Co-clustering is a generalization of unsupervised clustering
that seeks to group columns over selected rows only (and vice-
versa); that is, it simultaneously groups the rows and columns
of a matrix to produce ‘coherent’ groups called co-clusters.
The notion of coherence can range from constant to ‘similar’
co-cluster values, or proportional expression profiles in the
case of gene expression data. This type of matrix co-clustering
is also referred to as bi-clustering. Co-clustering goes back to
the early °70’s [14], but it has recently found applications in
diverse areas, ranging from the analysis of gene co-expression
to network traffic and social network analysis [7], [18], [5],
[23], [1]. The concept readily generalizes to higher-way data
sets (e.g., adding a temporal dimension). There are few papers
dealing with three-way co-clustering (tri-clustering) [36], [28],
[37] and no systematic study of three- and higher-way co-
clustering, to the best of our knowledge. This is important
because the algebraic properties of three- and higher-way data
are very different from those of two-way (matrix) data; see,
for example [19], [31].

K -means is NP-hard, but the (generalized) Lloyd-Max itera-
tion usually yields acceptable solutions at affordable complex-
ity. Hard co-clustering that partitions both rows and columns
is a generalization of K-means, hence also NP-hard. Unlike
K-means, there is unfortunately no algorithmic workhorse
analogous to the Lloyd-Max iteration for hard co-clustering.
Various hard and soft bi-clustering formulations have been
proposed in the literature [7], [18], [5], [23], [1], but numerical
optimization remains challenging in most cases.

Starting from basic K-means and its extensions, we show
how co-clustering can be formulated as a constrained multi-
linear decomposition with sparse latent factors. In the case of
three- and higher-way data, this corresponds to a parallel factor
(PARAFAC) decomposition with sparse latent factors. This has
important implications for co-clustering, because PARAFAC
is unique under relatively mild conditions. This allows to
uniquely unravel a large number of possibly overlapping co-
clusters that are hidden in the data - something impossible
with matrix methods. We discuss modeling alternatives, paying
particular attention to cases where one expects different co-
cluster support along the different modes of the data (e.g.,
a typical co-cluster involves more rows than columns). We



then propose a basic multi-way co-clustering algorithm that
exploits multilinearity using Lasso-type coordinate updates.
Each update is very simple, but the flip-side is that the
number of iterations until convergence can be large. To speed
up convergence, we propose line search schemes based on
iterative majorization and polynomial fitting. We also show
how one can modify our algorithms to deal with missing
data - a situation that is common in many applications.
The resulting algorithms are compared to the state-of-art in
carefully designed simulations, and also applied to measured
data - the ENRON e-mail corpus, Amazon co-purchase data,
and chromatographic wine data - to illustrate the benefit of
line search.

Interestingly, the imposition of latent sparsity pays a collat-
eral dividend: as one increases the number of fitted co-clusters,
new co-clusters are added without affecting those previously
extracted. This is not normally true for PARAFAC without
latent sparsity. An important corollary of this ‘additivity’ is
that the co-clusters can be equivalently recovered one by one,
in deflation mode. This is important because fitting a rank-
one component is far easier computationally, implying that
the approach remains operational even for large datasets.

A. Relevant prior art

References [20], [35] have considered bilinear matrix de-
compositions with sparse latent factors, [20] specifically for
bi-clustering - this is the closest piece of work to ours. We
will explain the differences with [20] in Section II-B1. We
have previously considered a related doubly-sparse model in
different contexts [30], [25]. None of the above has considered
tri-clustering and higher-way co-clustering of tensors. The first
attempt at tri-clustering was [36], followed by [28], [37].
These did not consider latent sparsity, which is at the heart
of our approach for joint co-cluster support selection across
all modes. An early version of part of our work appeared in
[26], see also the introductory article [6] for an interesting
application in food technology. The model is now different
[Eq. (5) vs. (2) in what follows], and the algorithms have
evolved significantly, to include enhancements such as line
search and missing values.

NOTATION AND PRELIMINARIES

A scalar is denoted by an italic letter, e.g. a. A column
vector is denoted by a bold lowercase letter, e.g. a whose i-th
entry is a(¢). A matrix is denoted by a bold uppercase letter,
e.g., A with (¢,7)-th entry A(4,5); A(:,7) (A(4,:)) denotes
the j-th column (resp. i-th row) of A. A three-way array
is denoted by an underlined bold uppercase letter, e.g., A,
with (7, j,n)-th entry A(4, j,n). Vector, matrix and three-way
array size parameters (mode lengths) are denoted by uppercase
letters, e.g. I. I : I denotes the range from I; to I, inclusive.
o stands for the vector outer product; i.e., for two vectors a
(Ix1)and b (J x 1), aob is an I x J rank-one matrix
with (i, j)-th element a(i)b(j); i.e., aob = ab’. For three
vectors, a (I x 1), b (J x 1), c (N x1),aobocis an
I x J x N rank -one three-way array with (i, j, n)-th element
a(i)b(j)c(n). Notice that outer products are simple (rank-one)
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structures, in the sense that all columns are proportional to a
single ‘pattern’, and the same holds for rows and ‘fibers’. The
rank of a matrix A can be defined as the smallest number of
outer products needed to synthesize A. The rank of a three-
way array A is likewise defined as the smallest number of
outer products needed to synthesize A. It turns out that this
is the proper way to generalize the concept of matrix rank
to three- and higher-way arrays (e.g., column and row ranks
generally do not coincide in the three-way case).

® stands for the Kronecker product; given A (I x K;) and B
(J x K39), A® B is the JI x KyK; matrix

BA(1,1) BA(1, k)

A®B:=

BA(I,1) BA(f, K)

© stands for the Khatri-Rao (column-wise Kronecker) product;
given A (I x K) and B (J x K) (notice same number of
columns), A ® B is the JI x K matrix

AoB=[A(;1)®@B(;,1)---A(;, K) @ B(:, K))]

® stands for the Hadamard (element-wise) product.
Consider a three-way array X. A low-rank approximation
of X can be written as

K
XY aobioc (M
k=1

When the approximation is exact, the above is known as the
PARAFAC decomposition [13]. The rank of X is then < K.
Any three-way array X can be decomposed / synthesized as
above, for sufficiently high K. Let A := [ay, -+ ,ax] (I X
K), B = [bl,-'- ,bK} (J X K), and C := [Ch"- ,CK]
(N x K). Then the I x J x N three-way array X above can
be unfolded into matrix form in three useful ways: X () of
size NJ x I, X(Q) of size IN x J, and X(3) of size JI x N.
These unfoldings can be specified as follows. Let X(i,:,:)
be the i-th J x N ‘slab’ of X perpendicular to the /-mode,
X(:,4,:) the j-th I x N slab of X perpendicular to the J-
mode, and X(:,:,n) the n-th I x J slab of X perpendicular
to the N-mode. Then

X(:, 1,97 ]
X = : ;
X(:, )"
X(:: 1) [ X(1,:,:)
X(2) = : o X@) = : ;
X(:: N) | X(Z,:,:)

and it can be shown that

X1 = (BoOC)AT, Xu = (CoOA)B", X3 =(A0B)C”

The operator H[a 3] projects its argument onto the interval
[, B]; Liconditiony denotes an indicator function - equal to 1 if
the condition is true, O otherwise.
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II. MOTIVATION AND PROBLEM FORMULATION
A. Clustering as constrained outer product decomposition

Consider the familiar problem of clustering a set of vectors
{x_,» GRI}.J,I in K clusters. The goal is to find K << J

cluster means {p,k € Rf}lil and an assignment of each x; to
a best-matching cluster k*(j) such that >, |x; — By |?
(or other suitable mismatch cost) is minimized. In matrix
algebra terms, the problem can be posed as follows. Define
X i= [, o oxa] (1% I M= [y ] (I x K,
and an assignment matrix B := [by,--- ,bg]| (J x K) having
binary elements B(j, k) = by (j) € {0, 1} and rows satisfying
Zszl B(j,k) = 1, Vj (i.e., each row sums to 1). The most
widely used version of the clustering problem, known as K-
means clustering, can then be written as

1X — MBT|[%,

min
M,Be{0,1}7* K NRS
where RS denotes the set of matrices with the property that
each row sums to 1. K-means clustering is NP-hard; for this
reason, iterative algorithms based on the Lloyd-Max iteration
are typically used to compute suboptimal solutions, often with
good results.
Note that K-means clustering is equivalent to finding a best-
fitting approximation (in the least squares sense) of the matrix
X as a sum of K outer products

min [[X — (] + -+ pgbR) ||,

but the loadings in one mode are constrained: B €
{0,1}7*® \RS. The binary constraint B(j, k) = by(j) €
{0,1}, V4, k corresponds to the usual case of ‘hard’ clustering:
every data vector either belongs to a certain cluster or not. The
RS constraint 25:1 B(j, k) = 1, Vj ensures that every data
vector belongs to one and only one cluster - no data vector
is left ‘orphan’ and the clusters are non-overlapping. Relaxing
the binary 0-1 constraints to non-negativity while maintaining
the RS constraint corresponds to ‘soft’ clustering (overlapping
clusters); the magnitude of B(j, k) now indicates how well
x; fits in cluster k. Replacing the RS constraint by its ‘lossy’
counterpart Zle B(j, k) <1 (or even dropping it altogether)
emphasizes the extraction of significant clusters at the expense
of not modeling ‘outlying’ data points. This is often well-
justified in the context of exploratory data analysis. From this
point on, we mostly focus on soft lossy (co-) clustering. We
also assume non-negative data and impose non-negativity on
the latent factors. Non-negativity is valid in many but not all
applications of co-clustering, so we also comment on how our
approach can be modified for the real-valued case.

B. Co-clustering as constrained outer product decomposition

K-means and related approaches cluster whole vectors -
meaning that all elements of a given vector are considered
when making clustering decisions, and vectors that are clus-
tered together are ideally ‘close’ in each and every coordinate.
A single cluster is modeled as a rank-one outer product plus
noise:

C = pb” + noise,

where g is unconstrained and b is binary; i.e., b(j) € {0,1},
with 1’s in those elements corresponding to columns of the
data matrix that belong to the given cluster. The vector b
will typically be sparse, because most data columns will not
belong to any given cluster - at least when K > 2 and the
cluster populations are roughly balanced.

There are many applications where certain vectors are close
only for a certain subset of their elements, and we need
to spot this pattern. A good example is gene expression
data, where the rows of the data matrix X correspond to
specific genes being expressed, the columns to experimental
conditions, and the objective is to detect patterns of joint
gene expression and the conditions under which this happens.
Note that we do not know a priori exactly which genes
are expressed together, or under which conditions. Another
example is marketing, where rows correspond to products,
columns to customers, and the objective is not to cluster
the products or the customers, but rather to detect (possibly
overlapping) groups of customers that tend to buy certain
subsets of products. This is the co-clustering (in this case bi-
clustering) problem which has recently generated significant
interest in numerous disciplines [7], [18], [5], [23], [1]. In
social network analysis, co-clustering can be used to detect
social groups (often called ‘cliques’) engaging in certain types
of social behavior.

Whereas one-sided clustering involves selection (which
columns belong to the given cluster) in one mode, co-
clustering involves selection in both modes (rows and
columns). This can be modeled as

G = ab” + noise,

where a and b are both sparse. When only relative expression
matters, we can relax the binary constraint on the elements of
a and b, possibly retaining non-negativity when appropriate.
Assuming non-negative data X(¢, ) > 0, Vi, j, and focusing
on overlapping (soft) lossy co-clustering, the problem can then
be formulated as

min HX_ABT”QFa
A>0,B>0
where the inequalities should be interpreted element-wise, and
the columns of A (I x K) and B (J x K) should typically
contain many zeros.

One may envision using singular value decomposition
(SVD) or non-negative matrix factorization (NMF) [21] for
co-clustering; however, the columns of A and B will then be
dense, destroying all support information which is crucial in
co-clustering applications. SVD imposes orthogonality, which
is artificial and limits analysis to non-overlapping co-clusters
if non-negativity is also imposed.

Enforcing sparsity is ideally accomplished by penalizing
the number of non-zero elements (the o norm), however this
yields an intractable optimization problem. Recent research
has shown that a practical alternative is to use an ¢; penalty
in lieu of the ¢y norm [32]. This leads to the following
formulation of bi-clustering:

X — AB”|3 4+ A S AGL R+ A S BGL )
ik Jik
(2)

min
A>0,B>0



where different ‘prices’ \,, \p have been introduced to account
for the fact that co-clusters may involve more (or less) rows
than columns; e.g., 3 genes and 12 experimental conditions
for gene co-expression data. This means that the level of
latent sparsity (number or percentage of nonzero elements)
differs across modes, which in turn implies that imbalanced
sparsity penalties should be employed to reveal the underlying
structure.

With A := [a1,--- ,ak]|, B := [b1,--- ,bgk], (2) can be
written as

K
min ||X—Zakb£||i’+
{ar>0,br >0}, k=1

Ao Ykl + X > lIbklf1- 3)
k k

The formulation in (2) / (3) has the following (weighted)
norm-balancing property:

Claim 1: Let {5k,6k}
Ap > 0. Then

K
be a solution of (3) for A\, > 0,
1

Aall8rll = Mol Bille = VA ollar[i][brllr, VB @)

Proqf: It is easy to see that, for A\, > 0, Ay > 0, either
both ay, by, are zero, in which case the equality holds trivially,
or both are nonzero. In the latter case, note that the /5 part
of the cost in (3) is invariant to simultaneous scaling of ay
by s and counter-scaling of by by % whereas the ¢; part
Aallar|l1 + Ap||brl|1 is sensitive with respect to such scaling.
Consider sa + %6, for some o > 0, B > 0. Taking derivative

with respect to s and setting it to zero yields § = :t\/g.
Substituting 5 = \/g back yields' Sa + 18 = /aB + vap,

i.e., the two terms are equalized. From the arithmetic mean -
geometric mean inequality, we know that 2v/a8 < a+ 3, with
equality if and only if a = 3. Thus, if Au|[ak|[1 # Ao|[bk]1,
scaling a; by s and counter-scaling by by % can be used to
strictly reduce the cost, thereby contradicting optimality. H

The norm-balancing property yields an important and per-
haps unexpected corollary:

Claim 2: For A\, > 0, Ay > 0, Problem (3) is equivalent to

min

K
X - Za b} ||% +
i 1= D acbI

> 2v/AaMollarl[1][bl]1,

k

implying that it is impossible to individually control the row-
and column-sparsity in (3) through appropriate choice of A,
and ), respectively; only the product A, )\, matters, and the
effective penalty is always symmetric.

1Use of the positive square root preserves the sign of o, 5. When o =
B =0 any s > 0 is equally good and the result is O.
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Proof:

K

IX = abi |7 +
k=1

Ao llalls+2 Y bl <=
k k

min
{ar>0,b, >0},

min

K 1
X—Za se—bl % +
{akzo7bk:zo,sk,>0}§:1” MR sk illr

k=1

1
Aoy sillaxls +/\bZ;||bk||1 =
k k

K
min ||X—Zakb£”%+
{ar>0,bx >0}, k=1

22\/>\a)\b|\ak\|1||bk||1

k

where for the last equivalence we used that we may restrict
the search for minima over only those (ay, by) that are either
both zero or both nonzero - having only one zero vector cannot
be optimal, as explained earlier. [ ]

This ‘forced symmetry’ is the most important, but not the
only drawback of the formulation in (2) / (3), which also
exhibits scaling bias. Noting that ||ag||1||[bk|l1 = |arb}|,
the latter being the ‘size’ of co-cluster k as measured by
the sum of absolute values of its elements, it follows that
(2) / (3) penalizes co-cluster support times expression level
according to y/support X level. Finally, from a computational
standpoint, we have observed that alternating optimization -
type algorithms aiming to solve (2) / (3) tend to get stuck
in ‘scaling swamps’, during which there is very slow progress
towards balancing the norms and virtually no progress in terms
of the overall cost function in (2) / (3).

The above shortcomings are undesirable artifacts of using
the ¢; norm as a surrogate of the ¢y norm. Whilst this
substitution has proven merits in the context of variable
selection in linear regression, we have argued that it is not
as well-motivated in the case of bilinear (and higher-order)
regression with latent sparsity. In addition to proven oracle
properties, a fundamental reason that ¢; is used in lieu of
£y for linear problems is that it yields a convex optimization
problem after the substitution, which can be efficiently solved -
scalar updates can be carried out in close-form, and coordinate
descent can be used to find the global optimum. This advantage
disappears for bilinear and higher-order models, because even
after ¢y — {1 substitution the problem remains highly non-
convex. As a result, alternative approximations of the £y norm
should be considered.

To circumvent these difficulties, we propose modifying the
model and cost function as follows. Any a; > 0 can be written
as opag, with 0 < a(¢) < 1, and oy, := max; a,(i); and
likewise for by. If we are interested in inducing sparsity on
a; > 0 while simultaneously retaining scaling freedom, it
makes sense to penalize ||ag||; instead of ||ag]||1. As illustrated
in Fig. 1, this is a better approximation of the ¢, norm.
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Dropping the tilde for brevity, we therefore obtain
K

1X =" prarby |7 +

k=1
MY bkl )
k

Ao llawlly
k

where p := max; ; X(¢,j). Notice that p, < p can be
enforced without loss of generality; an upper bound is needed
to avoid arbitrarily scaling down {ay, by} while absorbing
the overall scale in pg. Also note that, when the elements of
ay, are constrained in [0,1] as in (5), [|lax||l1 < ||ak|lo, with
[lak||1 = ||ak||o (and likewise for by) in the important special
case of a constant co-cluster of level p.

Note that one might be tempted to tighten the interval for
the elements of a, b to [0, €] for some small positive € < 1,
and compensate by changing the upper bound on p from p
to p/e, in order to employ an even better approximation of
the zero norm, see also Fig. 1. Although conditional updates
of one variable given the rest will remain simple, the overall
cost function will be harder to minimize (non-convexity will be
more severe) in this case. Also, simultaneously working with
very small and very large variables can give rise to numerical
conditioning problems for small e. Hence we advocate using
€ = 1 as a good trade-off.

In some applications of bi-clustering, X and the latent fac-
tors have real-valued elements; adjusting for this, the problem
becomes

min
{0<pr<p,0<a, <1,0<bp <1},

min
{lpel<p,—1<ap, b <1},

Ao > laklls+ X > b, (6)
% %

where now p := max; ; |X(4, j)|.

1) Related work: We have previously considered a special
case (with A\, = )\p) of the doubly sparse bilinear regression
problem in (2) in different contexts [30], [25]. Lee et al [20]
proposed a bi-clustering formulation that is closely related
to ours. In particular, they proposed using the following
formulation to extract one co-cluster at a time:

min X — pab®||% +
p>0,a,b | |[all2=|[bl|2=1 | I

)\aprl(i)|a(i)\ + Aprm(j)lb(j)L )

K
X =" prarbf |7 +
k=1

where the wq(i)’s and wo(j)’s are data-dependent weights
depending on the magnitude of the conditional least squares
estimate of the respective vector element. In [20], parameters
Aas Ap are chosen according to the Bayesian Information Cri-
terion, conditioned on interim estimates of b, a, respectively;
parameter tuning is embedded in the overall iteration, i.e.,
A, is modified after each update of b, and )\, after each
update of a. Adapting the sparsity penalties using intermediate
estimates of a and b may work well in many cases, but it also
implies that subsequent updates do not reduce a well-defined
cost function, opening the door to potential instability. In fact,
it is not difficult to find cases where [20] oscillates between
two states; an example is provided in the Appendix. For this

and other reasons, we fix the sparsity penalties throughout the
iterations. Our method of selecting parameters \,, A, will be
discussed in Section IV.
Considering the plain version of (7) with all weights equal
w1(2) = wa(j) = 1, ¥4, 7), ie,
. T2
p0a | Tabim %~ #20 lE+

Aapl[allr + Aopl[bl[1, (®)

the motivation for penalizing pl||a||; instead of ||a||; is not
clear in [20] - note that p is the overall scaling of the outer
product ab”, not the individual scaling of a; hence p||al|;
cannot be interpreted as the one-norm of the ‘effective’ a,
and likewise for b. It seems that part of the reasoning behind
[20] was to enable use of a simple block-coordinate descent
strategy: notice that optimizing (p,a) conditioned on b is
a Lasso problem [32], which can be efficiently solved; and
likewise for the conditional update of (p,b) given a. It is
easy to see that in order to synthesize a constant co-cluster
‘patch’, the penalty in (7) is proportional to co-cluster level.
As a side comment, note that in (5) we impose non-negativity
constraints on the elements of a and b, when appropriate.

Starting from a different perspective, Witten et al. [35]
proposed bilinear decomposition with sparsity-inducing hard
{1 constraints on both the left and right latent vectors, as
a variation of sparse SVD and sparse canonical correlation
analysis. Their model was not developed with co-clustering
in mind, but it is similar to our formulation of bi-clustering
- which uses soft ¢; penalties instead of hard ¢; constraints,
and optionally non-negativity when appropriate. Hoyer [16]
considered adding hard sparsity constraints to NMF with the
aim of improving the interpretability of the decomposition
in applications of NMF (co-clustering was not considered in
[16]). Hoyer used a sparsity measure that combines the ¢; and
{5 norms.

References [20], [35], [16] did not consider extensions to
the higher-way case, which is the topic of the next subsection.

C. Extension to three- and higher-way co-clustering:
PARAFAC with sparse latent factors

In many cases, one works with data sets indexed by three
or more variables, instead of two (as in matrices). A good
example is several batches of gene expression data measured
over several experimental conditions in two or more occasions
or by different labs. Another is social network data, such as
the ENRON e-mail corpus, where we have e-mail counts from
sender to receiver as a function of time, stored in a three-way
array X whose (4, j,n)-th element X (i, j,n) is the number of
packets send by transmitting node ¢ to receiving node j during
time interval n. The natural generalization of the bi-clustering
approach in (3) to tri-clustering is to consider a trilinear outer
product decomposition

K
X = E ay o by o ¢,
k=1

with sparsity on all latent factors. Without sparsity, the above
is the PARAFAC model, and K is the exact or ‘essential’ rank



of X, depending on whether one seeks an exact decomposition
or a low-rank approximation. Note that latent sparsity is key
here, because the whole point of co-clustering is to select
subsets along each mode. Even without sparsity, however,
the PARAFAC decomposition is unique under relatively mild
conditions - even in certain cases where K >> min(7,J)
(e.g., see [19], [31]). This means that our formulation of
(overlapping and lossy) three-way co-clustering can reveal the
true latent patterns in the data when used as an exploratory
tool, even for a large number of co-clusters - possibly even
exceeding some or all dimensions of the three-way array X.
This is not the case for bi-clustering, which is either NP-hard
(in the case of hard bi-clustering) or lacks uniqueness (in the
case of soft bi-clustering).

1) Related work: There are very few papers on tri-
clustering in the literature [36], [28], [37] (note that tri-
clustering is very different from K-means clustering of three-
way data, as considered, e.g., in [17]). Off-the-shelf non-
negative PARAFAC has been used for tri-clustering of web
data in [37], albeit without motivation as to why it is an
appropriate tool for co-clustering. A hybrid PARAFAC-Tucker
model is proposed in [28], again without clear motivation
regarding its application to co-clustering. Still, these are the
closest pieces of work, and so we will use non-negative
PARAFAC as a baseline for comparison in our simulations. We
underscore, however, that latent sparsity is key in our present
context, because the whole point of co-clustering is to select
subsets along each mode. Latent factor sparsity has not been
considered in the aforementioned references, which did not
start from a ‘first principles’ formulation, as we did.

One may wonder if there is a need to impose sparsity in
our present context, in light of uniqueness of unconstrained
(or non-negative) PARAFAC. The answer is two-fold. First,
in practice we compute truncated PARAFAC approximations,
instead of a full decomposition; noise and unmodeled dy-
namics will thereby render the extracted factors non-zero
everywhere, with probability one. This destroys the support
information that is crucial for co-clustering. Enforcing latent
sparsity suppresses noise and automatically selects the desired
support in all modes, simultaneously. Second, the imposition
of sparsity (and non-negativity) may allow stable extraction of
more co-clusters than would otherwise be possible with plain
PARAFAC. For these two reasons, sparsity constraints are very
important here.

Motivated by the aforementioned considerations, we may
consider the following formulation of tri-clustering

K

1X = arobgock|f +
k=1

)\aZ||al~cH1+)\bZkuHl +)\CZHCk||1- ©))

However, it is easy to prove by contradiction (similar to
Claim 1) that norm balancing now extends across all three
modes (and in fact slows down convergence of alternating
optimization schemes even further):

- K
Claim 3: Let {ﬁk,bk,ﬁk}k be a solution of (9), for
=1

min
{ar>0,b>0,cx>0,} 5
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Aa, Ap, Ae all > 0. Then

Xal[@kl[1 = Nol[brllr = Acl[€xl]1, VE. (10)

This leads us to propose the following formulation of tri-
clustering:

K
IX =Y prag o by o ckl|F +
e

1
X > lawlls + A > [[brll+ A D llex|lr, (11)
k k k

where p := max; j,, X(4,7,n).
If X and the latent factors have real-valued elements, then
the problem becomes

min
{0<pr<p,0<a,,by,cr<1,}

K

IX > prar o by ocylf +
k=

1
Aa ) llawll 4+ Ao Y bl + A Y llexll, (12)
k k k

where p := max; ; , |X (4, j,n)|.

min
{lprl<p,—1<ap,by,cr<1,}p_,

III. ALGORITHMS

The problem in (5) is highly non-convex, so global optimal
solution cannot be guaranteed. On the other hand, the formu-
lation in (5) admits element-wise or block coordinate descent
updates that reduce the cost and yield a monotonically im-
proving sequence of admissible solutions, at low per-iteration
complexity. Consider, for example, the update of a generic
element of A, denoted as «, conditioned on the remaining
model parameters. It can be shown that the problem then boils
down to

omin [ly —dafz + A,

for given y, and d. Define
fl@) =lly — dall3 + Alal,
g(a) = lly — dal3 + Aa,

and let o} and o denote the minimizers of f(«) and g(a),
respectively. Note that f(-) and g(-) are convex functions,
g(-) < f(-), and g(a) = f(a) for o > 0. The first derivative
of g(a) is

d
9(e) _ —9yTd + 20d7d + A,
da
and equating to zero yields
A
Oy = "qTq

There are three possibilities, as illustrated in Fig. 2:
1) «af €0,1], in which case oy = ag.

g < 0, in which case a} =0.
> 1, in which case oz} =1

W N
—~ —
L O
Q@ ¥xQ *¥xQ

Therefore, the optimal [0, 1]-Lasso scalar update is given by

_|¥id-3
D= | ——FF .
d’d
(0,1]
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The same type of problem arises when updating a single
element of B - the model in (5) is symmetric in terms of
the roles of A and B. The conditional update of p given A
and B is a simple scalar least squares problem: it can be put
in the form
. 2
oin_|lx —zpll3

for given x, z; the solution is

b= [ZTX]
=\ 7y :
272 110,59

In the real-valued case, the scaling factor p is still restricted
to be non-negative, but the latent factor elements take values
in [—1,1]. The scalar update problem becomes

: _ 2
_min_ iy~ dal[} + Aol

whose solution is

T
[yd‘iﬁh ityTd=3 >0
0,1
= y'd+3 e T A
« [ de2L,170] ify'd+5 <0

0  otherwise

The same type of element-wise updates can be used for
both bi-clustering and tri- (or higher-way) co-clustering: the
key point is that multilinearity renders the conditional updates
in linear regression form. The overall algorithm cycles over
the elements of A, B (C, ...), interleaved with updates of
p, until convergence of the cost function. Initialization does
matter: for bi-clustering, we initialize the iterations using a
truncated SVD, or Non-negative Matrix Factorization (NMF).
For tri-clustering, we use non-negative PARAFAC - in partic-
ular, Non-Negative Alternating Least Squares (NN-ALS), as
implemented in the N-way Toolbox for Matlab [2]. Algorithm
1 is pseudo-code for the proposed tri-clustering algorithm for
a single co-cluster (K = 1).

Remark 1: As we will soon see, a fortuitous side-benefit
of our formulation enables far simpler computation of the
dominant co-clusters in an incremental fashion; hence an
algorithm for K = 1 is all that is needed in practice. After
extracting a co-cluster pa o b o ¢ using Algorithm 1, we can
remove it from the data (i.e., replace X by X — paoboc),
and continue to extract another co-cluster, using Algorithm
1. Such a deflation procedure is generally inferior to jointly
fitting all co-clusters at the same time; however here sparsity
helps make it almost as good, as we will see.

A. Convergence speed-up using line search

Despite its conceptual and computational simplicity and
versatility, coordinate descent - type optimization can suffer
from slow convergence. This is a well-known issue in the
context of PARAFAC, where Alternating Least Squares (ALS
- a block coordinate descent procedure) is commonly used
for model fitting. In related contexts, it has been shown that
line search is an effective way to speed-up convergence and
avoid so-called swamps [29], [33]. In a nutshell, line search
seeks to accelerate convergence by improving the present
model estimate via extrapolation along a line drawn from the

previous to the present estimate. Existing line search methods
for PARAFAC are specifically designed for the least squares
cost function, and modifications to account for the ¢; parts of
the cost are not obvious.

Consider a rank-one PARAFAC model with non-negative
(NN) sparse latent factors (SLF). The model has four param-
eters: a, b, ¢ and p. Define the direction vector

glit) — a(i) _ gt=1),

with it denoting an iteration index, henceforth dropped for
brevity. We similarly define direction vectors g, g., and the
scalar g, for b,c and p, respectively. Then the optimal line
search step s may be obtained by minimizing the function
@(s). Were it not for the absolute value terms, ¢(s) would
have been a polynomial of degree 8 in s, in which case
the optimal step-size could have been found by rooting the
derivative of ¢(s). Due to the presence of the absolute value
terms, however, ¢(s) is no longer polynomial. This is the main
difficulty in converting existing methods for optimal step-size
selection to work with our mixed ¢5 - ¢; formulation. We have
explored the following possibilities:

« Discrete line search (computing the minimum of ¢(s)
over a uniform sampling grid) is an obvious (albeit
potentially computationally expensive) possibility, which
could be refined using ‘zoom’ search or sub-gradient
descent. Back-tracking line search could also be used,
as a computationally cheaper alternative. The important
thing to keep in mind here is that line search need not be
optimal to significantly cut down the required number of
iterations.

e We know that ¢(s) is not polynomial, but, keeping
in mind that the line search step need only be good

Algorithm 1 Extracting a single tri-cluster: rank-one

PARAFAC with non-negative sparse latent factors

Imput: X of size I x J X N, Ag,Ap,Ac

Qutput: a of size I x 1, b of size J x 1, cof size N x 1, p
Unfold X into X (1), X(2), X(3) (see notation and prelimi-
naries section)
Initialize a, b, c using NN ALS
Initialize p = max(a) max(b) max(c) and normalize a, b,
c to [0,1].
Set upper bound p,q, = max(max(max(X))) w/out loss
of generality
while change in cost in (11) > € do

a = argmin [ X~ p(b O c)a’ [} + 1, 3 lali)]

p= argmin | Xy —p(bec)a’ %
0<p<pmax

b = argmin | X(5) — p(c ® a)b” |3 + X Y _ [b(j)]
0<b<1 -

p= argmin || Xy —p(c® a)b’ ||%
0<p<pmax
. T
c = argmin | X3, — pla@b)c” |5 + Ac Z |c(n)]
0<c<1
. T
p= argmin [X@ —plaob)c %
0<p<pmax
end while




¢(s) = Y (X(i,j,n) -

1,7,m

+ Xa Z| |+)\b2|

)+ s8a(i
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(p+ 595) (ali) + sga (1)) (b(j) + sgs(7)) (c(n) + sgc(n)))*

7) + sg(7) | + Ae ZI n) + sge(n))|

but not necessarily optimal, we may approximate ¢(s)
using a polynomial, then determine a good step-size by
rooting the derivative of the approximating polynomial.
A polynomial of order d can be determined by d + 1
samples (values at particular locations)?>. We have tried
approximating ¢(s) by a polynomial of degree d = 8,
with very encouraging results, as we will see.

o We can aim for an iterative majorization-type algorithm.
The main idea of iterative majorization is to upper bound
the function you wish to minimize by another one that is
always above it for all s, and equal to it at the current
s. The upper bound should ideally be tight and easy to
minimize, e.g., a quadratic, or a polynomial which we can
easily root. It is easy to show that by minimizing such
an upper bound we are guaranteed to reduce the desired
function.

Towards obtaining a suitable majorizing function, note that
the ¢; part of ¢(s) is separable, and the remainder is already
a polynomial of degree 8 in s. It follows that it suffices to find
a majorizing polynomial for a generic scalar term of the form
p(s) = |(a + sg4)|- The majorizing function p,,(s|s.) should
have two properties: 1) pp,(s|s.) > p(s) for all s, and ii)
Pm(Sc|se) = p(sc). A suitable choice for our purposes can be
drawn from [15]: py,(s]sc) = 2p(sc) + %%. Property 1)
holds due to the fact that (|(a + sg4)| — |(a + s5cga)])* > 0;
property ii) can be verified by direct substitution of s.. As
the initial support point s., we propose using the solution
obtained by approximating the cost function as an 8-th degree
polynomial. Using p,,,(s|s.) as a majorizing function for each
absolute value term, and adding the squared norm part of
@(s), yields a majorizing polynomial of degree 8, whose
derivative we root to obtain a new support point (testing
all roots to find the one that yields the smallest value of
the majorizing polynomial). This majorization - minimization
(rooting) process is repeated until convergence of the cost to
within a pre-specified tolerance. Monotone convergence to at
least a local minimum is assured, see, e.g., [15].

B. Handling Missing Values

In exploratory data analysis, there are cases where a (pos-
sibly large) proportion of the sought data is not available.
Still, co-clustering on the basis of whatever data is available
can be relevant and is often desirable. A good way to handle
missing values (in the absence of prior / side information) is
to ignore them in the model fitting process; e.g., see [34] for
plain PARAFAC with missing values. Define a weight array

2Let v(s) be a Vandermonde vector with generator s, and o denote the
polynomial’s coefficient vector. Then the value of the polynomial at point s
is oTv(s).

‘W such that:

..y | 1 if X(i,4,n) is available
Wi, j,n) = { 0 otherwise

We build upon the imbalanced sparsity, rank one algorithm.
The problem of interest can then be written as

min
0<a,b,c<1,0<p<M (X

)\a2|az H—)\bZ\b] |+/\CZ\cn
7 7 n

The key observation is this: in updating an element of c,
say c(n), conditioned on interim values for the remaining
parameters, we may absorb the weights in the data and the
remaining parameters. In particular, let X(:,:,n) denote the
I x J ‘slice’ of X obtained by fixing the third index to value
n, and likewise W (:,: n) denote the I x J slice of W. Then
the conditional update of c(n) given all other parameters can
be written as the minimization over 0 < c(n) < 1 of

IIW ®[X —plaoboc)] |+

W, m) @ X(:tom) — (W, 5m) @ (pabT)) c(n)HQF—i—)\Jc(n)\.

Letting y = wvec(W(:,:,n)®X(:;,:,n)) and r :=
vec (W(:,:,n) ® (pab”)), the update of ¢(n) can be written
as

: 2
— Ae .
min_ly ~ re(m)]3 + Ade(n)

This way, our previous algorithms can be reused to account
for missing data, without further modification.

IV. GUIDELINES ON CHOOSING A4, A\p, AND A,

The original Lasso objective function is
1 )
min 2 [ly — Mz[3 + A Z |2(1)]
7

n [24], it is shown that z,, = 0 for any A > \*, with

A =Myl (13)

where || V|| denotes the infinity norm (the maximum absolute
value of the elements of v).

We focus on the rank-one imbalanced sparsity model and
the derivation of a suitable bound on A.. Formulas for Ay, A,
can be analogously derived. Consider the conditional update
of c given the remaining parameters. The pertinent part of the
cost can be written as

min||Xs) - p(a© b)eT 3 + A 3 Je(n)

where X(3) is the JI X N matrix unfolding of the three-
way array X. Let us further zoom down to the scalar case -
the conditional update of c(n) given all remaining parameters
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(including other elements of the vector c¢). The function to
minimize can then be written as

min [ X5 (:,n) — pla © b)e(n) 3 + Ade(n)],

where X 3)(:, n) is the n-th column of matrix X (s). The bound
for Lasso in (13) implies that the optimal c(n) will be zero
when )\, exceeds

Xom =2lp(a©b) X5 (0l = 2[lp(a © b) X ()2
< 2p)(2®@b)" 2] X3 (s )12 < 2pmanl T X3 (1) 2,

where the equality holds because the expression within the

infinity norm is scalar, the first inequality is the Cauchy-
Schwartz, and the second inequality simply uses that any
element of a and b is upper bounded by 1. This immediately
yields an upper bound on A,

/\Z = 2pmazIJm3X ||X(3)(,7’l)”2

which depends solely on the input data array X. Had we
known a-priori an estimate of ||al|o and ||b|o, i.e., the number
of non zero elements of the ‘true’ a and b, we could substitute
those estimates in lieu of I and .J, thus obtaining a tighter
bound for A..

Several authors have considered the problem of tuning
the regularization parameter A\ for the usual linear regression
version of Lasso [32], [27], [38], assuming availability of
training data for cross-validation, or that the data come from
a known distribution. Here, however, we deal with what can
be viewed as a multi-linear extension of Lasso, applied in an
exploratory data analysis mode, where labeled data or detailed
statistical information is hard to come by. Instead, it is more
plausible to assume that the practitioner has (perhaps coarse)
knowledge of the expected number of non-zero elements in
a, b, ¢, which reflect the expected co-cluster membership
along the different modes. If this is the case, we may use such
estimates of mode support to obtain ‘clairvoyant” bounds A},
Aps An. For example, if we know that the expected number
of nonzero elements in mode 1 is 5; and in mode 2 it is
52, then we can set A} = 21425152 max, || X ) (:,n)|2. We
have experimented with this idea, and found that choosing the
A’s to be a small percentage (typically, 0.1%) of the respective
clairvoyant bound works very well on both simulated and real
data. For simulated data, this choice approximately recovers
the desired number of nonzero elements per latent factor; for
real data, it produces interpretable results.

V. EXPERIMENTAL EVALUATION

In this section, we first compare our approach with estab-
lished bi-clustering and recent tri-clustering methods, using
synthetic data. In the process, we also illustrate the power of
tri-clustering vis-a-vis bi-clustering of three-way data averaged
out across one mode. We next turn to a well-known three-
way dataset: the ENRON e-mail corpus, containing e-mail
counts from sender to receiver as a function of time. We
then assess the impact of the choice of A’s and the use of
line search on convergence speed, using synthetic data as
well as three measured datasets: the ENRON e-mail corpus,
Amazon co-purchase data, and wine data. Finally, we illustrate

performance with various proportions of missing entries for
the ENRON data. All experiments were conducted on a 1.7
GHz Intel Core i5, with 4GB of memory, using Matlab
implementations of all algorithms considered.

A. Synthetic Data

Starting from an all-zero array X of size 80 x 80 x 8, we
implant three co-clusters, two of which overlap in ‘space’ (first
two modes) and ‘time’ (the third mode), whereas the third is
isolated in space but overlaps with one of the other two in
time:

X(20:24,20:24,1:3) =4I553

X(40:44,70:74,2:5) = 21554
X(37:41,73:77,4:8) =4I555

where I; ;i denotes an I x J x K array of unit elements. We
then add i.i.d. sparse (Bernoulli-modulated) Gaussian noise:
the probability that a sample is contaminated is set to 0.1, and
if contaminated the noise is Gaussian, of zero mean and unit
variance. In order to illustrate the performance of various bi-
clustering algorithms (also vis-a-vis tri-clustering), we use the
sum of frontal slices of X, which yields an 80 x 80 matrix X.
We further take the absolute value of X as the input to all bi-
clustering algorithms, because, e.g., [10] assumes non-negative
input data. The number of co-clusters to be extracted is set to
K = 3, matching the actual number of co-clusters in the data.
We illustrate the performance of the proposed methods against
well-known bi-clustering [5], [1], [9], [8], [10], as well as tri-
clustering [36], [37] methods.

Bi-clustering: Figures 3(a) - 3(e) demonstrate the performance
of bi-clustering methods. We make a distinction between soft
co-clustering (Fig. 3(a)) and hard co-clustering (Figs. 3(b) -
3(e)). For the latter, the number of extracted co-clusters should
be at least K = 3 4+ 1 = 4, since the underlying noise in X
must be assigned somewhere. We use K = 4 to capture the
noise plus any systematic residual. Even though there is no
guarantee that most of the noise will end up in the ‘residual’
co-cluster, this is what happens in this example. With soft co-
clustering one does not need to provision extra co-cluster(s),
since rows and columns can be left out altogether.

Fig. 3(a) shows the co-clusters extracted using the two-
way analogue of the proposed algorithm, i.e., solving (5) with
Aa = Ap = 80, using the three most significant left and
right singular vectors to initialize A and B. Observe that
(5) manages to extract all three co-clusters, with minimal
leakage. Fig. 3(b) shows the output co-clusters of a simple
K-means based approximation algorithm, as introduced in [1].
Observe that the co-clusters have been extracted with major
losses, due to the overlap. Another approach that utilizes K-
means for spectral graph partitioning is introduced in [10];
Fig. 3(c) shows the output of this algorithm, which has similar
behavior to [1] but with slightly better definition - although the
overlapping co-clusters have not been successfully resolved.

The co-clustering framework introduced in [5] subsumes
[9] (using the I-Divergence as loss function) and [8] (using
the Euclidean distance as loss function). Fig. 3(d) shows the
results of [9]. Finally, Fig. 3(e) shows the results of [5] (using



the Euclidean distance as loss function), which manages to
uncover all three co-clusters, albeit with noticeable loss in
the overlapping region. We should note that [9], [5], [8] seek
to find a checkerboard structure of co-clusters, i.e., disjoint
sets of row and column indices of the data matrix, so it is no
surprise that overlapping co-clusters cannot be fully recovered.
Yet overlapping co-clusters often occur in applications, and
resolving them is a major challenge in co-clustering.
Tri-clustering: Fig. 4 shows the results of the proposed tri-
clustering approach [cf. (11) with A\, = Ay = A, = 12] applied
to the three-way synthetic dataset X. As a line of comparison,
Fig. 5 shows the results of tri-clustering using PARAFAC with
non-negativity but without latent sparsity, as suggested in [37].
In Fig. 5, observe how the two overlapping clusters have been
merged into one; a phantom co-cluster has emerged; and there
is loss of localization (leakage) due to noise. It is important
to note here that thresholding the results of Fig. 5 in a post-
processing step may reduce leakage, but it will not recover the
correct support information, and the phantom co-cluster will
of course remain.

The following points may be distilled from our experiments
with synthetic data:

o Tensor to matrix data reduction (going from X to X)
leaves out useful temporal information, which can also
be crucial for proper spatial resolution of the co-clusters,
especially overlapping ones.

o Latent sparsity is essential for recovering the correct
support information in case of overlapping co-clusters;
non-negativity alone does not work.

Table I compares all methods considered in terms of correct
classification rate (the probability that a tensor/matrix element
is correctly assigned to the co-cluster(s) that it belongs to) and
execution time for the synthetic data. The complexity order of
each method is also included. The proposed methods have the
best co-clustering performance on the synthetic data, at the
cost of moderately higher execution time.

B. ENRON e-mail corpus

We used a summary version of the ENRON dataset stored
in a three-way array X of size 168 x 168 x 44, containing the
number of e-mails exchanged between 168 employees over
44 months (spanning from 1998 to 2002), indexed by sender,
receiver, and month. Similar to [3], we first compress the
dynamic range of the raw data using a logarithmic transforma-
tion: each non-zero entry of X is mapped to ' = log,(z)+1.
We then fit a non-negative PARAFAC model with sparse latent
factors to extract the dominant co-clusters (A, = A\p = A, =
12). In our present context, each co-cluster captures a ‘clique’
and its temporal evolution. Total running time was 129.36
seconds. Table II summarizes the extracted cliques, which turn
out to match the structure of the organization remarkably well
- e.g., the label ‘legal’ in Table II means that the corresponding
co-cluster contains the employees in the legal department
(plus/minus one employee in all cases reported in Table II).
Table II suggests that increasing K yields a nested sequence
of co-clusters. This is indeed the case. The temporal profiles
for K = 5 are plotted in Fig. 6. Two distinct peaks can be
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identified in the temporal communication patterns among the
various cliques. Namely, the first peak can be found between
the end of 2000 and the middle of 2001 (points 26-33 in
Fig. 6), when a change of CEO occurred. The second peak
corresponds to bankruptcy, between September and November
2001 (points 36-38 in Fig. 6). In [3], four class labels are
identified: Legal, Executive/Govt. Affairs, Executive, Pipeline.
The same class labels are also identified in [28], where non-
negative PARAFAC is used, among other methods. Our results
(cf. Table II) are qualitatively consistent with [3], [28], [11],
but our cliques are cleaner, containing fewer outliers due to
the imposition of sparsity.

C. Impact of choice of A and line search on convergence speed

Next, we illustrate the impact of the choice of
A (= A = X = A, here) and the incorporation
of line search on the required number of iterations.
For this purpose we wuse the previously discussed
data, plus Amazon co-purchase data downloaded from
http://snap.stanford.edu/data/#amazon (cf.
[22]), and wine data from [4]. The wine data is challenging
in terms of speed of convergence, thus offering a rigorous
test for line search. It is also challenging to interpret the
results of co-clustering analysis of the wine data, since
the differences between the various wines are subtle, so
there are no clean and ‘obvious’ co-clusters. Fig. 7 shows a
score plot based on tri-clustering analysis of the wine data
for A\, = Ay = A\ = 1. Wine ¢ is represented by a point
whose coordinates are A(i,4) and A(z,5), indicating degree
of membership in co-cluster 4 and 5, respectively. These
reflect subtle differences in relative concentrations of various
aromatic compounds in the wine, which are hard to reveal
without imposing latent sparsity, see [4].

Fig. 8 shows the number of iterations versus A for all the
datasets. With the exception of a few occasional problems with
local minima, the general message is clear: the number of
iterations until convergence (to within pre-specified tolerance
of 1078) is a decreasing function of \. The sparser the
solution sought, the faster the convergence. This is reasonable,
considering that higher \’s zero-out more elements (cf. the
thresholding interpretation of element-wise updates).

Fig. 9 shows the convergence speedup obtained by line
search. We plot the total number of iterations required for
convergence (with tolerance equal to 10~1°) versus the number
of components. We present the number of iterations for 4
different versions of the PARAFAC w/ NN SLF algorithm: the
plain one, and three variations obtained by incorporating the
three proposed line search schemes: grid, polynomial approx-
imation, and polynomial majorization using polynomial ap-
proximation for initialization. From Fig. 9, it is clear that line
search speeds up the convergence rate of the basic algorithm
quite significantly. In most cases, polynomial approximation
and polynomial majorization line search are slightly better than
grid search in terms of number of iterations (a fine-resolution
grid search was used in these experiments). Polynomial-based
line search schemes are preferable in difficult scenarios, but
our experience is that any reasonable line search scheme will
usually reap most of the potential improvement.
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D. Missing Values

Data analysis practitioners often have to deal with incom-
plete data - ranging from few randomly or systematically
missing values all the way to very sparse data sets, where
one has access to only a small percentage of the full data to
be modeled or analyzed. We have already explained how data
and regressor weighting can be tailored to ignore the missing
values in the fitting process, relying on the postulated low-rank
latent structure to implicitly interpolate what is missing. Here,
we illustrate the effectiveness of this approach for randomly
missing values, using the ENRON data as an example.

When fitting a model without full access to the pertinent
data, the best one can hope for is to come close to the model
fitted from the full data. Accordingly, a good figure of merit
is the Relative Squared Error (RSE) between the models fitted
from full and partial data. In our present context, one could
compare at the level of individual co-clusters; but in order to
plot a single meaningful metric, we compare the interpolated
arrays (A, © B,,) C] vs. (Ay © By) C?, where subscripts ,,
and ; denote factor matrices fitted from partial and full data,
respectively. Then RSE is defined as

RSE :— I (Ay ©By) C? — (Ap ©By) Cg”%
I (A ©By) CHI3

Fig. 10 shows RSE™! (a signal-to-noise - like measure) versus
the percentage of missing values for A = 20 in all three modes,
K ranging from 1 to 4 co-clusters. up to K = 4, and A = 20.
A simple i.i.d. Bernoulli model with miss probability g was
used for selecting the missing values, and for each ¢ the results
are averaged over 10 realizations of the Bernoulli process.
There are two points worth noticing. First, in this example
RSE™! stays roughly above 10 dB for up to 50% missing
values, suggesting that we can tolerate a significant portion of
missing values. Second, lower K yield higher RSE™! for the
same percentage of missing values. This is intuitive, because
for lower K we have fewer unknowns to estimate from the
same data.

VI. DISCUSSION AND CONCLUSIONS

Starting from first principles, we have formulated a new
approach to multi-way co-clustering, as a constrained multi-
linear decomposition with sparse latent factors. In the case of
three- and higher-way data, this corresponds to a PARAFAC
decomposition with sparse latent factors. The inherent unique-
ness of PARAFAC is further enhanced by sparsity, thereby
allowing stable identification of a large number of possibly
overlapping co-clusters. We have proposed an associated co-
clustering algorithm that is based on simple coordinate updates
coupled with efficient line search, and useful guidelines on the
choice of sparsity penalties. We have also explained how to
handle missing values.

Intrigued by our experimental results, we further investi-
gated the apparent nesting property that we first reported in
[26]. Namely, we observed that as K increases, our formula-
tion produces a nested sequence of co-clusters; the sequence
of fitted models is nested in terms of the model order. This
behavior is very different from that exhibited by the classical

PARAFAC decomposition (with or without non-negativity),
which often yields very different sets of rank-one components
for successive values of K. Through extensive follow-up ex-
periments (not detailed here due to space limitations), we have
observed that the nesting property holds for strictly positive A;
it is only approximate for relatively low A, and becomes more
accurate with increasing A. The property holds best for three-
way data with latent non-negativity, but also holds well for
three-way data without non-negativity. In the matrix case, it
holds well when the data is non-negative (whether we enforce
latent non-negativity or not), but it does not hold with much
accuracy when the data matrix elements are of mixed signs.
We believe that nesting property is a fortuitous side-benefit
of latent sparsity, aided by non-negativity to a certain extent.
Despite trying, we have not been able to provide analytical in-
sights as to why the nesting property holds. Analysis is compli-
cated because nesting is not exact but only approximate. When
latent sparsity is imposed, the vectors {a; ® by ® ck}szl
often turn out being quasi-orthogonal, which goes some way
towards explaining the nesting property in a qualitative way.
Nesting has important practical implications, as far simpler
and scalable ‘deflation’ algorithms can be used to extract one
co-cluster at a time, without significant loss of optimality.

APPENDIX

Example of SSVD limit cycle: It is not difficult to find cases
where SSVD [20] oscillates between two states; one such
example is

0.06130 —0.0743 0.00580 0.00580 —0.0467
—0.1872 0.22670 —0.0176 —0.0176 0.14250

X = 10.13930 —0.1686 0.01310 0.01310 —0.1060| ,
—0.0688 0.08330 —0.0065 —0.0065 0.05240
—0.0075 0.00900 —0.0007 —0.0007 0.00570

(14)

and K = 1. We used the implementation provided

by the authors of [20], downloaded from http://www.
unc.edu/~haipeng/publication/ssvd-code.rar. In this example,
SSVD oscillates between {u;,v1}, and {us,va}. The first
dyad of vectors is u; = [0 0.8594 -0.5113 0 0]"
and vi = [0 1 0 0 O]T; the second is u, =
[—0.2444 0.7459 —0.5548 0.2741 0.0297}T, and v, =
[-0.5715 0.7044 0 0 0.4210}T. The same type of limit
cycle behavior has been observed for non-negative data; for
instance, when the absolute value of X in (14) is taken as
input to SSVD.
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= = = 0-norm
proposed
1-norm

Two approximations of the zero norm: note that the proposed one is

much tighter for large |z|, due to saturation.

Method Correct % Time Complexity
PARAFAC NN SLF 97.5% 4.9 sec O(IJNK) / iter
[28], [37] 49% 1.3 sec O(IJNK) / iter
SMR 80.3-86.3% | 2.95 sec O(IJK) [ iter
[1] 1% 0.76 sec O(IJK) [ iter
[10] 5.8-39.7% | 0.05 sec O(1JK)
[9] 14-71% 0.25 sec | O(||X|lo(Kr + K¢)) / iter
[5] (Euclidean), cf. [8] 70.3% 0.25 sec O((Ky + K.)J) / iter
TABLE I

COMPARISON OF CORRECT CLASSIFICATION RATES AND EXECUTION
TIMES (SYNTHETIC DATA) PLUS COMPLEXITY ORDERS FOR ALL METHODS
CONSIDERED. MULTIPLE PERCENTAGES ARE REPORTED FOR SMR AND
[10], [9], DUE TO LOCAL MINIMA. PARAMETERS K, AND K. FOR THE
LAST TWO ALGORITHMS INDICATE THE NUMBER OF ROW AND COLUMN

CLUSTERS, RESPECTIVELY.

K =1 Legal -

K =2 Legal Executive, Govt. affairs -

K =3 Legal Executive, Govt. affairs Trading -

K =4 Legal Executive, Govt. affairs Trading Pipeline -

K =5 Legal Executive Executive, Govt. affairs Trading Pipeline
TABLE 11

EXTRACTED CO-CLUSTERS FOR ENRON (A = 30).




FROM K-MEANS TO HIGHER-WAY CO-CLUSTERING: MULTILINEAR DECOMPOSITION WITH SPARSE LATENT FACTORS

(c) case 3

Fig. 2. Three cases for the [0, 1] constrained Lasso

Fig.

Sum data Co-cluster 1 Co-cluster 2 Co-cluster 3

(a) Sparse Matrix Regression on the sum matrix (Aq = Ap =
80)

Sum data Co-cluster 1 Co-cluster2 Co-cluster 3 Co-cluster 4

(b) K-means co-clustering on the sum matrix [1]

Sum data Co-cluster 1 Co-cluster2 Co-cluster 3 Co-cluster 4

(c) Bi-clustering using spectral graph partitioning [10]

Sum data Co-cluster 1 Co-cluster2 Co-cluster 3 Co-cluster 4

(d) Information-theoretic bi-clustering [9]

Sum data Co-cluster 1 Co-cluster2 Co-cluster 3 Co-cluster 4

(e) Bregman bi-clustering using the Euclidean distance [5], [

3. Two-way co-clustering methods on synthetic data
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Fig. 4. Overlapping co-clusters: PARAFAC w/ NN SLF (A = 12)
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Fig. 5. Overlapping co-clusters: PARAFAC w/ NN (A = 0) [28], [37]
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